Robert €

Nicolas reporter
Manuel Serrano ' reporter
Marco Antoniotti examiner
Ralf Moller University of Liibeck, Germany examiner

Gérard Assayag IRCAM, Paris, France examiner

Introduction Consolidation Exploration Integration Conclusion

® 0 0 Context

» Multi-Paradigm Landscape Todav
> Mostly heterogeneous Lisp, Jazz, Aikido
Historic reasons
Bad for software evolution and
> Special Interests
» Homogeneousness, dynamicity & interaction
» 0O, FP, Extensibility, reflexivity, meta-programming
> Challenges
» Expressivity in homogeneous multi-paradigm environments
Orthogonality / SoC is of the essence
> Performance in dynamic environments
Impact, negative or positive
> Experimentation Platform: Lisp
» Subjectively: core minimalism, homoiconicity, pragmatic dialect
> Objectively: paradigms “on steroids”, official industrial standard

Introduction Consolidation Exploration Integration Conclusion

® 0 0 Timeline

| ') ' ' J J ' y 4
. 2010 , 2020

Consolidation L Integration
Exploration

1. Consolidation

> Assert performance and expressivity

> Fill in the academic bibliographic gap (cf. ELS)
2. Exploration

> Paradigm application, extension, or design
» Performance and/or expressivity in mind

3. Integration

» Comparative assessment, paradigm junction
» Inward / outward propagation

(3 (.

Introduction Consolidation Exploration Integration Conclusion

® 0 0 Qutline

Consolidation
Performance: Optional Type Annotations
Expressivity: Multiple Dispatch, Generic Functions, and the MOP

(3 (.

Introduction Consolidation Exploration Integration Conclusion

® 0 0 Performance: Static vs. Dynamic

> Lisp static type annotations (weak)
» Gradual typing (Siek 2006, strong)

Beating C in Scientific CLOS Efficiency:
Computing Applications Instantiation

T t
2010 - 2020

Consolidation L — . Integration
Exploration |

(3 (.

Introduction Consolidation Exploration Integration Conclusion

® 0 0 Qutline

Consolidation

Expressivity: Multiple Dispatch, Generic Functions, and the MOP

Introduction Consolidation Exploration Integration Conclusion

©® 0 0 Expressivity: Multi-Methods and GF’s

» Multi-Methods
» method (clsl this, cls2 that, ...) {};
» Generic Functions

» Methods external to classes
> Reified set of congruent & eponymous (multi-)methods

(3

Consolidation

0 00 SoC: Multi-Methods and GF’s

Introduction Exploration Integration Conclusion

class

state

behavior

/ A\

class

state

behavior

/ A\

subclass

subclass

subclass

subclass

state

state

state

state

behavior

behavior

behavior

behavior

Introduction

0 00 SoC: Multi-Methods and GF’s

"

Consolidation

(2

Exploration

Integration

Conclusion

class

state

/ N\

class

state

/N

subclass

subclass

subclass

subclass

state

state

state

state

(3 (.

Introduction Consolidation Exploration Integration Conclusion

® 0 0 Binary Methods / Functions

Classical 00 With generic functions

rgb rgb

red, green, blue red, green, blue

= (rgh) = T

I

rgba

alpha

. Bruce (1995), Castagna (1995, 2018), etc.

Introduction Consolidation Exploration Integration Conclusion

® 0 0 Expressivity: the MOP

> Safety: Protect Against Non-Conformance

» Binary function usage
No bogus call (2 arguments, same class)

» Binary function implementation
No bogus method (2 arguments, same class)
No missing method

> Tools

> Introspection (reasonable requirement: dynamic + functional)
> Meta-Object Protocol (cherry on the cake)

(a (3 (.

Introduction Consolidation Exploration Integration Conclusion

® 00 SoC: the MOP

The object layer is implemented in itself

> State = classes & instances = hierarchies extension

» Behavior = generic functions = methods specialization

Introduction Consolidation Exploration Integration Conclusion

® 00 SoC: the MOP O

| S | - - -
| binary functions class |
A . €-_

—
S s

~ ~~o
S "
~ =~
~ =~
- - ~~~-

(a (3 (.

Introduction Consolidation Exploration Integration Conclusion

©® 0 0 Expressivity

» Multi-paradigm & extended OO for SoC

Binary Methods Revisiting the Visitor: the Extensible Languages:
Programming: the CLOS Just Do It Pattern Blurring the Distinction
Perspective between DSLs and GPLs

2010
Consolidation

"

Introduction Consolidation Exploration Integration Conclusion

® 0 0 Qutline

Exploration
Paradigm Application: Context-Oriented Optimization
Paradigm Extension: Method Combinators
Paradigm Design: Rational Type Expressions

Introduction Consolidatipﬁ Exploration Integration _Conclusion

e 0 ® Motivation

> Expressivity
1. One thing, many different forms
2. One form, many different things
> Genericity: case #2
> E.g. write algorithms once, structural & behavioral details omitted
> Note: intensional polymorphism

» Problem: Genericity vs. Classical OO Design
» Object model cluttering (class / method proliferation)
> Missed optimization opportunities (cross-cutting)
> Performance degradation (dynamic dispatch)

> Solution: Generative Meta-Programming

v/ Efficiency (fully-dedicated code)
X Maintainability (w/o code)

(3 (]

Introduction Consolidation Exploration Integration Conclusion

e 0 ® Motivation

> Expressivity
template <template <class> class M, typename T, typename V>
struct ch_value_ <M <tag::value_<T>>, V>
{ typedef M<V> ret; };

template <template <class> class M, typename I, typename V>
struct ch_value_ <M <tag::image_<I>>, V>
{ typedef M <mln_ch_value(I, V)> ret; };

template <template <class, class> class M, typename T,
typename I, typename V>

struct ch_value_ <M <tag::value_<T>, tag::image_<I>>, V>

{ typedef mln_ch_value(I, V) ret; };

template <template <class, class> class M, typename P,
typename T, typename V>

struct ch_value_ <M <tag::psite_<P>, tag::value_<T>>, V>

{ typedef M<P, V> ret; };

(3 (]

Consolidation Exploration Integration Conclusion

e 0 ® Motivation

> Expressivity

(BLOCK NIL
(LET ((I 0))
> G (DECLARE (TYPE (AND FIXNUM REAL) I))
(LET ((J 1))
(DECLARE (TYPE FIXNUM J))
(SB-LOOP: : WITH-SUM-COUNT #S(SB-LOOP: : LOOP-COLLECTOR. . . .
(TAGBODY
(WHEN (>= I '10) (GO SB-LOOP::END-LOOP))
SB-LOOP: : NEXT-LOOP
(SETQ #:LOOP-SUM-578 (+ #:LOOP-SUM-578 (* I J)))
(SB-LOOP: : LOOP-DESETQ I (1+ I))
(WHEN (>= I '10) (GO SB-LOOP::END-LOOP))
(SB-LOOP: : LOOP-DESETQ J (1+ J))
(GO SB-LOOP: :NEXT-LOOP)
SB-LOOP: : END-LOOP
(RETURN-FROM NIL #:LOOP-SUM-578))))))

(a (3 (]

Introduction Consolidation Exploration Integration Conclusion

e 0 ® Motivation

> Expressivity
1. One thing, many different forms
2. One form, many different things

> Genericity: case #2
> E.g. write algorithms once, structural & behavioral details omitted

> P

> Performance degradation (dynamic dispatch)
> Solution: Generative Meta-Programming

v Efficiency (fully-dedicated code)
X Maintainability (w/o code)

(3 (]

Introduction Consolidation Exploration Integration

6 0 0 Context-Oriented Programming

Conclusion

Definition

> Behavioral variation
» New / removed / modified behavior or structure
> Partial definitions for software components
> Layers
P> Gather related context-dependent variations
> First class citizens
> Context

> Reified by sets of simultaneously active layers
» Dynamic, late, run-time (de-)activation

(3 (]

Introduction Consolidation Exploration Integration Conclusion

® 0 o Example

Static type annotations

AN

int-rgb float-rgb

red: int red: float
green: int green: float
blue: int blue: float

» Dynamic types = polymorphic operations (slow)
» Subclassing = class proliferation & not cross-cutting (bad)

= Value types as contextual information

(a (3 (]

Introduction Consolidation Exploration

® 0 o Example

Integration

Conclusion

Value type layers

vah (int lauar)

rgb (float layer)

red: float
green: float
blue: float

(3 (]

Introduction Consolidation Exploration Integration Conclusion

©® 0 0 Context-Oriented Optimization

> COP “perversion”
» Originally meant for pervasive and ubiquitous computing
> Opposite of “type erasure”

Generic Image Context-Oriented
Processing with Climb Image Processing

2010
Consolidation

(3 (]

Introduction Consolidation Exploration

® 0 0 Qutline

Integration

Conclusion

Exploration

Paradigm Extension: Method Combinators

(3 (]

Introduction Consolidation Exploration Integration Conclusion

6 00 Method Combinations

Classical dispatch

Applicable Hierarchy

\

(3 (]

Introduction Consolidation Exploration Integration Conclusion

6 00 Method Combinations

Combined dispatch

> Built-in & programmable
> Method categories (qualifiers)
> Selection & execution order
» Participation in the final result

(a (3 (]

Introduction Consolidation Exploration Integration Conclusion

® 0 o Example

Classical dispatch

and c%ll next

4

T and c%ll next

class3

(a (3 (]

Introduction Consolidation Exploration Integration Conclusion

® 0 o Example

Combined dispatch

class3

» SoC: methods code / ad-hoc dispatch code

Introduction Consolidation Exploration Integration

6 00 Method Combination Problems

Conclusion

> Loose Specification
> Lack of orthogonality (no
» Lack of structure (no offi
» Unclear, inconsistent or c

Method Combinators

> Improvement

» SoC: method combinations as truly global objects
» Generic function / method combination c
redefinitions

> Extension: alternative combinations

2010 - 2020

Consolidation

Exploration

(3 (]

Introduction Consolidation Exploration Integration Conclusion

® 0 o Example

Combined dispatch

class3

» SoC: methods code / ad-hoc dispatch code

» Combinator SoC: generic function / method combination

(3 (]

Introduction Consolidation Exploration Integration Conclusion

® 0 0 Qutline

Exploration

Paradigm Design: Rational Type Expressions

Introduction Consolidation Exploration

Integration Conclusion

® 0 o Heterogeneous Sequences Type Checking

> History
> 2009

5, #### NOTE: this ©s where I would like a more
;; expressive dispatch in CLOS. There's in fact

;5 two cases below, depending on HELP-SPEC's CAR.
(:method (sheet (help-spec list))

> 2016: Jim Newton's Ph.D.
> Problem
» Dynamic typing allows heterogeneous sequences
> Optimization for homogeneous sequences
» What about heterogeneous yet regular sequences?

Introduction Consolidation Exploration Integration Conclusion

® 0 0 Principle

1. Express type regularities as rational expressions
» (string . symbol* . number) < ("foo" bar baz 42)
2. Provide a concrete denotation
> (:. string (:* symbol) number)
3. Plug it into the type system
» (typep value (and list (rte (:. string (:* symbol) number))))

Consolidation

Introduction

® 0 o Example

Exploration Integration Conclusion

Ad-hoc destructuring

(typecase eltl

(typel (typecase elt2
(typel ...)
(type2 ...)
o))

(type2 (typecase elt2
(typel ...)
(type2 ...)
o))

RTE destructuring

(rte-case whole-sequence
(rte-type-1 ...)
(rte-type-2 ...)

.

» SoC: sequence
pattern-matching code vs.
contents processing

(3 (]

Introduction Consolidation Exploration

©® 0 o Rational Type Expressions

Integration Conclusion

Type Checking of Programmatic Strategies for
Heterogeneous Manipulation of Typecase
Sequences in Common Lisp Type Optimization
Common Lisp Specifiers

Recognizing
Hetergeneous
Sequences by
Rational Type
Expression

2010
Consolidation

(3 (.

Introduction Consolidation Exploration Integration Conclusion

® 0 0 Qutline

Integration

Introduction Consolidation Exploration Integration

® 0 © Comparative Assessment

Conclusion

The case of Context-Oriented Optimization
> Expressivity: Related Paradigms

> Aspect-Oriented Programming (Kiczales et al., 1997)
> Mixin Layers (Smaragdakis and Batory, 2001)

» Performance: Related Solutions

> Generative Meta-Programming
> JIT Compilation / Hotspot Detection

(3 (.

Introduction Consolidation Exploration Integration Conclusion

® 0 0o Paradigm Junction

The case of RTE
Dynamic dispatch

method (arg0, argl, arg2, ...);

@

Nominal & structural types

Aggregate Ordering
string \L = (rte (:. string (:* symbol) number))

symbol
number

(3 (.

Introduction Consolidation Exploration Integration Conclusion

® 0 0 Blue Sky Territory OO Integration

» Specialization on optional / keyword arguments
> Coexistence of prototypes & classes

> Types vs. classes separation (cf. POOL, Cecil, Diesel)

Implementing Baker’s SUBTYPEP Decision Procedure

2010
Consolidation

(3 (.

Introduction Consolidation Exploration Integration Conclusion

® 0 0 Qutline

Conclusion

"

Introduction Consolidation

® 0o Wrap Up

(2

Exploration Integration

Conclusion

Type annotations

rah
— rgb (float layer)

Context
oArex red: float

green: float
blue: float

T

raha
— rgba (float layer)

alpha: float

MOP

A
1
1

1
Multiple: dispatch

Combinations

(3 (.

Introduction Consolidation Exploration Integration Conclusion

® 0 o Conclusion

» An overview of 14 years of work (9 years full-time equivalent)

» One book chapter, 4 journal papers, 24 conference papers, >30
other presentations

» One completed Ph.D., 5 Masters internships, >10 undergraduates

	Introduction
	Consolidation
	Performance: Optional Type Annotations
	Expressivity: Multiple Dispatch, Generic Functions, and the MOP

	Exploration
	Paradigm Application: Context-Oriented Optimization
	Paradigm Extension: Method Combinators
	Paradigm Design: Rational Type Expressions

	Integration
	Conclusion

