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Abstract

The evolution to next generation embedded systems is shortening the obsolescence period of the underlying
hardware. As this happens, software designed for those platforms (a.k.a., legacy code), that might be
functionally correct and validated code, may be lost in the architecture and peripheral change unless a
retargeting approach is applied. Embedded systems often have real-time computing constraints, therefore,
the legacy code retargeting issue directly affects real-time systems. When dealing with real-time legacy
code migration, the timing as well as the functional behaviour must be preserved. This article sets the
focus on the timing issue, providing a migration path to real-time legacy embedded control applications
by integrating a portable timing enforcement mechanism into a machine-adaptable binary translation tool.
The proposed timing enforcement solution provides at the same time means for validating the legacy timing
behaviour on the new hardware platform using formal timing specifications in the form of contracts.
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1. Introduction

Companies within the embedded systems indus-
try are facing a relentless demand for increasingly
stringent requirements such as better performance,
increased dependability, and energy efficiency, while
offering a cost-effective product within a reduced
time-to-market. This transition to next generation
embedded systems is being encouraged by the rapid
development of computing architectures. As a con-
sequence, the obsolescence period of embedded sys-
tems is being shortened and there is a need to deal
with legacy systems and their integration.

Legacy systems are characterized by some partic-
ular properties:

� Usually runs on obsolete hardware which is
slow and expensive to maintain (Wu et al.,
1997).
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� Use customized and deprecated
toolchain(s) (Wagner and Wagner, 2014).

� Have no or outdated documentation and orig-
inal developers or users are no longer avail-
able (Wagner and Wagner, 2014).

� Are essential for the company (Bennett,
1995) since they comprise business knowl-
edge (Wahler et al., 2015).

Due to their nature and particular properties,
legacy systems present a complex scenario in soft-
ware maintenance and evolution. Hence, the pro-
cess of updating legacy systems is usually complex,
error-prone, time-consuming and requires high cost
investment.

Binary translation appears to be a standard ap-
proach when it comes to legacy software migration,
since the binary that runs on the legacy hardware
can be ported to a new hardware platform without
a considerable expense of time, effort and money.
Software recompilation is also a well known ap-
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proach to port platform-independent legacy source
code.

However, when dealing with Real-Time (RT)
legacy code migration, not just the functional be-
haviour, but also the timing behaviour must be pre-
served. To the authors knowledge, limited solu-
tions exist to port real-time legacy software, while
existing solutions have limitations regarding their
portability. Therefore, industry still needs a low-
overhead embedded RT legacy software retargeting
solution that can be easily ported to different source
and target architectures.

In the direction to solve this problem, this work
sets the focus on the timing issue, therefore, the
overall goal of this research is to provide a migration
path to real-time legacy embedded control applica-
tions by integrating a portable timing enforcement
mechanism into a machine-adaptable binary trans-
lation tool. The proposed solution should also pro-
vide means to validate the legacy timing behaviour
on the new hardware platform.

As a first step on this research, Yarza et al. (2020)
studies the feasibility of two machine-adaptable bi-
nary translators, one dynamic and the other one
static, for their use in a RT property conserving
legacy software migration process. From this feasi-
bility study, the static approach is selected to im-
plement a timing contract aware real-time legacy
software migration solution. The main contribution
of this article are:

� The systematic annotation of legacy timing
properties into the behavioural legacy code us-
ing a set of portable temporal construct that
provide means to enforce a specific timing be-
haviour within the legacy software.

� The systematic transformation of legacy tim-
ing properties into formal timing specifications
for their latter use within the timing validation
phase.

� The integration of the temporal constructs
within the binary translation process to
achieve a timing-aware legacy software migra-
tion.

The remainder of this paper is organized as fol-
lows. An overview of related work in the area of
timing-aware recompilation and machine-adaptable
binary translation techniques is provided in Sec-
tion 2. Then, in Section 3 the proposed migration
path is constraint to a specific class of application.

Then, based on these constraints, Section 6 presents
the RT legacy software migration path. The pro-
posed solution is then assessed in Section 7 and ob-
tained results are analysed. Finally, Section 8 gives
a conclusion and outlook on future work.

2. Related work

Given that legacy software migration is a com-
mon issue in industry, it has been widely studied
during the last decades. However, when porting RT
legacy software, not just the functional behaviour,
but also the timing behaviour must be preserved.
This section provides an overview of existing solu-
tions for a timing-aware recompilation of legacy C
source code, as well as binary translation tools tar-
geting either a machine-adaptable or a RT legacy
code migration solution. The related work identi-
fies six timing-aware recompilation solutions (from
R1 to R6) and three binary translation tools (from
B1 to B3) for a latter analysis.

2.1. Timing-aware Recompilation

Software recompilation is a well known solution
when it comes to port legacy software to a new
Instruction Set Architecture (ISA). However, re-
compilation to be applicable on the legacy migra-
tion process, the legacy source code must be avail-
able and it must be at sufficient high level that it
is independent (or almost independent) from the
legacy hardware platform (e.g., dedicated instruc-
tions, specific hardware resources). In the follow-
ing, timing-aware recompilation solutions are cov-
ered:

Resmerita et al. (2015) proposed a systematic ap-
proach to apply real-time programming to legacy
embedded control systems composed of time- as
well as event-triggered tasks with different priority
levels. Using Timing Definition Language (TDL)
the code is transformed and then compiled into
E-code and interpreted at runtime by an Embed-
ded Machine (E-machine) (Henzinger and Kirsch,
2007), which provides a real-time interaction among
software and physical processes. There are sev-
eral implementations of the E-machine, being one
of them in C under Linux using Portable Operating
System Interface (POSIX) threads and semaphores.

Le Nabec et al. (2016) describe the process of
modelling RT legacy software using the Real-Time
BIP (RT-BIP) (Abdellatif et al., 2013) framework,
an extension to the Behaviour Interaction Prior-
ity (BIP) language for modelling real-time systems
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together with a real-time engine used for execu-
tion. To this end, they define a configurable com-
ponent pattern, called the Real-Time BIP Agent
(RT-BIPAgent), that follows a classical template
for a real-time task, composed of a start time, a pe-
riod, a set of input and output data, and a computa-
tional function. then, based on the FreeRTOS plat-
form, executable code is generated from the BIP
model.

Natarajan and Broman (2018) proposed an ex-
tension of the C programming language, called
Timed C, consisting of a set of primitives for defin-
ing soft and firm RT constants that ease RT sys-
tems’ implementation. A Timed C file is then com-
piled into a target specific C file using their source-
to-source compiler, KTC. The resulting file is linked
against POSIX or FreeRTOS to implement the user
defined timing and scheduling behaviour.

Real-Time Concurrent C (Gehani and Ramam-
ritham, 1991) incorporates a set of temporal con-
structs into Concurrent C, a parallel superset of
C. It provides means to specify strict timing con-
straints through the temporal constructs, which al-
low delaying program’s execution, defining period-
icity or specifying deadlines. Real-Time Concurrent
C was designed for a UNIX-based implementation
of Concurrent C and its compiler is no longer avail-
able (Natarajan and Broman, 2018).

The time measurement and control blocks (Bruns
et al., 2019) are a C++ extension, implemented
as a C++ library, that enable block-level timing
annotations into embedded C++ software. These
block annotations can be implemented to measure
and profile the execution time of a given software
block as well as to control and enforce a specific
timing behaviour (time-budget or specific dura-
tion) at run-time. Time measurement and control
blocks have been implemented for bare-metal C++
applications running on an Zynq-7000, using the
Global Timer Counter and a Central Processing
Unit (CPU) Watchdog.

The WCET-aware C Compiler (WCC) (Falk and
Lokuciejewski, 2010) was the first compiler to pro-
vide means to reduce the Worst Case Execution
Time (WCET) at both, source code and assem-
bly code level. The WCC has a clear notion
of the program’s worst-case behaviour (combining
measurement-based WCET analysis and static pro-
gram analyses) and applies specialized compiler op-
timization to reduce the program’s WCET. The
WCC’s target architecture is the Infineon TriCore
processor heavily used in the automotive industry.

2.2. Binary Translation

Binary translation techniques have been widely
studied and developed in the last decades. So, given
the great amount of binary translation systems and
the focus of this paper on embedded RT legacy
software migration, just cross-platform translators
heeding portability and/or RT applications will be
considered in this section.

The TIBBIT project (Cogswell and Segall, 1995),
developed the first binary translation approach for
embedded RT applications (which are not assumed
to be user-level processes) that needed to be mi-
grated to a different processor but still maintaining
the externally observable timing behaviour. To this
end, both, the legacy application and the operating
system code, are packed in a black box, converted
into an equivalent C program, and then translated
into the target binary format using the GNU Com-
piler Collection (GCC) retargetable compiler. Dur-
ing the translation process, timing code is inserted
into each translation block, to maintain the same
timing behaviour as in the original processor. If
the execution is running faster than it did in the
old processor, extra time is used to run other tasks
until the execution is back on schedule.

Then, in 2008, Heinz (2008) proposed a system-
level Static Binary Translation (SBT) approach to
port RT legacy software. However, instead of dy-
namically computing a delay, as Cowsgell and Zary
did on the TIBBIT project, the delay computa-
tion is shifted from run-time to compile-time. The
translator selects from a set of precomputed delays
the appropriate value according to the context of a
program point, so there is no need to keep track of
the execution time on the source machine.

UQBT (Cifuentes and Emmerik, 2000) was the
first SBT tool designed with portability in mind.
UQBT translates the user-level target binary into
a machine-independent Intermediate Representa-
tion (IR), Higher-Level Register Transfer Language
(HRTL), and then the intermediate code is trans-
lated into host machine binary code. This two
phase translation, eases the portability to new
source and target architectures. To handle indirect
calls that could not be discovered at static time, the
UQBT uses an interpreter.

Based on the UQBT, Ung and Cifuentes (2000)
presented the first retargetable Dynamic Binary
Translation (DBT) approach, UQDBT. Just like
its predecessor, UQDBT does not support system-
level emulation and provides a machine-adaptable
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solution by separating the system into machine-
dependent and machine-independent parts through
a machine independent intermediate representation
(I-RTL). However, the machine adaptability of the
translator comes at the cost of performance. To
improve generated code, UQDBT performs generic
hot path optimizations that are applicable on dif-
ferent machines.

Since UQBT and UQDBT, there have been
a wide variety of machine-adaptable dynamic as
well as static Binary Translation (BT) tools. In
2005, Bellard (2005) developed Quick EMUlator
(QEMU), a well known machine emulator build
upon a fast and portable DBT system. QEMU
uses Tiny Code Generator (TCG) to translate tar-
get source code into a machine independent IR and
then translates IRs into host machine code. In
order to reduce system overhead, QEMU applies
Translation Block (TB) (unit of a basic block in
QEMU) chaining, which directly jumps to the next
TB without returning control to the execution en-
gine.

DisIRer (Hwang et al., 2010), is a multi-target
SBT tool that leverages the GCC infrastructure.
DisIRer translates x86 user-mode instructions into
GCC’s Register-Transfer Level (RTL) and then
translates RTL into GCC’s Abstract Syntax Tree
(AST). The fact that it is build upon the GCC
optimizer and back-end makes the tool cost effec-
tive and easily adaptable to multiple targets (those
supported by GCC).

Another machine-adaptable BT tool is Cross-
Bit (Yang et al., 2010), which can dynamically
translate user-level binaries from different source
ISAs into binaries hosted by the same Operating
System (OS) for different target architectures. This
tool applies profiling information to determine the
hot code where host-independent optimizations are
applied. Moreover, just as QEMU does, CrossBit
applies Basic Block chaining.

LLBT (Shen et al., 2012) is a multi-target SBT
tool for embedded systems based on the Low Level
Virtual Machine (LLVM) (Lattner and Adve, 2004)
compilation framework that provides a source and
target independent optimizer, as well as code gen-
eration support for multiple ISAs. Therefore, the
LLVM compiler infrastructure provides LLBT with
means for optimization and retargetability. More-
over, in order to make the system suitable for em-
bedded systems, the size of the address mapping
table was reduced.

Based on BT techniques, Rev.ng (Federico et al.,

2017) is a machine-adaptable binary analysis frame-
work that relies on QEMU (Bellard, 2005) and
LLVM (Lattner and Adve, 2004) to perform the
binary translation. Rev.ng takes advantage of the
core element of QEMU, TCG, to translate user-
level instructions of a supported ISA into a machine
independent IR. Then, instead of generating ma-
chine code for the host architecture in emulation
mode, QEMU IR is further translated into a higher
level IR, LLVM IR. By employing LLVM as a back-
end, the generated LLVM IR is translated into host
machine code.

2.3. Analysis

Based on the literature review, existing solutions
in the area of timing-aware recompilation and bi-
nary translation are mapped to the scope of this
work. The related work identifies six timing-aware
recompilation solutions (from R1 to R6) and three
binary translation tools (from B1 to B3). Then,
this identifiers are placed in the scope map accord-
ing to the research are they cover. The following
list shows the related work that has been mapped
to the scope:

R1 Logical Execution Time (LET) & E-
machine (Resmerita et al., 2015)

R2 BIP & FreeRTOS (Le Nabec et al., 2016)

R3 Timed C (Natarajan and Broman, 2018)

R4 Real-Time Concurrent C (Gehani and Ramam-
ritham, 1991)

R5 Time Measurement and Control Blocks (Bruns
et al., 2019)

R6 WCC (Falk and Lokuciejewski, 2010)

B1 TIBBIT (Cogswell and Segall, 1995)

B2 Heinz (Heinz, 2008)

B3 UQBT (Cifuentes and Emmerik, 2000) &
UQDBT (Ung and Cifuentes, 2000)
QEMU (Bellard, 2005)
DisIRer (Hwang et al., 2010)
CrossBit (Yang et al., 2010)
Rev.ng (Federico et al., 2017)
LLBT (Shen et al., 2012)

Figure 1 shows the diagram resulting from map-
ping related work to the scope, which is composed
of four research areas: binary translation, where
machine-adaptable solutions form a sub-area of re-
search in binary translation; RT software, where
RT legacy software is a sub-area in this group; tim-
ing enforcement that forms another research area
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Figure 1: Related work analysis. Mapping related work to
the scope.

with retargetable timing enforcement solutions as a
subgroup of it; and timing validation which is the
fourth research area covered on this research work.

On the one hand, among the timing-aware recom-
pilation solutions, R1 and R2 provide means to
enforce a specific timing behaviour within RT soft-
ware. Both of these solutions describe how they can
be implemented on RT legacy software. R3 , R4 ,
and R5 are also solution to enforce a specific tim-
ing behaviour. However, none of them describe how
they can be integrated on RT legacy software. Nev-
ertheless, none of the timing enforcement solutions
presents a retargetable solution.

On the other hand, regarding BT tools, B1
and B2 are the only solutions that provide a mi-
gration path to RT legacy software. However, none
of these translators is machine-adaptable. In con-
trast, many machine-adaptable BT tools exist (see
B3 ), but none of them supports a timing-aware bi-
nary translation, where not just the functional be-
haviour, but also the timing behaviour needs to be
preserved during the translation process.

3. Real-time Legacy System Model Defini-
tion

The RT legacy control system is a computer sys-
tem that executes a set of periodic tasks according
to a predefined static scheduling policy. The fol-
lowing subsections describe through formal nota-

tion the main modelling elements in the considered
RT legacy system.

3.1. Application Model

Table 1 shows an example set of tasks with the
corresponding timing properties. Such a task set is
described through the application model.

Definition 1. (Application Model) The legacy ap-
plication A is composed of a set of periodic tasks T ,
where a task ti can be represented by a tuple (pi,
φi, ei, di, cri), where pi is the period of the task,
φi specifies a release time (as an offset relative to
the start of the period), ei is an upper bound of the
execution time of the task (the WCET of the task
can be used as this upper bound), di is the rela-
tive deadline of the task and cri is an identifier of
the existence of a section of critical code within the
task. A critical code section is set to be a section
that generates an exchange of information among
state machines (either hardware or software). Ev-
ery element in the tuple, except for cri, is composed
of the value v and the corresponding time unit tu.

3.2. Execution Model

The set of periodic tasks T is executed according
to a predefined static schedule. Figure 2 depicts the
execution trace of an example set of tasks.

Definition 2. (Execution Model) The execution
E consists of a hyper-period H, which determines
the time after which the task execution patter re-
peats itself, that is in turn composed of a set of
frames {fj}. The size of the hyper-period H is
determined through the Least Common Multiple
(LCM) among all tasks’ period, H = lcm(pi) and
the frame size F is determined through the Great-
est Common Divisor (GCD) among all tasks’ pe-
riod, F = gcd(pi). Both, Hand Fare composed
of the value v and the corresponding time unit tu.
According to the hyper-period and frame size, the
number of frames within a hyper-period is limited
to: max(j) = H/F .

Each frame fj is characterized with a set of
time slots {slj,1, slj,2, . . . , slj,n}, describing each
time slot slj,k as a tuple (tj,k, sj,k, ej,k), where
tj,k is the task mapped to the slot, sj,k is the
start instant of slj,k, and ej,k the end instant of
slj,k. Time slots are consecutively ordered so that
∀k < n : ej,k ≤ sj,k+1.

The function α : ti → slj,k maps tasks to slots.
A task can only be mapped to one slot slj,k within
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a frame fj . However, a task can be mapped to the
same slots within different frames. For example,
task t1 can be mapped to sl1,2, sl2,2 and sl3,2, but
never to sl1,2 and sl1,3, since a task can only run
once in each frame.

When mapping tasks to slots, it is assumed that
if a precedence relation exists among two tasks
ti, tl ∈ T , such that tl shares the results produced
by ti, then tl will never start before ti has finished
execution: ∀(ti, tl) ∈ T : α(ti).ej < α(tl).sj

3.3. Example Application

For a better understanding of the presented
model, consider an illustrative example that re-
sembles the typical pattern of reactive control sys-
tems. The legacy system consists of seven tasks
ti, i = 1, ..., 7, where a task is a sequential code
block that starts reading input data and its in-
ternal state and terminates when it provides the
computed results and updates its internal state.
Tasks are ordered considering precedence relation
and data sharing among them. Through the use of
timers and internal counters, these tasks run peri-
odically following a static scheduling policy. Tasks
t1, t2, t5, t6 and t7 have a period of 20 ms, whereas
tasks t3 and t4 have a period of 40 ms. Moreover,
tasks t1, t3, t4 and t6 are critical sections. There-
fore, in order to preserve correctness of the entire
system’s behaviour, the time interval at which these
critical sections run must be kept equivalent on the
migration process (same offset with respect to the
start of the period as in the legacy system and min-
imum jitter among subsequent task instances). The
offset of tasks t1, t3, t4 and t6 are 0, 10, 10 and 15 ms
respectively. On the contrary, for tasks t2, t5 and
t7, a variation in their offset and jitter among sub-
sequent task instances does not hinder a correct
behaviour of the overall system. However, prece-
dence relation and data sharing among tasks must
still be considered. Table 1 summarizes this infor-
mation and completes it with the WCET of each
task. Whereas, Figure 2 depicts the execution of
the example task set.

Figure 2: Example execution trace of the RT legacy appli-
cation example. Execution is composed of two frames that
compose the hyper-period.

Table 1: RT legacy application example. Tasks with their
corresponding timing information, such as period, offset (if
relevant, otherwise N/R is shown), an upper bound for the
execution time, as well as identification of critical sections
are shown.

Tasks Period Offset WCET Critical
[ms] [ms] [ms] section

t1 20 0 5 3
t2 20 N/R 5 -
t3 40 10 3 3
t4 40 10 3 3
t5 20 N/R 2 -
t6 20 15 2 3
t7 20 N/R 3 -

4. Time Measurement & Control Blocks

The proposed time measurement and control so-
lution is based on a block-level source code (sys-
tematic) annotation approach.

4.1. Time Measurement Block

To measure the end-to-end duration of a code
section a time measurement block has been defined,
refered as Estimated Execution Time (EET).

4.1.1. Estimated Execution Time

The EET Block provides means to measure the
execution time of the wrapped code block and per-
form a measurement based WCET analysis. For
each wrapped code block the execution time dura-
tion is computed and stored under a block ID. After
several runs, the average, standard deviation, 99%-
quantile and maximum observed duration are com-
puted, which are also represented in a histogram.

4.2. Time Control Blocks

According to typical patterns on RT control sys-
tems, four different time control blocks have been
defined: Periodic Execution Time (PET), Forced
Execution Time (FET), Budgeted Execution Time
(BET), and Period N Execution Time (PNET).

4.2.1. Periodic Execution Time

The PET Block enforces a periodic execution of
the wrapped code block. The only argument passed
to this block specifies the execution period of the
wrapped code block through the frame size (F ).
As shown in Figure 10, the PET block inserts a
delay at the end of its execution in order to con-
sume the remaining time (if any) and maintain the
block’s periodicity. On the contrary, if the block
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takes longer than expected, leading to a period vi-
olation, a user defined error handling routine takes
place. There should only exist one PET block in the
whole legacy control application, which will always
be the root node.

4.2.2. Forced Execution Time

The FET Block enforces a concrete duration
(specified in its only input argument) for the
wrapped code block. Taking a look into Figure 10
it can be seen that, as it is done in the PET block,
extra duration at the end of the block will be con-
sumed (delay insertion). However, if the specified
duration is exceeded a user defined error handling
routine takes place. FET blocks are always defined
within another FET or PET block. The use of
FET blocks is unlimited; nevertheless, the temporal
overhead the block management structure entails
should be taken into consideration.

4.2.3. Budgeted Execution Time

The BET Block defines an upper bound duration
for the wrapped code block. A BET block should al-
ways be defined within another FET or PET block.
As shown in Figure 10, the time remaining at the
end of BET block’s execution is passed to the next
sibling BET or PNET block (described latter). The
parent FET or PET block is in charge of manag-
ing the execution time budget. However, as FET
and PET blocks have a fixed duration, BET blocks
can only use the remaining time budget of earlier
finished same level BET or PNET blocks. The use
of BET blocks is unlimited; nevertheless, the tim-
ing overhead introduced by the block management
structure should be taken into consideration.

4.2.4. Period N Execution Time

The PNET Block accepts three input arguments.
The first one determines an upper bound duration
for the wrapped code block, the second one deter-
mines the N th period at which the blocks is active,
whereas the third one determines the offset of the
wrapped code block in periods with respect to the
start of the execution. Combining the period and
offset arguments, tasks can be mapped to differ-
ent frames (i.e. N th period 3 and offset 1 means
that the block will run every three frames starting
with the first run at the second frame due to 1 pe-
riod offset). A PNET block must always be used
within a FET or PET block and remaining time
at the end of a PNET block is passed through sib-
ling BET blocks (see Figure 10). The parent FET

or PET block manages the execution time budget
among sibling PNET and BET blocks. As in previ-
ously described control blocks, a user defined error
handling routine takes place if the time budget is
exceeded. The use of PNET blocks is unlimited,
however, PNET blocks within the same parent FET
or PET block should be defined combining the sec-
ond and third parameters in such a way that they
will never run at the same time. Moreover, the tem-
poral overhead of the block management structure
should also be considered.

5. Formal Timing Specification

Within this research work, formal timing spec-
ifications are based on MULTIC Time Specifica-
tion Language (MTSL) (Bde et al., 2017), a timing
specification language defined within the MULTIC
project 1.

5.1. Components & Contracts

The MULTIC project assumes systems to be
built from components (see Figure 3), which inter-
act with the environment (including other compo-
nents) through a set of ports linked with connec-
tors. Within this context, timing specifications are
defined over the ports of components, where any
behaviour in the component model is observable.

Port :: PortName — ComponentName ’.’ PortName

Figure 3: General Component Model.

Timing specifications about components are ex-
pressed in terms of contracts by instances of MTSL.

1Within the MULTIC project, parameters are written
in slanted font, whereas keywords are written in bold font
and additionally enclosed in quotation marks (as ’keyword’)
when they are hardly recognisable. Optional parts are en-
closed in brackets and followed by a question mark, such as
[ optional part ]?. Whereas parts that may occur zero or
more times are also enclosed in brackets but followed by a
star, as for example [repeated part]*. Grammar patterns are
composed (from left to right) of a name separated with a
double colon :: from the definition. Alternatives within the
definition are separated by a vertical bar denoting for this
— that.
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A contract states assumption(s) (denoted with an
A) about the components environment and the be-
haviour that the component’s implementation must
guarantee (denoted with a G), considering the com-
ponent is used in a context where the assumption
about the environment is accomplished. Therefore,
the example contract in Figure 4 states that assum-
ing that an event occurs on Entry port every 20 ms,
whenever an event is observed on Entry port, an
event will be observed on Exit port within 0 to
20 ms.

Figure 4: Contract example.

5.2. MULTIC Time Specification Language

MTSL is based specification patterns, natural
language like statements defined in terms of time
traces that satisfy a pattern. Time traces are based
on the notion of sampled signals (MTSL focuses
on discrete-event signals) to determine the value of
variables in the time domain.

Definition 3. (Timed Trace). A timed trace
observed at port p, is defined as a tuple ωp =
(ti, σi)i∈N, where (ti)i∈N is an infinite sequence of
monotonic time instances and, for each time in-
stance, σi ∈ Σp denotes the corresponding element
from the value domain of port p. Timed traces are
required to be non-zero, therefore, for each t ∈ T
exists a timed trace (ti, σi) such that ti ≥ t. A set
of timed traces observed at port p is denoted by
Ωp = {ω = (ti, σi)i∈N}.

The same way, a set of timed traces observed at a
port set P = {(pi)i∈N} is denoted by ΩP = {ωP =
(ti, ~σi)i∈N}, where ~σi = (σ1, . . . , σn) ∈ Σp1

× . . . ×
Σpn

.
Projection ωP |q of traces over a port set P to

port q ∈ P , where ωP |q= (ti, σ
q
i )i∈N if and only if

ωP = (ti, (. . . , σ
q
i , . . .)i)i∈N.

Timing specifications describe relations among
events, which are only observable at ports and fixed
to a value domain. A timing specification refers to
one or multiple events, where the event value may
or may not be of importance:

EventSpec :: Port | Port ’.’ EventValue

The EventValue could consist of labels as well
as (complex) values and if it is not specified in the
EventSpec, any event observed at the Port is con-
sidered.

So, given a timed trace ω = (ti, σi)i∈N and an
event ω ∈ (ti, σi), it is said to satisfy the event
specification, denoted as (ti, σi) |=EventSpec, if ei-
ther EventSpec specifies a port and σi corresponds
to its value domain or EventSpec specifies an event
value and σi equals to it.

Timing specifications can either refer to an only
event, an event sequence or a set of events:

EventExpr :: EventSpec | ’(’ EventList ’)’ |
’{’ EventList ’}’

EventList :: EventSpec [’,’ EventSpec]*

Extending the notion of satisfaction to event
expressions, a timed trace (ti, σi), . . . , (ti+n−1,
σi+n−1) is said to satisfy an event sequence es =
(e1, . . . , en) if every event (ti+k−1, σi+k−1), 1 ≤
k ≤ n, satisfies the event specification ek. While
(ti, σi), . . . , (ti+n−1, σi+n−1) satisfies an event set
es = {e1, . . . , en} if a sequence (es1 , . . . , esn) exists
that satisfies {es1 , . . . , esn} = {e1, . . . , en}.

Timing specifications may refer to a time point
or interval:

TimeExpr :: Value Unit
Boundary :: ’[’ | ’]’
Interval :: TimeExpr | Boundary Value ’,’

Value Boundary Unit

Time units and values in time expressions are
restrict to usual time units and simple numbers:

Unit :: s | ms | us | ns
Number :: 0 .. 9[ 0 .. 9 ]*
Value :: Number | Number ’.’ Number

In the following some of the patterns defined
within the MULTIC time specification language
(those relevant for this work) are presented 2.

5.2.1. Event Occurrence

To describe a repetitive event occurrence in a
particular port, such as periodic events or events
with minimum and maximum inter-arrival times,
the Repetition pattern is introduced:

2Detailed information on the Timing Specification Lan-
guage can be found in (Bde et al., 2019), Chapter 3.
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Repetition :: EventList occurs every Interval1
[ with RepetitionOptions ]?.

RepetitionOptions :: Jitter [ and Offset ]? | Offset
[ and Jitter ]?

Jitter :: jitter TimeExpr
Offset :: offset Interval2

The parameter Interval1 in the Repetition pat-
tern determines the minimum and maximum time
interval between subsequent occurrences of the
EventList. The Jitter defines an additional delay
between subsequent occurrences of the EventList,
whereas the Offset defines a delay interval for the
first occurrence of the EventList.

Definition 4. (Repetition pattern semantics). Se-
mantics of the repetition pattern ”EL occurs ev-
ery I with jitter J and offset O.” is defined as
the set of timed traces (ti, ~σi)i∈N such that ~σi cor-
responds to the event list EL, and ti = ui+ji∧u0 ∈
O ∧ ui+1 − ui ∈ I ∧ ji ∈ [0, J ], where I = (P−, P+)
is the specified interval (in which ( and/or ) may
be replaced by [ and/or ] respectively to indicate a
closed upper and/or lower bound), O = [O−, O+] is
the offset interval, and J ≥ 0 is the jitter. P− > 0
is required.

Figure 5 shows multiple pattern instances with
different parameters. The first one, shows a mini-
mal instance of the pattern, with no jitter and no
offset. In the second instance of the pattern a jitter
up to 5 ms is added. The light blue bars in the
time-line mark the period intervals as for the first
patter instance, showing that the jitter is ”added”
to the ”baseline” periodic behaviour. The third in-
stance defines a period interval (between 20 and
25 ms). As none of the first three patterns defines
an offset, the first event always occurs at 0 ms. On
the contrary, the forth pattern defines an offset be-
tween [0, 10] ms. Therefore, the first event occurs
somewhere in the interval (for example at 5 ms),
whereas the time interval between two successive
event occurrences is within an interval [20, 25] ms.

5.2.2. Reaction Constraints

The Reaction pattern, which describes a forward
delay over events, event sets and event sequences is
defined as follows:

Reaction :: whenever EventExpr occurs then
EventExpr occurs within Interval [once]?.

Definition 5. (Reaction pattern semantics). Se-
mantics of the reaction pattern ”whenever es1

Figure 5: Event occurrence pattern examples.

occurs then es2 occurs within I.”, where es1

and es2 are either a set or a sequence of events
that contain k and l events, respectively, is de-
fined as a set of timed traces (ti, σi)i∈N such that
∀(ti, σi) . . . (ti+k−1, σi+k−1) |= es1 : ∃ j ≥ i + k :
(tj , σj) . . . (tj+l−1, σj+l−1) |= es2∧tj+l−1−ti+k−1 ∈
I.

The optional keyword once states that the pat-
tern fails if more than one reaction occurs within
the determined time window, therefore only one
j ≥ i + k exists such that the corresponding se-
quence satisfies es2.

Figure 6 depicts multiple instances of the reac-
tion pattern. The first time-line shows a fragment
of a pattern instance where event f occurs within
[15, 25] ms since event e occurs. In contrast to the
first instance, the second one forbids multiple occur-
rences of event f within the specified time-window
using the keyword once. The third pattern in-
stance defines an event sequence (f, g) instead of
a single event as the reaction to event e.

5.2.3. Causal Event Relations

To be able to reason, beyond the timely be-
haviour of events, about relation of events the order
of occurrence of different events shall be captured.
MTSL allows defining basic functional relations 3

by assigning event values. The formal definition of
causal event relations is as follows:

3MTSL does not (yet) support more complex functional
relations of events.
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Figure 6: Reaction pattern examples.

Definition 6. (Causal Event Relation). Consider
ports p1 and p2, and let Ωp1,p2

be the semantics of
the ports. A causal event relation between p1 and
p2 is a function

.(p1, p2) : (T× Σp1
)→ 2T×Σp2

where for all ω ∈ Ωp1,p2
and for all event occur-

rences (ti, σi) ∈ ω|p1
exist (tj , σj), . . ., (tk, σk) ∈

ω|p2 such that it holds .(p1, p2)((ti, σi)) = {(tj , σj),
. . ., (tk, σk)} and ti ≤ tj , . . ., tk.

Causal event relations are transitive, meaning
that given three ports p1, p2, p3 and causal event
relations .(p1, p2) and .(p2, p3), the causal event
relation .(p1, p3) is given by:

(tj , σj) ∈ .(p1, p2)((ti, σi)) ∧ (tk, σk)

∈ .(p2, p3)((tj , σj))

⇒ (tk, σk)

∈ .(p1, p3)((ti, σi))

Based on the defined causal event relation, the
causal version of the Repetition pattern is intro-
duced:

CausalReaction :: Reaction(EventSpec ’,’ EventSpec
within Interval.

Definition 7. (Causal reaction pattern seman-
tics). Semantics of the causal reaction pattern
”Reaction(e1, e2) within I.”, where e1 and e2 re-
fer to p1 and p2, respectively, is defined as the
set of timed traces ω ∈ Ωp1,p2 where for all
(ti, σi)i∈N ∈ ω|p1

, (ui, ρi)i∈N ∈ ω|p2
, and for all

event occurrences (ti, σi) ∈ (ti, σi)i∈N such that
σi |= e1, holds .(p1, p2)((ti, σi)) 6= ∅ and ((uj , ρj) ∈
.(p1, p2)((ti, σi)) ∧ pj |= e2)⇒ uj − ti ∈ I.

An example of the causal reaction pattern is
shown in Figure 7. The dashed light blue line states
that those events are related by the definition of
causal reaction event relation. In contrast to the
first instance in the non-causal reaction pattern (see
first pattern instance in 6), in the causal reaction
pattern instance (see Figure 7) the reaction to the
second occurrence of event e violates the pattern
due to the causal relation.

Figure 7: Causal reaction pattern example.

6. RT Legacy Software Migration

Figure 8 depicts (from left to right) the real-time
legacy software migration process (described in the
following subsections) that ports the RT legacy con-
trol software (that complies with the legacy system
model defined in section 3) running on top of the
legacy hardware platform to a new (different) hard-
ware architecture.

The migration process consists of four main steps.
The first step (marked with number 1 in Figure 8)
corresponds to the process of lifting the legacy
timing properties (extract legacy timing properties,
make them implicit in the legacy application and
transform them into formal timing specification),
which is presented in Section 6.1. To this end,
time measurement and control blocks are annotated
within the legacy application. These blocks, which
are based on the time measurement and control
blocks presented by Bruns et al. (2019), provide
means to extract the legacy timing properties and
enforce them during execution. The annotated code
is then tested to check whether it meets the legacy
system’s timing and functional properties (see num-
ber 2a in Figure 8). To do so, timing properties are
transformed into formal timing specifications and
compared against time traces, whereas a set of ref-
erence values for input state variables and the cor-
responding reference values for output control vari-
ables are extracted from the legacy system to check
whether the functional behaviour is preserved. Ac-
cording to the results obtained, if any of the require-
ments (temporal and/or functional) are not met,
time control blocks might have to be reallocated
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Figure 8: RT Legacy Software Migration flow. Lifting of timing properties (step 1) is described in Section 6.1. Testing timing
and functional properties (step 2), as well as block and budget reallocation (step 3) are described in Section 6.2. Timing
equivalent legacy software porting (step 4) is described in Section 6.3.

and the time budget as well as the timing specifica-
tions adjusted, see number 3a in the figure. The
timing and functional test procedure as well as the
block and budget reallocation process is described
within Section 6.2. The next step, number 4 in
Figure 8, consists of porting the timing annotated
binary code to the ISA of the new hardware plat-
form, with a focus on how the static binary trans-
lation tool handles the timing annotations. The
timing block aware translation process is described
in Section 6.3. Finally, after the annotated legacy
code has been translated, temporal and functional
requirements are tested once again (marked as
2b in Figure 8) and if needed time control blocks
reallocated and time budget as well as timing spec-
ifications adjusted (marked as 3b in Figure 8). It
is worth to mention that the block reallocation as
well as the time budget and contract adjustment
step might have to be accomplished several times
during the migration process.

6.1. Lifting of Timing Properties

The timing property lifting process presented in
fig. 9 consists of three main stages: profiling, anno-
tation, and time specification.

6.1.1. Profiling Legacy System

Profiling constitutes the first stage, where code
analysis, legacy system’s specifications and timing
measurements are evaluated by an expert to ex-
tract the necessary timing information from the
legacy system. Information regarding the period
of each task, precedence relation and data shar-
ing among tasks, as well as identification of criti-
cal sections is obtained through the analysis of the
legacy code, legacy system’s specifications and ex-
pert knowledge. Whereas time measurement (the

EET described in section 4.1.1), which are sys-
tematically annotated into the legacy code, pro-
vide means to measure the end-to-end duration of
a specific code section and save the result in mem-
ory (under block’s ID). The obtained timing data
is then analysis to extract information regarding
the WCET and offset of tasks. As a result of the
profiling phase, legacy timing properties and the
behavioural legacy code are obtained.

6.1.2. Legacy Timing Enforcement

To enforce an appropriate temporal behaviour
after the migration process, implicit legacy tim-
ing properties are made explicit in the behavioural
legacy code. The proposed time control solution
is based on a block-level source code (systematic)
annotation approach.

Based on the described time control blocks (see
Section 4.2), the example legacy application pre-
sented in Section 3.3 is annotated as follows. The
root node is a PET block with period set to 20 ms,
which is the GCD of all tasks’ period. Then, each
task is wrapped into a BET or PNET block ac-
cording to its period. Tasks with a period equal to
that defined through the PET block are wrapped
into BET blocks, whereas tasks with a greater pe-
riod are mapped into PNET blocks. The budget
for either block (BET or PNET) is determined by
the WCET of the task it contains. Whereas the
period and offset parameters of PNET blocks are
determined according to the period of the task they
wrap. For the example application, tasks t3 and t4
have a period two times greater than that defined
on the PET block, therefore, the period argument
is set to 2, whereas the offset parameter is set to 0
in the PNET block that wraps t3 and to 1 in the
block containing t4. This way f3 and t4 will run
every two periods starting at period 0 and period 1
respectively. Finally, in order to preserve a specific
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Figure 9: Lifting of timing properties. Profiling phase: extract timing properties and behavioural code from RT legacy code.
Annotation phase: annotate behavioural code with time control blocks. Time Specification phase: transform annotated timing
properties into timing specifications attached to virtual ports.

offset and minimum jitter among subsequent task
instances for critical tasks, every BET or PNET
block preceding a block wrapping a task marked as
critical section must be wrapped into a FET block.
Therefore, BET blocks corresponding to t1 and t2
are wrapped into a FET block. The duration of
this FET block is set to 10 ms so that the next
tasks marked as critical preserve their offset. The
PNET blocks and the BET block corresponding to
t5 are wrapped into another FET block. The up-
per limit of PNET blocks that can be wrapped in a
FET block is determined by the period argument of
the PNET blocks, which has to be equal for every
PNET block within a FET, while the offset has to
be different for each PNET block within a FET. To
preserve the offset of the following critical task (t6),
the duration of the FET block is set to 5 ms. The
resulting annotated code is shown in Figure 10, and
the corresponding tree diagram in Figure 11.

6.1.3. Extract Timing Specifications

Finally, the annotated legacy application is sys-
tematically transformed into formal time specifica-
tions (see Section 5) that provide means for the
latter validation of legacy timing properties.

Based on MULTIC approach, the RT legacy soft-
ware migration solution describes each time control
block as a component. Within each component, vir-
tual ports are defined, at which events are observ-
able, as well as the corresponding contract, which
is based on MTSL repetition and causal reaction

Figure 10: Time control blocks’ structure and functionality.
Description of execution time control blocks’ structure and
functionality through the RT legacy application example (see
Section 3.3). PET block enforces a periodic execution. FET
enforces a concrete duration. BET defines an upper bound
duration and passes remaining time to next sibling BET or
PNET blocks. PNET defines an upper bound duration for a
code block that runs every Nth period starting at an specific
period (according to its offset).

patterns. Moreover, component-to-component con-
nections are done according to a causality order.
Therefore, the annotated legacy example applica-
tion presented in Figure 10, which follows a tree di-
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Figure 11: Time control blocks’ behaviour and nesting. Description of execution time control blocks’ behaviour and nesting
through the RT legacy example application (see Section 3.3). PET1 is the root node. It has four child nodes: FET2, FET3,
BET4 and BET5. PET1 manages the timing budget passed across BET4 and BET5 siblings. FET2 has two child nodes (BET6
and BET7) and manages the time budget passed across them. FET3 has three child nodes, two PNET blocks (PNET8 and
PNET9) and a BET block (BET10). The timing budget passes across the sibling PNET and BET blocks is managed by their
parent node, FET3.

agram as depicted in Figure 11, is transformed into
a set of component nodes with their corresponding
contract. The resulting component-contract struc-
ture is shown in Figure 12.

This component-contract structure will later be
used to validate the timing behaviour of the an-
notated legacy application. However, before ap-
plying the time specification, a consistency check
must be performed. To this end, the concept of
Virtual Integration Testing (VIT) is being used,
which checks compatibility and refinement condi-
tions. The former verifies whether two (or more)
components can be put together without violating
any of the contracts. That means that two compo-
nents are compatible if the assumption about the
environment of a component are not violated by an-
other component connected to this component. The
latter verifies whether the composition of a set of
sub-components satisfies the contract(s) of the par-
ent component. This means that the guaranteed
behaviour of a set of sub-components must refine
the behaviour guaranteed by the parent contract,
within an environment that complies with the par-
ent contract assumption. The details about VIT
are out of the scope of this paper and can be found
in (Bde et al., 2017)

6.2. Testing, Reallocation & Adjustment

To check that timing and functional requirements
are still met after the lifting process, the control

block annotated legacy application is executed on
the legacy hardware platform and collected func-
tional and timing traces are compared against their
reference values.

On the one hand, the timing test compares time
traces that time control blocks generate at run-
time against systematically obtained formal tim-
ing specifications using the MULTIC tooling (Bde
et al., 2019), which allows expressing timing re-
quirements in terms of contracts and provides
means for their validation through a simulation
based method based on the SystemC (Accellera,
2019) simulation framework. Figure 13 depicts the
process of testing the timing properties.

On the other hand, the functional test feeds the
annotated legacy application running on the legacy
hardware platform with a set of reference input data
for state variables (usually provided by an expert
group) and compares the output values obtained
for control variables against a set of reference out-
put data, which is obtained running the (original)
legacy application on the legacy hardware platform.
Figure 14 depicts the process of testing the func-
tional properties.

According to the timing and functionality test re-
sult, a time control block reallocation and budget
adjustment process might be necessary. During the
lifting process, source code is extracted, modified
and rearranged. In this reverse engineering process,
the functional and timing behaviour of the legacy
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Figure 12: Ideal component-contract structure for the annotated example application. Description of component-contract
structure through the RT legacy example application (see Section 3.3). Each component has its corresponding contract,
composed of assumption(s) and guarantee(s), which are based on MTSL repetition and causal reaction patterns. Port names
are shown in blue colour. Contacts describe an ideal behaviour and therefore do not describe possible time variations (jitter)
present in real a scenario.

Figure 13: Description of the process for testing timing prop-
erties.

application might have been changed. Therefore,
if the timing and/or functional test results is not
successful (i.e., the allocated budget is not enough,
the offset before critical section tasks is not appro-
priate, the task precedence relation has been cor-
rupted), time control blocks need to be reallocated
and budgets adjusted accordingly, while still ensur-
ing an appropriate timing behaviour.

Systematically generated timing specifications
(see Figure 12) describe an ideal timing behaviour.

Figure 14: Description of the process for testing functional
properties.

However, in a real scenario the timing behaviour
is not ideal and timing deviations exist as a conse-
quence to the overhead of time control block man-
agement or binary translation, as well as deviations
caused by the underlying OS or hardware platform
itself. As a consequence, formal timing specifica-
tions might need to be adjusted accordingly, while
still ensuring an appropriate timing behaviour.
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During the lifting process it might be necessary
to repeat the temporal a functional property test,
the control block reallocation and the budget and
contract adjustment process several times, until all
legacy system’s requirements are met, temporal as
well as functional requirements.

6.3. Timing Block support within Static BT

The RT legacy software migration approach relies
on a static binary analysis framework, Rev.ng (Fed-
erico et al., 2017). The core element in Rev.ng
is its SBT tool, that combines the benefits of
QEMU (Bellard, 2005) with those of LLVM (Lat-
tner and Adve, 2004). Revamb parses the stati-
cally linked Linux binary and uses QEMU’s TCG
as a front-end to generate tiny code instructions
from any of the input architectures it supports.
Then code in QEMU IR form is further translated
into LLVM IR instructions. However, in QEMU,
certain features such as syscalls and complex in-
structions (e.g. floating point division) are handled
through a set of external functions (written in C)
known as helper functions. Therefore, using Clang,
QEMU helper functions are obtained in the form
of LLVM IR and statically linked before generat-
ing the LLVM module. Besides the helper func-
tions, additional support is needed mainly for ini-
tialization purposes. To this end, Revamb provides
a set of support functions which are linked to the
LLVM module. Then, the linked LLVM IR module
is translated into machine code using LLVM com-
piler infrastructure.

For the static translation, the time control block
annotated legacy application, obtained as a result
of the lifting process, is statically linked to the Tim-
ing Measurement and Control Block (TMCB) li-
brary and compiled for the legacy hardware plat-
form using a legacy Linux toolchain. The technical
implementation of TMCBs as a library enables its
use across multiple platforms. Then, the annotated
binary is statically translated from legacy to the
new ISA using Rev.ng tool-suite. Figure 15 depicts
the described static binary translator based timing
control block handling.

As it is done after the lifting process, after trans-
lating the annotated code temporal and functional
properties need to be tested on the new hardware
platform. If the test results are unsuccessful, time
control blocks might have to be reallocated and/or
the assigned time budget and/or timing specifica-
tions adjusted (see Section 6.2 for more informa-
tion).

Figure 15: Description of the static binary translator based
block handling.

7. Timing-aware Migration Assessment

As a proof of concept, the RT legacy software
migration approach described in the previous chap-
ter (see Section 6) is used to port ARM Cortex-A9
legacy software to an Intel Atom processor. There-
fore, the Xilinx Zynq-7000 System on a Chip (SoC)
ZC702 evaluation kit and the MinnowBoard Tur-
bot Dual-Core board have been selected as source
and target platforms, respectively. The timing-
aware migration assessment describes the evalua-
tion of the implemented block level timing enforce-
ment mechanism as well as the evaluation of the
timing-aware static translation process. For each
of the evaluation scenarios, the functional as well
as the timing behaviour have been assessed. The
migration assessment is accomplished through the
example application (described in Section 3.3) and
a flight control application. The example applica-
tion provides a complete analysis in the sense that
it contains tasks with different periods and some
of the tasks are considered a critical code section,
therefore, through the example every time control
block can be evaluated, analysing this way cor-
ner cases. However, this is a self generated ap-
plication and therefore the great effort of porting
non-proprietary code is excluded. On the contrary,
the flight control application is a legacy application
that was implemented by a third party and there-
fore, it is a suitable application to evaluate the effort
of porting non-proprietary legacy code. Although
every corner cases is not covered through the flight
control application, the analysis of corner cases is
achieved through the example application.

The example application, first introduced in Sec-
tion 3.3, resembles the typical pattern of a reac-
tive control system. This bare-metal application
includes seven periodic tasks (with different peri-
ods) executed following a static scheduling policy.
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The functional behaviour of the example applica-
tion consists on a bit toggling sequence, where each
of the sequential tasks toggles a specific bit in an
output variable (the bit in the position correspond-
ing to the task number, the bit in position zero
never toggles). Running the legacy example appli-
cation on the ARM Cortex-A9 processor for 50000
time steps (statistically representative enough), the
output variable bit toggling sequence is observed
and reference output data collected.

The flight control application that will be used
in the evaluation process is the OFFIS multiro-
tor (OFFIS, 2019), which supports a mixed-critical
architecture and enables high-performance process-
ing while still supporting a safe flight control. The
flight control algorithm is responsible for comput-
ing the motor values (control variables) based on
the control orders from the user (set-point) and
the sensor data (process variables). Figure 16 de-
picts the main components of the flight controller,
which are Read Sensors, Sensor Processing, Read
Remote, Remote Processing, Flight Controller, and
Send Motor Values. To guarantee a stable flight be-
haviour, an update rate of 500 Hz must be ensured
in the motor drivers, therefore the control cycle can-
not exceed 2.1 ms. The multirotor application run-
ning on top of the ARM Cortex-A9 processor is feed
with the reference input data, generated through a
flight simulation program (the multirotor takes off,
hoovers for a while and then lands), the execution
lasts for 3000 time steps (statistically representa-
tive enough) and control variables are observed to
collect the reference output data.

7.1. Block-Level Timing Enforcement Assessment

The timing enforcement solution presented in
Section 6.1, which consist of a block-level source
code annotation mechanism is being assessed in
this section. To this end, each application is sys-
tematically annotated with timing control blocks 4.
The annotated application is linked against the the
TMCB library and compiled for the ARMv7-A ISA.
Then, the time control block annotated application
runs on top of the ARM Cortex-A9 processor (run-
ning Preempt-RT Linux at a 666 MHz operation
frequency) and the corresponding functional and
timing data is collected.

4To annotate the example application every type of tim-
ing control block has been used, whereas to annotate the
multirotor applications just PET blocks are needed.

7.1.1. Timing test

As described in Section 6.2, to test the timing
behaviour, the annotated code (example – see List-
ing 1, and multirotor – see Listing 2) is systemati-
cally transformed into formal timing specifications
(example – see Figure 12, and multirotor – see Fig-
ure 17). These timing specifications, together with
the time traces that the annotated binary gener-
ates when running on top of the ARM Cortex-A9
processor are fed to the MULTIC tool and thus the
timing behaviour is validated.

void main ( ) {
i n i t i a l i z a t i o n ( ) ;
BLOCK PET(20 ms ) {

BLOCK FET(10 ms ) {
BLOCK BET(5 ms ) {

t o g g l e b i t (1 , &output var ) ; // t1
}
BLOCK BET(5 ms ) {

t o g g l e b i t (2 , &output var ) ; // t2
}

}
BLOCK FET(5 ms ) {

BLOCK PNET(3 ms , 2 , 0) {
t o g g l e b i t (3 , &output var ) ; // t3

}
BLOCK PNET(3 ms , 2 , 1) {

t o g g l e b i t (4 , &output var ) ; // t4
}
BLOCK BET(2 ms ) {

t o g g l e b i t (5 , &output var ) ; // t5
}

}
BLOCK BET(2 ms ) {

t o g g l e b i t (6 , &output var ) ; // t6
}
BLOCK BET(3 ms ) {

t o g g l e b i t (7 , &output var ) ; // t7
}

}
}

Listing 1: Example application annotated with time control
blocks.

void main ( void )
{

p l a t f o r m i n i t ( ) ;
BLOCK PET(2 ms )
{

p la t f o rm execute ( ) ;
}

}

Listing 2: Multirotor application annotated with time
control blocks.

Example application – ideal contracts.

Table 2 shows the time traces generated by the an-
notated example application running on the ARM
Cortex-A9 processor validated against the ideal
component-contract structure (see Figure 12).
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Figure 16: Overview of the flight controller SAFEPOWER (2017)

Table 2: Time traces generated by the annotated example
application running on the ARM Cortex-A9 processor val-
idated against the ideal component-contract structure (see
Figure 12). The first column shows the time trace. The sec-
ond column shows the valid time interval according to time
traces and the corresponding contract. The third column
shows contract pass/fail information.

Time Trace Contract limitation Pass
Fail

PET20.Entry 0 ns [0,0] ns 3
FET21.Entry 504825 ns [0,0] ns 7
BET22.Entry 580910 ns [0,0] ns 7
BET22.Exit 706839 ns [580910,5580910] ns 3
BET26.Entry 761326 ns [0,5000000] ns 3
BET26.PEntry 504825 ns [0,0] ns 7
BET26.Exit 901679 ns [504825,10504825] ns 3
FET21.Exit 9987845 ns [10504825,10504825] ns 7
FET31.Entry 10070300 ns [10000000,10000000] ns 7
PNET32.Entry 10131856 ns [10000000,10000000] ns 7
PNET32.Exit 10248073 ns [10131856,13131856] ns 3
BET40.Entry 10304820 ns [10000000,13000000] ns 3
BET40.PEntry 10070300 ns [10000000,10000000] ns 7
BET40.Exit 10418145 ns [10304820,15070300] ns 3
FET31.Exit 14497737 ns [15070300,15070300] ns 7
BET45.Entry 14593920 ns [15000000,15000000] ns 7
BET45.Exit 14716674 ns [14593920,16593920] ns 3
BET49.Entry 14769626 ns [15000000,17000000] ns 7
BET49.PEntry 0 ns [0,0] ns 3
BET49.Exit 14907534 ns [15000000,19769626] ns 7
PET20.Exit 19989077 ns [20000000,20000000] ns 7
PET20.Entry 20052985 ns [20000000,20000000] ns 7
FET21.Entry 20112780 ns [20504825,20504825] ns 7
BET22.Entry 20171498 ns [20580910,20580910] ns 7
BET22.Exit 20284313 ns [20171498,25171498] ns 3
BET26.Entry 20337595 ns [15761326,25761326] ns 3
BET26.PEntry 20112780 ns [20504825,20504825] ns 7
BET26.Exit 20449783 ns [20337595,30112780] ns 3
FET21.Exit 29529340 ns [30112780,30112780] ns 7
FET31.Entry 29600643 ns [30070300,30070300] ns 7
PNET36.Entry 29663642 ns [30000000,30000000] ns 7
PNET36.Exit 29779277 ns [29663642,32663642] ns 3
BET40.Entry 29832028 ns [27304820,33304820] ns 3
BET40.PEntry 29600643 ns [30070300,30070300] ns 7
BET40.Exit 29944063 ns [29832028,34600643] ns 3
FET31.Exit 34023382 ns [34600643,34600643] ns 7
BET45.Entry 34083446 ns [34593920,34593920] ns 7
BET45.Exit 34195623 ns [34083446,36083446] ns 3
BET49.Entry 34248931 ns [32769626,36769626] ns 3
BET49.PEntry 20052985 ns [20000000,20000000] ns 7
BET49.Exit 34382318 ns [35052985,39248931] ns 7
PET20.Exit 39461774 ns [40052985,40052985] ns 7

Multirotor application – ideal contracts.

Table 3 shows the time traces generated by the an-
notated flight control application running on the
ARM Cortex-A9 processor validated against the

ideal component-contract structure (see Figure 17).

Table 3: Time traces generated by the annotated flight
control application running on the ARM Cortex-A9 proces-
sor validated against the ideal component-contract structure
(see Figure 17). The first column shows the time trace. The
second column shows the valid time interval according to
time traces and the corresponding contract. The third col-
umn shows contract pass/fail information.

Time Trace Contract limitation Pass
Fail

PET36.Entry 0 ns [0,0] ns 3
PET36.Exit 2042507 ns [2000000,2000000] ns 7
PET36.Entry 2122859 ns [2000000,2000000] ns 7
PET36.Exit 4155069 ns [4122859,4122859] ns 7
PET36.Entry 4221302 ns [4122859,4122859] ns 7
PET36.Exit 6251056 ns [6221302,6221302] ns 7
PET36.Entry 6313935 ns [6221302,6221302] ns 7
PET36.Exit 8344471 ns [8313935,8313935] ns 7
PET36.Entry 8422069 ns [8313935,8313935] ns 7
PET36.Exit 10452413 ns [10422069,10422069] ns 7
PET36.Entry 10515106 ns [10422069,10422069] ns 7
PET36.Exit 12545624 ns [12515106,12515106] ns 7
PET36.Entry 12607801 ns [12515106,12515106] ns 7
PET36.Exit 14636994 ns [14607801,14607801] ns 7
PET36.Entry 14698283 ns [14607801,14607801] ns 7
PET36.Exit 16727964 ns [16698283,16698283] ns 7
PET36.Entry 16790705 ns [16698283,16698283] ns 7
PET36.Exit 18820345 ns [18790705,18790705] ns 7
PET36.Entry 18893214 ns [18790705,18790705] ns 7
PET36.Exit 20923498 ns [20893214,20893214] ns 7

Figure 17: Ideal component-contract structure for the anno-
tated multirotor application. The only component (PET36)
has its corresponding contract. The contract describes the
assumption and guarantee observable at Entry/Exit ports
(named in blue colour). The contract describes an ideal be-
haviour and therefore does not describe possible time varia-
tions (jitter) present in real a scenario.

Given that the contracts presented in Figure 12
and Figure 17 are ideal and therefore do not con-
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sider any timing variation cause by the overhead of
time control block management or by the underly-
ing OS and hardware platform itself, a great per-
centage of the traces did not pass the correspond-
ing contract (about 60% of the time traces for the
example application, and about 99% for the mul-
tirotor application). In order to cover the timing
deviations present in a real scenario, contracts are
adjusted as follows:

� Adjust the offset in some of the assumptions
(following a repetition pattern) to cover little
variations on the time distance from the start
of execution to the first occurrence of an event
on a particular port.

� Adjust the interval in some of the assumptions
(following a repetition pattern) to cover little
variations on the time distance between repet-
itive event occurrences on a particular port.

� Adjust the interval in some of the guarantees
(following a causal reaction pattern) to cover
little variations on the time distance between
causally related events on input/output ports.

Example application – annotation adjusted con-
tracts.

Figure 18 shows the adjusted component-contract
structure for the annotated example application.
Changes in the contracts with respect to the ideal
component-contract structure in Figure 12 are
shown in bold. Up to time steps 1600 adjust-
ments had to be done on the contracts, then the
example application run for over 5000 time steps
without failing any contract. Table 4 shows the
time traces generated by the annotated example
application running on the ARM Cortex-A9 pro-
cessor validated against the adjusted component-
contract structure presented in Figure 18. Changes
in the time interval with respect to the validation
against the ideal component-contract structure (see
Table 2) are shown in bold.

Table 4: Time traces generated by the annotated example
application running on the ARM Cortex-A9 processor val-
idated against the adjusted component-contract structure
(see Figure 18). The first column shows the time trace.
The second column shows the valid time interval accord-
ing to time traces and the corresponding contract, changes
with respect to the validation with ideal component-contract
structure (see Table 2) are shown in bold. The third column
shows contract pass/fail information.

Time Trace Contract limitation Pass
Fail

PET20.Entry 0 ns [0,0] ns 3
FET21.Entry 504825 ns [0,600000] ns 3
BET22.Entry 580910 ns [0,600000] ns 3
BET22.Exit 706839 ns [580910,5580910] ns 3
BET26.Entry 761326 ns [0,5000000] ns 3
BET26.PEntry 504825 ns [0,600000] ns 3
BET26.Exit 901679 ns [761326,10504825] ns 3
FET21.Exit 9987845 ns [9904825,10504825] ns 3
FET31.Entry 10070300 ns [10000000,10100000] ns 3
PNET32.Entry 10131856 ns [10000000,10200000] ns 3
PNET32.Exit 10248073 ns [10131856,13131856] ns 3
BET40.Entry 10304820 ns [10000000,13000000] ns 3
BET40.PEntry 10070300 ns [10000000,10100000] ns 3
BET40.Exit 10418145 ns [10304820,15070300] ns 3
FET31.Exit 14497737 ns [14470300,15070300] ns 3
BET45.Entry 14593920 ns [14500000,15000000] ns 3
BET45.Exit 14716674 ns [14593920,16593920] ns 3
BET49.Entry 14769626 ns [14700000,17000000] ns 3
BET49.PEntry 0 ns [0,0] ns 3
BET49.Exit 14907534 ns [14769626,19769626] ns 3
PET20.Exit 19989077 ns [19400000,20000000] ns 3
PET20.Entry 20052985 ns [19400000,20100000] ns 3
FET21.Entry 20112780 ns [19904825,20604825] ns 3
BET22.Entry 20171498 ns [19980910,20680910] ns 3
BET22.Exit 20284313 ns [20171498,25171498] ns 3
BET26.Entry 20337595 ns [15761326,25761326] ns 3
BET26.PEntry 20112780 ns [19904825,20604825] ns 3
BET26.Exit 20449783 ns [20337595,30112780] ns 3
FET21.Exit 29529340 ns [29512780,30112780] ns 3
FET31.Entry 29600643 ns [26970300,32570300] ns 3
PNET36.Entry 29663642 ns [29600000,30000000] ns 3
PNET36.Exit 29779277 ns [29663642,32663642] ns 3
BET40.Entry 29832028 ns [27204820,33304820] ns 3
BET40.PEntry 29600643 ns [26970300,32570300] ns 3
BET40.Exit 29944063 ns [29832028,34600643] ns 3
FET31.Exit 34023382 ns [34000643,34600643] ns 3
BET45.Entry 34083446 ns [31393920,37293920] ns 3
BET45.Exit 34195623 ns [34083446,36083446] ns 3
BET49.Entry 34248931 ns [31569626,37469626] ns 3
BET49.PEntry 20052985 ns [19400000,20100000] ns 3
BET49.Exit 34382318 ns [34352985,39248931] ns 3
PET20.Exit 39461774 ns [39452985,40052985] ns 3

Multirotor application – annotation adjusted con-
tracts.

Figure 19 shows the adjusted component-contract
structure for the annotated multirotor applica-
tion. Changes in the contracts with respect to the
ideal component-contract structure in Figure 17 are
shown in bold. On the first two time steps adjust-
ments had to be done on the contract to cover the
previously mentioned needs. The interval in the
assumption is adjusted to [2000, 2200] us and the
interval in the guarantee is set to [2000, 2100] us.
Then, the flight control application runs for almost
3000 time steps without any further failure. Ta-
ble 5 shows the time traces generated by the an-
notated flight control application running on the
ARM Cortex-A9 processor validated against the
adjusted component-contract structure presented
in Figure 19. Changes in the time interval with re-
spect to the validation against the ideal component-
contract structure (see Table 3) are shown in bold.
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Figure 18: Adjusted component-contract structure for the annotated example application. Each component has its correspond-
ing contract. Contracts describe the assumptions and guarantees observable at input/output ports (named in blue colour).
Contracts have been adjusted to cover possible jitter present on a real scenario, in this case adjustments are applied for the
annotated example application running on the ARM Cortex-A9 processor. Changes in the contracts with respect to the ideal
component-contract structure in Figure 12 are shown in bold.

Figure 19: Adjusted component-contract structure for the
annotated multirotor application. The only component
(PET36) has its corresponding contract. The contract de-
scribes the assumption and guarantee observable at En-
try/Exit ports (named in blue colour). The contract has
been adjusted to cover possible timing deviations present
on a real scenario, in this case adjustments are applied for
the annotated multirotor application running on the ARM
Cortex-A9 processor.

Table 5: Time traces generated by the annotated flight con-
trol application running on the ARM Cortex-A9 processor
validated against the adjusted component-contract structure
(see Figure 19). The first column shows the time trace. The
second column shows the valid time interval according to
time traces and the corresponding contract, changes with re-
spect to the validation with ideal component-contract struc-
ture (see Table 3) are shown in bold. The third column
shows contract pass/fail information.

Time Trace Contract limitation Pass
Fail

PET36.Entry 0 ns [0,0] ns 3
PET36.Exit 2042507 ns [2000000,2100000] ns 3
PET36.Entry 2122859 ns [2000000,2200000] ns 3
PET36.Exit 4155069 ns [4122859,4222859] ns 3

Continued on next page
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Time Trace Contract limitation Pass
Fail

PET36.Entry 4221302 ns [4122859,4322859] ns 3
PET36.Exit 6251056 ns [6221302,6321302] ns 3
PET36.Entry 6313935 ns [6221302,6421302] ns 3
PET36.Exit 8344471 ns [8313935,8413935] ns 3
PET36.Entry 8422069 ns [8313935,8513935] ns 3
PET36.Exit 10452413 ns [10422069,11422069] ns 3
PET36.Entry 10515106 ns [10422069,12422069] ns 3
PET36.Exit 12545624 ns [12515106,13515106] ns 3
PET36.Entry 12607801 ns [12515106,14515106] ns 3
PET36.Exit 14636994 ns [14607801,15607801] ns 3
PET36.Entry 14698283 ns [14607801,16607801] ns 3
PET36.Exit 16727964 ns [16698283,17698283] ns 3
PET36.Entry 16790705 ns [16698283,18698283] ns 3
PET36.Exit 18820345 ns [18790705,19790705] ns 3
PET36.Entry 18893214 ns [18790705,20790705] ns 3
PET36.Exit 20923498 ns [20893214,21893214] ns 3

Result analysis.

Result show that systematically generated formal
timing specifications needed to be adjusted to cover
the timing deviations caused by the overhead of
time control block management or by the underly-
ing OS and hardware platform itself. After the ad-
justment of formal timing specifications, time traces
generated at runtime by the annotate example and
multirotor applications fit into the defined timing
contracts. Future work considers characterizing the
overhead generated by control block management
and adjusting the blocks accordingly to, at some
point, overcome it.
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7.1.2. Functional test

The functional test compares the reference out-
put value for control variables with the output
value, for those control variables, when running the
annotated applications (example – see Listing 1,
and multirotor – see Listing 2) on the ARM Cortex-
A9 processor, using reference input data for state
variables 5.

Example application.

Figure 20 shows the bit toggling sequence of the
output variable on both test scenarios. However,
due to scaling problems, the figure depicts just the
output variable value for the first 100 time steps.

Multirotor application.

Figure 21 shows the output values for each of the
multirotor application control variables on both test
scenarios. Control variables are observed for an in-
terval of about 3000 time steps (about 6 seconds
simulation).

Result analysis.

Results show that the signal observed on every con-
trol variable is equivalent (in value) before and af-
ter the lifting of timing properties. However, due to
time control block management overhead, a delay
(with respect to non-annotated code) is observable
on every control variable output signal. This delay
in the response of the controller might slightly dis-
turb the functional behaviour of the overall control
system, therefore, for each particular case a fur-
ther analysis (on a more realistic scenario) would
be necessary to determine whether the functional
behaviour is acceptable after the lifting of timing
properties. Future work considers providing sup-
port to port legacy platform Input/Output (I/O)
port dependent code, which will provide means to
perform a functional test on a more realistic sce-
nario.

7.2. Timing-aware Static Translation Assessment

This section evaluates the timing equivalent
static BT approach described in Section 6.3. As
the timing enforcement assessment, the assessment
of the timing-aware static legacy software transla-
tion is accomplished through the example and mul-
tirotor applications. To this end, each of the time

5The example application does not require input data.

control block annotated applications that was stat-
ically linked and compiled for the ARMv7-A ISA is
statically translated, using Rev.ng, into an equiva-
lent binary for x86 ISA. The translated binary is
then executed on top of the Intel Atom E3866 pro-
cessor (running Preempt-RT Linux at a 1463 MHz
operation frequency) and the corresponding func-
tional and timing data is collected.

7.2.1. Timing test

The timing test validates the timing behaviour
of translated applications (example – see Listing 1,
and multirotor – see Listing 2) running on the Intel
Atom E3866 processor. Using MULTIC tool, the
time traces that each of the translated applications
generates at run-time are validated against the cor-
responding component-contract structure (example
– see Figure 18, and multirotor – see Figure 19) ob-
tained as a result of the lifting of timing properties
and adjusted as part of the timing enforcement as-
sessment.

Example application – annotation adjusted con-
tracts.

Table 6 shows the time traces generated by the
translated example application running on the In-
tel Atom E3866 processor validated against the
component-contract structure presented in Fig-
ure 18, adjusted as part of the timing enforcement
assessment.

Table 6: Time traces generated by the translated exam-
ple application running on the Intel Atom E3866 processor
validated against (before translation) adjusted component-
contract structure (see Figure 18). The first column shows
the time trace. The second column shows the valid time
interval according to time traces and the corresponding con-
tract. The third column shows contract pass/fail informa-
tion.

Time Trace Contract limitation Pass
Fail

PET20.Entry 0 ns [0,0] ns 3
FET21.Entry 860897 ns [0,600000] ns 7
BET22.Entry 1093058 ns [0,600000] ns 7
BET22.Exit 1447619 ns [1093058,6093058] ns 3
BET26.Entry 1597033 ns [0,5000000] ns 3
BET26.PEntry 860897 ns [0,600000] ns 7
BET26.Exit 1966338 ns [1597033,10860897] ns 3
FET21.Exit 11138808 ns [10260897,10860897] ns 7
FET31.Entry 11445947 ns [10000000,10100000] ns 7
PNET32.Entry 11644891 ns [10000000,10200000] ns 7
PNET32.Exit 12063298 ns [11644891,14644891] ns 3
BET40.Entry 12233075 ns [10000000,13000000] ns 3
BET40.PEntry 11445947 ns [10000000,10100000] ns 7
BET40.Exit 12580840 ns [12233075,16445947] ns 3

Continued on next page
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Figure 20: Functional test results for the annotated example application running on the ARM Cortex-A9 processor. For each
time step (X-axis) the corresponding output variable value (Y-axis) is shown, both, for the legacy example application (without
annotations) as well as for the annotated example application. On both test scenarios (legacy and annotated), the bit toggling
sequence is equal, although there is a delay on the annotated application with respect to the legacy application due to time
control block management.

(a) Front motor point (b) Rear motor point

(c) Right motor point (d) Left motor point

Figure 21: Functional test results for the annotated multirotor application running on the ARM Cortex-A9 processor. (a)
shows for each time step (in the X-axis) the corresponding value of motor front point variable (in the Y-axis), (b) shows for
each time step (in the X-axis) the corresponding value of motor rear point variable (in the Y-axis), (c) shows for each time
step (in the X-axis) the corresponding value of motor right point variable (in the Y-axis), and (d) shows for each time step (in
the X-axis) the corresponding value of motor left point variable (in the Y-axis). Every graph, (a), (b), (c), and (d), show the
results obtained for the legacy multirotor application (without annotations) as well as for the annotated multirotor application.
On both test scenarios (legacy and annotated), the output value of control variables is equal, although there is a delay on
the annotated application with respect to the legacy application due to time control block management. The average delay
observed on the 2 ms control cycle over a 3000 time step simulation is 97 µs.
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Table 6 – Continued from previous page

Time Trace Contract limitation Pass
Fail

FET31.Exit 17023455 ns [15845947,16445947] ns 7
BET45.Entry 17404573 ns [14500000,15000000] ns 7
BET45.Exit 17816493 ns [17404573,19404573] ns 3
BET49.Entry 17987424 ns [14700000,17000000] ns 7
BET49.PEntry 0 ns [0,0] ns 3
BET49.Exit 18307373 ns [17987424,20000000] ns 3
PET20.Exit 20486905 ns [19400000,20000000] ns 7
PET20.Entry 20932500 ns [19400000,20100000] ns 7
FET21.Entry 21241476 ns [20260897,20960897] ns 7
BET22.Entry 21532219 ns [20493058,21193058] ns 7
BET22.Exit 22164893 ns [21532219,26532219] ns 3
BET26.Entry 22428261 ns [16597033,26597033] ns 3
BET26.PEntry 21241476 ns [20260897,20960897] ns 3
BET26.Exit 23046048 ns [22428261,31241476] ns 3
FET21.Exit 31745743 ns [30641476,31241476] ns 7
FET31.Entry 32165890 ns [28345947,33945947] ns 3
PNET36.Entry 32493916 ns [29600000,30000000] ns 7
PNET36.Exit 33168537 ns [32493916,35493916] ns 3
BET40.Entry 33432596 ns [29133075,35233075] ns 3
BET40.PEntry 32165890 ns [28345947,33945947] ns 3
BET40.Exit 34055520 ns [33432596,37165890] ns 3
FET31.Exit 37729554 ns [36565890,37165890] ns 7
BET45.Entry 38097877 ns [34204573,40104573] ns 3
BET45.Exit 38600576 ns [38097877,40097877] ns 3
BET49.Entry 38878960 ns [34787424,40687424] ns 3
BET49.PEntry 20932500 ns [19400000,20100000] ns 7
BET49.Exit 39354809 ns [38878960,40932500] ns 3
PET20.Exit 41428915 ns [40332500,41032500] ns 7

Multirotor application – annotation adjusted con-
tracts.

Table 7 shows the time traces generated by the
translated flight control application running on
the Intel Atom E3866 processor validated against
the component-contract structure presented in Fig-
ure 19, adjusted as part of the timing enforcement
assessment.

Table 7: Time traces generated by the translated flight con-
trol application running on the Intel Atom E3866 processor
validated against (before translation) adjusted component-
contract structure (see Figure 19). The first column shows
the time trace. The second column shows the valid time
interval according to time traces and the corresponding con-
tract. The third column shows contract pass/fail informa-
tion.

Time Trace Contract limitation Pass
Fail

PET36.Entry 0 ns [0,0] ns 3
PET36.Exit 2124215 ns [2000000,2100000] ns 7
PET36.Entry 2541230 ns [2000000,2200000] ns 7
PET36.Exit 4868417 ns [4541230,4641230] ns 7
PET36.Entry 5146059 ns [4541230,4741230] ns 7
PET36.Exit 7643136 ns [7146059,7246059] ns 7
PET36.Entry 7935216 ns [7146059,7346059] ns 7
PET36.Exit 10450728 ns [9935216,10035216] ns 7
PET36.Entry 10743715 ns [9935216,10135216] ns 7
PET36.Exit 13303320 ns [12743715,12843715] ns 7
PET36.Entry 13596742 ns [12743715,12943715] ns 7
PET36.Exit 16099024 ns [15596742,15696742] ns 7
PET36.Entry 16501496 ns [15596742,15796742] ns 7
PET36.Exit 19017908 ns [18501496,18601496] ns 7

Continued on next page
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Time Trace Contract limitation Pass
Fail

PET36.Entry 19434240 ns [18501496,18701496] ns 7
PET36.Exit 21984387 ns [21434240,21534240] ns 7
PET36.Entry 22414182 ns [21434240,21634240] ns 7
PET36.Exit 24975024 ns [24414182,24514182] ns 7
PET36.Entry 25401653 ns [24414182,24614182] ns 7
PET36.Exit 27949025 ns [27401653,27501653] ns 7

The contracts presented in Figure 18, and Fig-
ure 19 had already been adjusted, however, they
do not consider any timing variation cause by the
overhead of the static translation process. More-
over, the code is now running on the new hardware
platform, so time variations caused by the under-
lying OS and hardware platform itself, might vary.
This caused many of the traces to fail the corre-
sponding contract (almost 50% of the traces for the
example application and every trace for the mul-
tirotor application). In order to cover the timing
deviations caused by the static translation and the
new hardware platform, contracts are adjusted as
it was done before translation.

Example application – translation adjusted con-
tracts.

Figure 22 shows the adjusted component-contract
structure for the translated example application.
Changes in the contracts with respect to (before
translation) adjusted component-contract structure
in Figure 18 are shown in bold. Up to time
step 1400 adjustments had to be done in the con-
tracts, then the example application runs for over
5000 time steps without failing any contract. Ta-
ble 8 shows the time traces generated by the an-
notated example application running on the In-
tel Atom E3866 processor validated against the
adjusted component-contract structure presented
in Figure 22. Changes in the time interval with
respect to the validation against (before transla-
tion) adjusted component-contract structure (see
Table 6) are shown in bold.
Table 8: Time traces generated by the translated exam-
ple application running on the Intel Atom E3866 proces-
sor validated against (after translation) adjusted component-
contract structure (see Figure 22). The first column shows
the time trace. The second column shows the valid time
interval according to time traces and the corresponding con-
tract, changes with respect to the validation with (before
translation) adjusted component-contract structure (see Ta-
ble 6) are shown in bold. The third column shows contract
pass/fail information.
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Time Trace Contract limitation Pass
Fail

PET20.Entry 0 ns [0,0] ns 3
FET21.Entry 860897 ns [0,900000] ns 3
BET22.Entry 1093058 ns [0,1100000] ns 3
BET22.Exit 1447619 ns [1093058,6093058] ns 3
BET26.Entry 1597033 ns [0,5000000] ns 3
BET26.PEntry 860897 ns [0,900000] ns 3
BET26.Exit 1966338 ns [1597033,10860897] ns 3
FET21.Exit 11138808 ns [10260897,11660897] ns 3
FET31.Entry 11445947 ns [10000000,11500000] ns 3
PNET32.Entry 11644891 ns [10000000,11700000] ns 3
PNET32.Exit 12063298 ns [11644891,14644891] ns 3
BET40.Entry 12233075 ns [10000000,13000000] ns 3
BET40.PEntry 11445947 ns [10000000,11500000] ns 3
BET40.Exit 12580840 ns [12233075,16445947] ns 3
FET31.Exit 17023455 ns [15845947,17345947] ns 3
BET45.Entry 17404573 ns [14500000,17500000] ns 3
BET45.Exit 17816493 ns [17404573,19404573] ns 3
BET49.Entry 17987424 ns [14700000,18000000] ns 3
BET49.PEntry 0 ns [0,0] ns 3
BET49.Exit 18307373 ns [17987424,20000000] ns 3
PET20.Exit 20486905 ns [19400000,21000000] ns 3
PET20.Entry 20932500 ns [19400000,21000000] ns 3
FET21.Entry 21241476 ns [20260897,22160897] ns 3
BET22.Entry 21532219 ns [17793058,26093058] ns 3
BET22.Exit 22164893 ns [21532219,26532219] ns 3
BET26.Entry 22428261 ns [16597033,26597033] ns 3
BET26.PEntry 21241476 ns [20260897,22160897] ns 3
BET26.Exit 23046048 ns [22428261,31241476] ns 3
FET21.Exit 31745743 ns [30641476,32041476] ns 3
FET31.Entry 32165890 ns [28345947,33945947] ns 3
PNET36.Entry 32493916 ns [29600000,32500000] ns 3
PNET36.Exit 33168537 ns [32493916,35493916] ns 3
BET40.Entry 33432596 ns [29133075,35233075] ns 3
BET40.PEntry 32165890 ns [28345947,33945947] ns 3
BET40.Exit 34055520 ns [33432596,37165890] ns 3
FET31.Exit 37729554 ns [36565890,38065890] ns 3
BET45.Entry 38097877 ns [34204573,40104573] ns 3
BET45.Exit 38600576 ns [38097877,40097877] ns 3
BET49.Entry 38878960 ns [34787424,40687424] ns 3
BET49.PEntry 20932500 ns [19400000,21400000] ns 3
BET49.Exit 39354809 ns [38878960,40932500] ns 3
PET20.Exit 41428915 ns [40332500,41932500] ns 3

Multirotor application – translation adjusted con-
tracts.

Figure 23 shows the adjusted component-contract
structure for the translated multirotor application.
Up to time step 1000 adjustments had to be done
in the contract to cover the previously mentioned
needs. The interval in the assumption is set to
[2000, 3600] ms, whereas the interval in the guaran-
tee is set to [2000, 3000] us. Then, the multirotor
application runs for over 3000 time steps without
any further failure. Table 9 shows the time traces
generated by the translated flight control applica-
tion running on the Intel Atom E3866 processor
validated against the adjusted component-contract
structure presented in Figure 23. Changes in the
time interval with respect to the validation against
(before translation) adjusted component-contract
structure (see Table 7) are shown in bold.

Table 9: Time traces generated by the translated flight con-
trol application running on the Intel Atom E3866 proces-
sor validated against (after translation) adjusted component-
contract structure (see Figure 23). The first column shows
the time trace. The second column shows the valid time
interval according to time traces and the corresponding con-
tract, changes with respect to the validation with (before
translation) component-contract structure (see Table 7) are
shown in bold. The third column shows contract pass/fail
information.

Time Trace Contract limitation Pass
Fail

PET36.Entry 0 ns [0,0] ns 3
PET36.Exit 2124215 ns [2000000,3000000] ns 3
PET36.Entry 2541230 ns [2000000,3600000] ns 3
PET36.Exit 4868417 ns [4541230,5541230] ns 3
PET36.Entry 5146059 ns [4541230,6141230] ns 3
PET36.Exit 7643136 ns [7146059,8146059] ns 3
PET36.Entry 7935216 ns [7146059,8746059] ns 3
PET36.Exit 10450728 ns [9935216,10935216] ns 3
PET36.Entry 10743715 ns [9935216,11535216] ns 3
PET36.Exit 13303320 ns [12743715,13743715] ns 3
PET36.Entry 13596742 ns [12743715,14343715] ns 3
PET36.Exit 16099024 ns [15596742,16596742] ns 3
PET36.Entry 16501496 ns [15596742,17196742] ns 3
PET36.Exit 19017908 ns [18501496,19501496] ns 3
PET36.Entry 19434240 ns [18501496,20101496] ns 3
PET36.Exit 21984387 ns [21434240,22434240] ns 3
PET36.Entry 22414182 ns [21434240,23034240] ns 3
PET36.Exit 24975024 ns [24414182,25414182] ns 3
PET36.Entry 25401653 ns [24414182,26014182] ns 3
PET36.Exit 27949025 ns [27401653,28401653] ns 3

Result analysis.

Result show that formal timing specifications ad-
justed as part of the timing enforcement assessment
needed to be re-adjusted to cover the timing devia-
tions generated due to translation overhead. After
the re-adjustment of formal timing specifications,
time traces generated at runtime by the translated
example and multirotor applications fit into the de-
fined timing contracts. However, the static transla-
tion process involves a considerable overhead (anal-
ysed through a feasibility study by Yarza et al.
(2020)) which might not be affordable depending
on the application to be ported. For each partic-
ular case, an expert should assess, considering the
incurred overhead, whether the RT legacy software
migration solution is acceptable. Future work con-
siders optimizing time control blocks to, at some
point, overcome the block management and trans-
lation overhead.

7.2.2. Functional test

The functional test compares the reference out-
put values for control variables with the output
value (for those control variables) when running the
systematically annotated and then translated ap-
plications (example – see Listing 1, and multirotor
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Figure 22: Adjusted component-contract structure for the translated example application. Each component has its correspond-
ing contract. Contracts describe the assumptions and guarantees observable at input/output ports (named in blue colour).
Contracts have been adjusted to cover possible jitter present on a real scenario, in this case adjustments are applied for the
translated example application running on the Intel Atom E3866 processor. Changes in the contracts with respect to (before
translation) adjusted component-contract structure in Figure 18 are shown in bold.

Figure 23: Adjusted component-contract structure for the
translated multirotor application. The only component
(PET36) has its corresponding contract. The contract de-
scribes the assumption and guarantee observable at En-
try/Exit ports (named in blue colour). The contract has
been adjusted to cover possible jitter present on a real sce-
nario, in this case adjustments are applied for the translated
multirotor application running on the Intel Atom E3866 pro-
cessor.

– see Listing 2) on top of the Intel Atom E3866
processor, using reference input data for state vari-
ables 5.

Example application.

Figure 24 shows the bit toggling sequence of the
output variable on both test scenarios. However,
due to scaling problems, the figure depicts just the
output variable value for the first 100 time steps.

Multirotor application.

Figure 25 shows the output values for each of the
multirotor control variables on both test scenarios.

Control variables are observed for a 3000 time step
interval (about 6 seconds simulation).

Result analysis.

Results show that the signal observed on every con-
trol variable is equivalent (in value) before and af-
ter the timing-aware migration process. However,
due to time control block management and static
translation overhead, a delay (with respect to the
legacy platform) is observable on every control vari-
able output signal. This delay in the response of the
controller might disturb the functional behaviour
of the control system, therefore, for each particular
case a further analysis (on a more realistic scenario)
would be necessary to determine whether the func-
tional behaviour is acceptable after the RT legacy
software migration process. Future work considers
providing support to port legacy platform I/O port
dependent code, which will provide means to per-
form a functional test on a more realistic scenario.

8. Conclusion

This research work, first, reasons about the need
for a portable legacy software migration solution
that preserves the timing as well as the functional
behaviour of the retargeted application. In the di-
rection to cover this gap, a RT legacy software mi-
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Figure 24: Functional test results for the translated example application running on the Intel Atom E3866 processor. For each
time step (X-axis) the corresponding output variable value (Y-axis) is shown, both, for the legacy example application (without
annotations) as well as for the translated example application. On both test scenarios (legacy and translated), the bit toggling
sequence is equal, although there is a delay on the translated application with respect to the legacy application due to time
control block management and static translation overhead.

(a) Front motor point (b) Rear motor point

(c) Right motor point (d) Left motor point

Figure 25: Functional test results for the translated multirotor application running on the Intel Atom E3866 processor. (a)
shows for each time step (in the X-axis) the corresponding value of motor front point variable (in the Y-axis), (b) shows for
each time step (in the X-axis) the corresponding value of motor rear point variable (in the Y-axis), (c) shows for each time
step (in the X-axis) the corresponding value of motor right point variable (in the Y-axis), and (d) shows for each time step (in
the X-axis) the corresponding value of motor left point variable (in the Y-axis). Every graph, (a), (b), (c), and (d), show the
results obtained for the legacy multirotor application (without annotations) as well as for the annotated and the translated
multirotor application. On both test scenarios (legacy and translated), the output value of control variables is equal, although
there is a delay on the translated application with respect to the legacy application due to time control block management and
static translation overhead. The average delay observed on the 2 ms control cycle over a 3000 time step simulation is 922 µs.
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gration solution is proposed, which is based on ex-
isting static binary translation solution enhanced
with a timing enforcement mechanism that at the
same time provides means for validating the en-
forced timing behaviour. The proposed solution
is then evaluated, through multiple legacy appli-
cations (example and multirotor). Legacy code is
ported from the ARM Cortex-A9 processor to the
Intel Atom E3866.

The timing-aware migration assessment con-
cludes that the defined temporal constructs provide
means to enforce a specific timing behaviour. The
enforces timing behaviour can then be validated
on the new hardware platform combining the use
of the time traces that temporal constructs gen-
erate at runtime, systematically generated formal
timing specifications, and MULTIC tool. Results
show that although timing specifications needed to
be relaxed such that they reflect time uncertain-
ties generated by time control block management,
the static translation process as well as the new
hardware platform itself, it is possible to achieve a
timing behaviour equivalent to that in the legacy
system.

Future work considers lifting I/O dependent code
and implementing an I/O virtualization mechanism
to provide the ported legacy application means to
interact with the external environment when run-
ning on the new hardware platform. Moreover, in
order to overcome block management overhead, a
characterization phase should be accomplished for
each particular migration case to adjust the tempo-
ral constructs accordingly.
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