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ABSTRACT

In this paper, a novel pruning framework is introduced to
compress noisy or less discriminant filters in small fractional
steps, in deep convolutional networks. The proposed frame-
work utilizes a class-separability criterion that can exploit ef-
fectively the labeling information in annotated training sets.
Additionally, an asymptotic schedule for the pruning rate and
scaling factor is adopted so that the selected filters’ weights
collapse gradually to zero, providing improved robustness.
Experimental results on the CIFAR-10, Google speech com-
mands (GSC) and ImageNet32 (a downsampled version of
ILSVRC-2012) show the efficacy of the proposed approach1.

Index Terms— Deep convolutional neural networks,
asymptotic filter pruning, class-separability criteria

1. INTRODUCTION

Deep convolutional neural networks (DCNNs) have shown
outstanding classification performance in a variety of applica-
tion domains. However, limitations in the computational ca-
pabilities of resource-limited devices such as IoT and mobile
devices, inhibit the use of top-performing DCNNs in these
areas. Many approaches have been proposed to reduce the
space requirements and accelerate large DCNNs, including
quantization, low-rank approximations, and other [1, 2].

Pruning is recently getting increasing attention due to the
fact that it can be used in combination with most of the other
compression and acceleration methods. It typically consists
of a filter importance estimation criterion and a pruning strat-
egy. For instance, in [3], the l1 norm filter selection criterion
is utilized with different pruning rates per layer. In [4], a Tay-
lor expansion-based criterion is proposed to approximate the
accuracy loss of pruned feature maps. In [5], a LASSO re-
gression framework is utilized. In [6], low-cost collaborative
layers are used to prune filters with zero responses after the
ReLU activation. A hybrid algorithm is introduced in [7],
combining low rank approximation, quantization and prun-
ing. In [8], filter- and shape-wise scaling factors are used for

1Source code is made publicly available at: https://github.com/
bmezaris/fractional_step_discriminant_pruning_dcnn

filter weakening and pruning. In [9], filters are pruned iter-
atively along epochs using an l2 norm-based criterion. The
above method is extended in [10] using an asymptotic filter
pruning schedule. In [11], a trained DCNN and a k-means-
based criterion are utilized for filter representation and prun-
ing. In [12], the geometric median (GM) is used to design
a criterion for selecting the filters with the most replaceable
contribution.

As described above, most pruning approaches in the lit-
erature utilize energy preserving-based criteria for filter se-
lection, which may be suboptimal from the perspective of
classification [13, 14]. To this end, instead of energy preser-
vation measures, we consider the between-class scatter ma-
trix, which is a popular class-separability measure utilized for
extracting the most effective features for classification, and
combine it with the GM-based criterion presented in [12].
Furthermore, inspired from [14] we adapt and extend the ap-
proach of [10] so that both the pruning rate and filter weights’
scaling factor asymptotically approximate their target values.
In this way, selected filters are not pruned immediately, but
instead are “squeezed” towards zero in small fractional steps,
preserving more effectively the capacity of the network and
yielding a more stable procedure.

The rest of the paper is structured as follows: The problem
is formulated in Section 2. The proposed pruning framework
is presented in Section 3. Experiments are described in Sec-
tion 4 and conclusions are drawn in Section 5.

2. FORMULATION

Consider a CNNW with l convolutional layers and c filters,
each filter denoted as:

V(i,j) ∈ Rk×k×ci−1 , i = 1, . . . , l, j = 1, . . . , ci, (1)

where i is the layer index, j and ci are the filter index2 and
number of filters in the ith layer, respectively, k is the kernel
size and c =

∑l
i=1 ci. Suppose an annotated training dataset

D of n observations belonging to m disjoint classes

D = {(X (0)
1 ,y1), . . . , (X (0)

n ,yn)}, (2)
2Note that in the following j is also used as channel index of feature maps,

which is a common practice in the literature.
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where, X (0)
κ = [X (0,1)

κ , . . . ,X (0,c0)
κ ] ∈ Rh0×w0×c0 is the

tensor representing the κth observation, h0, w0, c0 are the
tensor’s height, width and number of channels, respectively,
X (0,j)
κ ∈ Rh0×w0 is the slice of X (0)

κ corresponding to chan-
nel j, yκ ∈ Rm is the class indicator vector, i.e. its pth el-
ement is one if X (0)

κ belongs to class υp and zero otherwise,
and υp denotes the pth class. In modern CNN architectures,
the feature map X (i,j)

κ ∈ Rhi×wi corresponding to filter (i, j)
and observation κ is typically computed using

X (i,j)
κ = ReLU(BN(

ci−1∑
τ=1

X (i−1,τ)
κ ∗ V(i,j)

:,:,τ )), (3)

where, BN(), ReLU() are the batch normalization and recti-
fied linear unit operators, respectively, hi, wi are the height
and width of X (i,j)

κ , V(i,j)
:,:,τ is the slice of (i, j) filter cor-

responding to the τ th input channel and ∗ is the two-
dimensional convolution operator. Given a target pruning
rate θ and an importance estimation mapping η, in most ap-
proaches the set F(i) of filters to prune in layer i is computed
using the following criterion

F(i) = argmin(η(i), θci), (4)

where, η(i) = [η(i,1), . . . , η(i,ci)]T is a vector whose com-
ponent η(i,j) is the output of η associated with the filter (i, j)
and the use of the argmin(, ) vector operator above returns the
indexes of the θci smaller components in η(i).

3. PROPOSED METHOD

3.1. Filter importance estimation mapping

3.1.1. Discriminant criterion

Class-separability measures have shown superior perfor-
mance in comparison to energy preserving criteria in many
classification problems [13, 14]. To this end, we resort to the
trace of the between-class scatter matrix for designing a suit-
able criterion for network pruning. For simplicity of notation
the indexes (i, j) are dropped in this section as the analysis in
the following is valid for any filter in the network. The feature
maps, Xκ ∈ Rh×w, κ = 1, . . . , n, associated with a specific
filter can be vectorized and stacked column-wise to form a
matrix X = [x1, . . . ,xn] ∈ Rf×n, where xκ = vec(Xκ),
xκ ∈ Rf , f = hw, vec() is the vectorization operator, and
h, w are the height and width of the feature maps. The filter
discriminant score is then computed using

η̂ = tr(S), (5)

where, tr() is the matrix trace operator, S is a variant of the
between-class scatter matrix defined as

S =
m−1∑
p=1

m∑
q=p+1

(µp − µq)(µp − µq)
T , (6)

Algorithm 1: Fractional step discriminant pruning

Input: W , D (2), δ, ε, θ (10), (11), ϑ̂f (13)
Output: PrunedW

1 Compute α, β, γ in (10) using (12)
2 for ι← 1 to ε do
3 Update CNN parameters using training set D (2)
4 Compute pruning rate ϑι (10) and scaling ζι (11)
5 Compute pruning rates ϑ̂ι (13), ϑ̃ι (14) for the

discriminant and GM-based criterion
6 for i← 1 to l do
7 for j ← 1 to ci do
8 Compute discriminant score η̂(i,j) (5)

9 Form set F(i) (4) with the indexes of the ϑ̂ιci
filters with smaller η̂(i,j)

10 for j ← 1 to ci; (i, j) /∈ F(i) do
11 Compute GM-based score η̃(i,j) (9)

12 Add to F(i) (4) the indexes of the ϑ̃ιci filters
with smaller η̃(i,j)

13 Scale the weights of the filters in F(i) using ζι

14 Prune the filters in F(i) (4) ∀i

and µp = 1
np

∑
xκ∈υp xκ, np, are the estimated mean vector

and cardinality of class υp. The computation of S using (6) is
susceptible to memory restrictions and does not fully utilize
the parallelization capabilities of modern GPUs. To this end,
the matrix M of class means can be factorized as

M = [µ1, . . . ,µm] = XRA, (7)

where, R = [y1, . . . ,yn]
T ∈ Rn×m is the class indica-

tor matrix and A ∈ Rm×m is a diagonal matrix defined as
A = diag( 1

n1
, . . . , 1

nm
). For large-scale datasets it is infea-

sible to load the whole matrix X into the memory, and the
same is true for R when the number of classes is large. In-
stead, assuming that these matrices are partitioned to t blocks,
i.e., X = [X1, . . . ,Xt], R = [RT

1 , . . . ,R
T
t ]
T , where R is

the indicator matrix corresponding to X, the matrix prod-
uct XR can be computed very efficiently in the GPU using
XR =

∑t
=1 XR. Finally, S can be factorized as follows

S =
m−1∑
p=1

m∑
q=p+1

(µpµ
T
p + µqµ

T
q − µpµ

T
q − µqµ

T
p )

= (m− 1)
m∑
p=1

µpµ
T
p −

m−1∑
p=1

µp(
m∑

q=p+1

µTq )

−
m−1∑
p=1

(
m∑

q=p+1

µq)µ
T
p

= (m− 1)MMT −M(J− I)MT

= M(mI− J)MT , (8)
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where, I and J are the m × m identity and all-one matri-
ces respectively. Using the last expression and provided that
the matrix of class means has been derived, the between-class
scatter matrix can be computed very efficiently in the GPU.

3.1.2. Geometric median-based criterion

In more challenging problems, the application of the discrim-
inant criterion with a relatively large pruning rate may elimi-
nate filters with small but still important discriminant infor-
mation, harming the classification performance of the net-
work (as for instance we have seen in the experimental eval-
uation of ImageNet32 in Section 4.3). To this end, we select
a fraction of the filters using the discriminant criterion in (5),
and from the remaining filters another fraction is selected ex-
ploiting a GM-based scoring function defined as [12]

η̃(i,j) =

ci∑
o=1

||v(i,j) − v(i,o)||2, (9)

where, η̃(i,j) is the importance score for filter (i, j) and
v(i,j) = vec(V(i,j)).

3.2. Fractional step pruning strategy

Most recent approaches select and prune θc filters at every
epoch of the pruning procedure. When the pruning rate is
large, following the above strategy will reduce abruptly the
network capacity and at the same time discard a large amount
of discriminant information [9, 10]. To alleviate these draw-
backs, an asymptotic soft filter pruning approach was pre-
sented in [10]. Inspired from [14], here we extend the pruning
strategy of [10] so that the parameters of the selected filters
are not set to zero at every epoch, but on the contrary are mul-
tiplied with a scaling factor that decreases from one to zero
along the training procedure. Thus, the selected filters are
compressed in small fractional steps towards zero and the ca-
pacity of the network decreases smoothly. In more detail, as-
suming that ε, θ are the total epochs and desired pruning rate,
respectively, the pruning rate ϑı and scaling factor ζı at epoch
ı are computed using the following asymptotic schedule

ϑı = α exp(−βı) + γ, (10)

ζı = 1− ϑı
θ
, (11)

where, ϑε = θ, and α, β, γ are the parameters of the asymp-
totic function. Similarly to [10], the estimation of these three
parameters is performed using the following three points for
the epoch and pruning rate tuple {ι, θι}

{0, 0}, {δε, 3

4
θ}, {ε, θ}, (12)

where δ ∈ (0, 1). Moreover, the individual pruning rates at
each epoch, ϑ̂ı, ϑ̃ı for the discriminant and GM-based crite-

rion, respectively, are computed as follows

ϑ̂ı = min(ϑı, ϑ̂f ), (13)

ϑ̃ı = ϑı − ϑ̂ı, (14)

where ϑ̂f is a parameter denoting the final pruning rate as-
sociated with the discriminant criterion. We observe that the
sum of the two individual rates always equals to the total rate
at each epoch (ϑ̂ı + ϑ̃ı = ϑı) and the pruning rate ϑ̂ı asso-
ciated with the discriminant criterion (5) is never larger than
ϑ̂f , ensuring that filters with small but possible significant in-
formation are not pruned.

The pseudocode of the proposed method is shown in Al-
gorithm 1. We should note that the only input parameters of
the method are δ (12) and ϑ̂f (13), which based on the related
literature and our experimental evaluation in Section 4.3, are
typically set to 1

8 and 10%, respectively (e.g. see ASFP [10]
and FPGM [12]).

4. EXPERIMENTS

4.1. Datasets

For the evaluation of the proposed fractional step discriminant
pruning approach, denoted hereafter as FSDP, two image and
one speech datasets are used as described in the following: i)
CIFAR-10 [15]: It consists of 50000 training and 10000 test-
ing color images of 32×32 resolution, belonging to one of 10
different classes. ii) ImageNet32 [16]: This dataset consists
of the annotated images of ILSVRC-2012 resized to 32× 32
resolution. It contains 1331167 images in total belonging to
one of 1000 classes. It is divided to a training and testing par-
tition of 1281167 and 50000 images, respectively. iii) GSC
[17]: This is version 0.01 of the Google speech commands
dataset. It consists of 64727 utterances and 12 categories rep-
resenting short commands such as “No”, “Up” and “Go”. A
training, validation and testing partition is provided consist-
ing of 51094, 6798 and 6835 utterances, respectively.

4.2. Setup

The CIFAR-10 dataset is used to evaluate the proposed FSDP
against several top-performing approaches, namely, MIL [6],
PFEC [3], CP [5], SFP [9], ASFP [10] and FPGM [12].
Three popular ResNet architectures (ResNet-20, -56, -110)
[18] along different pruning rates θ are used in the evaluation,
following the experimental setup in [9, 10, 12]. Specifically,
each image is normalized to zero mean and unit variance, and
data augmentation is applied during training, i.e., 32×32 ran-
dom cropping and horizontal flipping with 50% probability.
The networks are trained using minibatch stochastic gradient
descent (SGD) with Nesterov momentum of 0.9, batch size of
128 and weight decay of 0.0005. The total number of epochs
is set to ε = 200 and the learning rate starts at 0.01 and is
divided by 5 at epochs 60, 120 and 160, as in [9, 10, 12].
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Next, the ImageNet32 dataset is used to evaluate the pro-
posed approach for large-scale image classification. In this
experiment, the proposed FSDP is compared against SFP
[9] and FPGM [12] using ResNet-56, pruning rates θ =
20%, 50% and number of epochs ε = 40. Following [16],
each image is normalized to zero mean and the minibatch
SGD is used, where momentum, batch size and weight de-
cay are set to 0.9, 128 and 0.0005, respectively. The learning
rate starts at 0.01 and is multiplied with 0.1 every 10 epochs.

Finally, the GSC dataset is employed to evaluate SFP [9],
FPGM [12], and FSDP for the task of speech command clas-
sification using ResNet-56 and pruning rates θ = 20%, 50%.
The training and validation sets of GSC are used for train-
ing, while the testing set is used for the performance evalua-
tion. Log mel-spectrograms (LMSs) are used to represent the
speech commands in GSC. More specifically, the one-second
long speech recordings are re-sampled to 16 KHz, the STFT
with Hamming window of size 1024 and hop length 512 is ap-
plied, and subsequently, 32 mel filterbanks and the logarith-
mic operator are used to map the power spectra to the log-mel
space, and retrieve a 32× 32 LMS for each recording. More-
over, following [19], the training dataset is augmented using
time-stretching, pitch-shifting and mixing with background
noise. The network is trained using minibatch SGD, number
of epochs ε = 70, and with momentum, weight decay and
batch size set to 0.9, 0.0005 and 96, respectively. The initial
learning rate starts at 0.01 and is divided by 10 at epoch 50.

In the various experiments, the following input parameters
for FSDP (Algorithm 1) are used: i) the asymptotic schedule
parameter δ for the estimation of α, β and γ in (10) is set to
δ = 1

8 as in [10], ii) in order to gain insight into the effect
of the target pruning rate associated with the discriminant cri-
terion θ̂f (13), we test different values of it, i.e., 10%, 40%
on CIFAR-10 (see Tables 1, 2), and in all other experiments
this is set to 10%, as explained in Section 3.2. Moreover, the
between-class scatter matrix S (6) in the discriminant crite-
rion (5) is computed using the whole training set for CIFAR-
10, 20% of the training set for ImageNet32 and the validation
set (which is part of the overall training set) for GSC.

FSDP is implemented in PyTorch, while for SFP and
FPGM the implementations in [9, 12] are used. The exper-
iments are performed in an Intel i7 3770K@3.5GHz PC with
32 GB RAM and Nvidia GeForce GTX 1080Ti GPU.

4.3. Results

The evaluation results in terms of accuracy rates along dif-
ferent methods on CIFAR-10, three ResNet architectures
(ResNet-20, ResNet-56, ResNet-110) and pruning rate 40%
are shown in Table 1, while, Table 2 depicts the accuracy rates
of the proposed FSDP and FPGM under the same settings and
pruning rate 50%. In Figure 1, we vary the pruning rate from
10 to 90 in order to study its effect in the performance of the
proposed method along different network depths. Finally, the

Fig. 1. Accuracy rates of FSDP with θ̂f = 10% on CIFAR-10
along different ResNet architectures and pruning rates.

Table 1. Accuracy rates on CIFAR-10 along different ResNet
architectures and pruning rate 40%.

ResNet-20 ResNet-56 ResNet-110
no pruning 92.2% 93.59% 93.68%
MIL [6] 91.43% – 93.44%
PFEC [3] – 91.31% 92.94%
CP [5] – 90.90% –
SFP [9] 90.83% 92.26% 93.38%
ASFP [10] – 92.44% 93.20%
FPGM [12] 91.99% 92.89% 93.85%
FSDP (θ̂f = 10%) 92.02% 93.13% 93.91%
FSDP (θ̂f = 40%) 92.09% 93.1% 93.99%

Table 2. Accuracy rates on CIFAR-10 along different ResNet
architectures and pruning rate 50%.

ResNet-20 ResNet-56 ResNet-110
FPGM [12] 89.73% 91.79% 92.51%
FSDP (θ̂f = 10%) 90.16% 92.64% 93.72%

evaluation results on ImageNet32 and GSC using ResNet-56
and pruning rates 20% and 50% are shown in Tables 3 and 4.
From the obtained results we conclude the following:

i) The proposed FSDP achieves the best performance in
all experiments. For instance, with 50% pruning an accu-
racy improvement of more than 1% of FSDP over FPGM is
observed for ResNet-110 in the CIFAR-10 (Table 2) and for
ResNet-56 in the GSC dataset (Table 4). Similarly, in Ima-
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Table 3. Accuracy rates in ImageNet32 and GSC with
ResNet-56 and pruning rate 20%.

ImageNet32 GSC
no pruning 40.79% 97.47%
SFP [9] 29.92% 94.57%
FPGM [12] 37.23% 95.64%
FSDP (θ̂f = 10%) 38.3% 96.22%

Table 4. Accuracy rates of FSDP and FPGM in ImageNet32
and GSC with ResNet-56 and pruning rate 50%.

ImageNet32 GSC
FPGM [12] 32.32% 92.89%
FSDP (θ̂f = 10%) 33.23% 94.66%

geNet32 (Table 3), the proposed FSDP with θ̂f = 10% out-
performs the other two methods. This is attributed to the sta-
bility of the fractional pruning procedure and the ability of
the proposed discriminant criterion to identify the filters with
negligible discriminant information. We also see that that the
application of FSDP to ResNet-110 in the CIFAR-10 experi-
ments (Tables 1 and 2) yields an increase in performance over
the baseline model without pruning. Therefore, we may con-
clude that the use of FSDP to reduce the capacity of large
networks has a regularization effect. This is not observed in
the experiments with the smaller networks (ResNet-20, -56)
where as expected pruning reduces slightly the performance.
Another interesting observation is that SFP appears to have a
more than 10% performance drop in ImageNet32 (Table 3),
which is due to the much more challenging problem, where
a percentage of the pruned filters selected using the l2 norm
criterion still carry important discriminant information.

ii) As shown in Fig. 1, FSDP provides a quite high robust-
ness for pruning rates less than 40%. We also observe that
ResNet-110 exhibits the more stable behavior, with even an
increase in performance for pruning rates less than 25%, only
a small performance drop for pruning rates 40% and 50%,
and accuracy of more than 90% even with 80% pruning rate.
Finally, we see that the performance of ResNet-20 degrades
rapidly with pruning rates higher than 40%, which indicates
that network depth is an important parameter concerning the
robustness of a network against pruning.

iii) Concerning training times, an overhead of several
seconds to a few minutes at epoch level (depending on the
dataset) is observed when FSDP is used. For instance, on
CIFAR-10 and ResNet-20 this time is increased from 17 to
42 seconds, while for ResNet-110 an overhead of 1.5 minutes,
i.e. going up from 1.7 to 3.2 minutes, is observed. However,
concerning that the training is performed off-line, its duration

is less than a day in all experiments, and that the computa-
tion of the discriminant criterion (5) can be accelerated sig-
nificantly using a more powerful GPU, this time overhead is
considered insignificant.

4.4. Visualization of the proposed approach

In order to gain further insight into the proposed framework,
Fig. 2 illustrates the discriminant scores of each filter along
different epochs during the training of ResNet-20 with FSDP
on CIFAR-10 and pruning rates θ = θ̂f = 20% (i.e. only
the discriminant criterion (5) is used for filter selection and
pruning in this experiment). The heatmaps on the left, mid-
dle and right correspond to the state of the network at epochs
1, 40 and 200, while, the x-, y-axis at each heatmap repre-
sent the filter and convolutional layer number, respectively.
A cool-to-warm color spectrum is used to represent the filter
discriminant score at logarithmic-scale, i.e., darker squares
represent less important filters while lighter ones correspond
to filters with a high discriminant score. We can observe the
following:

i) Filters at layers closer to the network input seem to at-
tain a relatively higher discriminant score. This phenomenon
seems to be stronger during the first stages of the training pro-
cedure and becoming less emphatic as the network converges
to its steady-state condition. We also observe a possible cor-
relation between filter’s discriminant score and layer’s width,
i.e., the discriminant power of a filter seems to decrease with
the number of filters in the layer it belongs to. For instance,
we see that filters of layers 1 to 7 attain in general a higher
discriminant score in comparison to the filters of layers 8 to
13. These conclusions are in agreement with similar ones in
other literature works, e.g. [4], where it is stated that “global
importance seems to decrease with depth”.

ii) The last convolutional layer (layer 19) is a clear excep-
tion to the above observation, where we see that after a certain
number of epochs the majority of its filters attain a large dis-
criminant score. Similarly, another exception are the filters of
the second convolutional layers in residual blocks, which also
attain a relatively high discriminant score. For instance, this
can be seen more clearly at the final network (right heatmap in
Fig. 2) for the filters in layers 11, 13, 15 and 17. This conclu-
sion is again in agreement with similar ones in the literature
(e.g. see Section 4.3 in [3]).

iii) At epoch 40, most discriminant information has been
already concentrated in a rather small portion of the filters.
From this, we can conclude that there is a quite high redun-
dancy in the network for the specified problem, and that the
proposed approach can effectively discover a more compact
network structure already at the early stages of the training.
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Fig. 2. Heatmaps depicting discriminant scores of ResNet-20 filters computed using the discriminant criterion (5) during the
application of FSDP on CIFAR-10 with θ = θ̂f = 20%; the heatmaps (left to right) correspond to epochs 1, 40 and 200.

5. CONCLUSIONS

In this paper, a fractional step discriminant pruning frame-
work was proposed and evaluated on three datasets for the
tasks of image and speech classification, providing compet-
itive performance at high pruning rates. A promising future
work direction is the investigation of variable pruning rates
using the discriminant scores at layer-level (e.g. as indicated
in Fig. 2), similarly to globally-comparing criteria in [3, 4].
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