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Abstract27

Minimizing the resource wastage reduces the energy cost of operating a data

center, but may also lead to a considerably high resource overcommitment

affecting the Quality of Service (QoS) of the running applications. The effec-

tive tradeoff between resource wastage and overcommitment is a challenging

task in virtualized Clouds and depends on the allocation of virtual machines

(VMs) to physical resources. We propose in this paper a multi-objective

method for dynamic VM placement, which exploits live migration mech-

anisms to simultaneously optimize the resource wastage, overcommitment

ratio and migration energy. Our optimization algorithm uses a novel evolu-

tionary meta-heuristic based on an island population model to approximate

the Pareto optimal set of VM placements with good accuracy and diver-

sity. Simulation results using traces collected from a real Google cluster

demonstrate that our method outperforms related approaches by reducing

the migration energy by up to 57% with a QoS increase below 6%.
Keywords: VM placement, multi-objective optimisation, resource28
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overcommitment, resource wastage, live migration, energy consumption,29

Pareto optimal set, genetic algorithm, data center simulation30

1. Introduction31

Virtualized data centers are the backbone of many Cloud providers like32

Amazon and Google that rent their physical Infrastructure-as-a-Service (IaaS)33

to their customers. In a virtualized data center, Virtual Machines (VMs)34

wrap customer applications, representing their execution environment hosted35

onto data center Physical Machines (PMs). The VM placement problem aims36

to find an allocation or mapping of a set of VMs onto a subset of available37

PMs that optimizes one or more objectives relevant to the IaaS provider.38

More specifically, if the aim is to minimize the size of this PM subset, we39

refer to this problem as the VM consolidation. This problem gathered atten-40

tion in the last decade thanks to its ability to minimize not only the resource41

wastage, but also the energy consumption and the overall electricity cost by42

turning unused PMs to a lower power state.43

1.1. Motivation 1: VM overcommitment44

Despite these benefits, data center operators take a cautious attitude45

towards consolidation. One approach allocates the VMs according to their46

resource requests (i.e. CPU, memory, disk) such that the cumulative demand47

is lower than the PMs’ resource capacity. However, this suffers from over-48

provisioning [9], as IaaS customers tend to overestimate their VM resource49

requests to ensure fulfillment of their application requirements at all times.50

This results in a low consolidated data center with underutilized PMs.51
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A solution to overprovisioning is to optimize the VM placement according52

to the VMs resource demands independently of their requests. One technique53

called resource overcommitment [10] allows placing (or consolidating) more54

VMs onto the same PM by sharing hardware resources exceeding its physical55

capacity. Unfortunately, overcommitment can have a detrimental impact on56

the performance of applications [6] by congesting limited PM resources with57

significant Quality of Service (QoS) violations and penalties.58

 0

 20

 40

 60

 80

 100

1 1.5 3 6 9 15

%

Overcommitment ratio

QoS violation
Resource wastage
Consolidation ratio

Figure 1: Impact of overcommitment on re-

source wastage and QoS.

To verify our motivation, we sim-59

ulated 100 VMs (using the homo-60

geneous experimental scenario de-61

scribed in Section 7.1) with appli-62

cation workloads generated by ran-63

domly sampling the Google cluster64

traces [35] using a Poisson distribu-65

tion. We studied the effects of the66

overcommittment ratio (i.e. the ra-67

tio between the requested and the68

available resources on each PM) to three important metrics: resource69

wastage, consolidation ratio (i.e. the ratio between the number of VMs and70

the allocated PMs) and QoS violation (i.e. the percentage of VMs that do71

not receive sufficient PM resources). Fig. 1 shows that the benefits of the72

overcommitment to the resource wastage decreases from 87% in case of no73

overcommittment, to 0% for the highest overcommitment ratio. Contrarily,74

the consolidation ratio increases from 5% to 50%. On the negative side,75

overcommitment comes with an increase in QoS violations which, although76
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negligible for a low overcommitment ratio (from 1 to 6), reach a serious 60%77

value for the highest overcommitment. It is therefore clear that the relation78

between the resource wastage and the overcommitment ratio is crucial for79

an energy-efficient resource management under QoS constraints, Moreover,80

understanding this relation is not immediate due to the conflicting nature of81

the two objectives leading to a wide spectrum of different possible tradeoffs.82

1.2. Motivation 2: live VM migration83

Dynamic real-world VM workloads require continuous on-the-fly modifi-84

cations of the VM placements, supported through VM migrations and en-85

abling different potential resource overcommitment and wastage tradeoffs.86

To minimize the impact on the application QoS, live migration transpar-87

ently moves a running VM between different PMs without disconnecting it88

from the client and exposing no (or minimum) interruptions.89

The cost of VM migration has two main dimensions [18]: the downtime90

(i.e. VM unavailability) and the additional power consumption on the source91

and target PMs during this process. To understand the impact of overcom-92

mitment on these parameters, we conducted an experiment that measures the93

VM energy consumption and its migration time on an overcommitted PM94

using the same VM workload as in Section 1.1 on the machines presented in95

Table 1. We further generated two VM-internal CPU and memory-intensive96

workloads that influence its live migration, as described in [19]:97

• CPULOAD uses OpenMP implementation of a matrix multiplication algo-98

rithm running on all cores allocated to the VM.99

• MEMLOAD continuously updates the VM memory pages using a high 95%100
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(a) Instantaneous CPULOAD power.
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(b) Instantaneous MEMLOAD power.
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(c) Migration time versus overcommitment.
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(d) Downtime versus overcommitment.

Figure 2: Impact of overcommittment on VM power consumption, migration time and

downtime for CPU and memory-intensive workloads.

dirtying rate (i.e. percentage of memory pages that become dirty in a101

given interval), considered as the most impacting factor on downtime [3].102

Fig. 2a and Fig. 2b show that the overcommitment ratio (especially above103

three) does not affect the power consumption of the source PM. The drop in104

power in the absence of overcommitment after around 100 s in Fig. 2a and105

120 s in Fig. 2b is due freeing the source PM resources. However, Fig. 2c106

shows that the overcommitment has an impact on the VM migration time107

and affects its energy consumption. For this reason, we separately consider108
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the VM migration energy from server energy consumption.109

Fig. 2d shows the CPULOAD downtime ranges between 300 ms to 600 ms,110

which is negligible according to [3]. The MEMLOAD downtime is up to 30 in111

the case of an extreme 95% dirtying rate. Since our experimental workloads112

exhibit a dirtying rate below 15% for all the tasks with a downtime below113

1 s, we define the VM migration cost in term of its energy consumption only.114

Finally according to [31], the energy overhead may be up to 2.5 kJ for115

each VM migration, accounting for 10% of the idle energy consumption of116

an average PM. Furthermore, the energy overhead of VM migration can be117

as high as 5.8% of total energy consumption of a data center [2]. Therefore,118

understanding the impact of migrations on the other metrics is important,119

since they influence other aspects of data centre operation.120

1.3. Problem statement121

To address these motivations, we propose a multi-objective method and122

algorithm for dynamic placement of VMs in response to their fluctuating123

resource demands. Our goal is to minimise the energy consumption in data124

centres faced with dynamic workloads by dynamically allocating VMs to125

the minimum number of PMs using a three-fold strategy: 1) reduce the126

number of PMs by increasing the overcommitment; 2) analyse the effects127

of the overcommitment and overly reduced number of PMs on the QoS;128

3) analyse the effects on live migration, ignored in related work.129

We model the VM placement as a multi-objective Vector Bin Pack-130

ing (VBP) [15] problem considering three conflicting objectives: resource131

wastage, overcommitment ratio, and migration cost. We introduce a novel132

island-based evolutionary meta-heuristic that dynamically provides a set of133
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tradeoff VMs placements that accommodate the workload demand. Contrary134

to single solution approaches, we demonstrate the advantage of approximat-135

ing the entire set of “optimal” tradeoff placements through simulation results136

on real-world traces obtained from a Google cluster. Such a multi-objective137

approach is an asset that reveals tradeoff placements from the search space138

not covered by single-objective approaches and impossible to see otherwise.139

1.4. Article structure140

The next section discusses the related work, followed by a multi-objective141

optimization background in Section 3. We introduce and formalize the VM142

placement problem in Section 4, implemented in practice within the archi-143

tecture of a dynamic Cloud computing environment for real-world scientific144

and industrial workloads, presented in Section 5. We present an island-based145

evolutionary meta-heuristic for solving the VM placement problem in Sec-146

tion 6. Section 7 evaluates our method compared to related approaches on147

real data center simulation traces. Section 8 concludes the paper.148

2. Related Work149

We classify the studies on dynamic VM placement in two categories:150

single and multi-objective approaches.151

2.1. Single-objective placement152

In contrast to our multi-objective approach, these works are limited to153

approximating a single optimized placement solution.154

First Fit Decreasing (FFD) is a fundamental algorithm used in the com-155

munity for benchmarking VM placement algorithms. FFD sorts the VMs156
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according to their CPU and memory size in descending order, and sequen-157

tially places them on the first PM with sufficient resources. MM MBFD [7]158

is a two phase algorithm that combines a minimisation of migration (MM)159

algorithm that selects the VMs to migrate based on a double-CPU threshold160

policy with a modified best-fit decreasing (MBFD) VM placement heuristic161

to keep the total CPU demand of the placed VMs between the two thresholds.162

Murtazaev et al. [25] proposed a method that reduces the number of163

active PMs by iteratively migrating the VMs from the least loaded to the164

more loaded ones. Verma et al. [34] introduced an algorithm that mini-165

mizes the number of migrations and the energy cost by first computing the166

placement that minimizes the power consumption, then calculating the mi-167

grations required to modify the current placement, and finally migrating the168

VMs with the minimum ratio between the estimated power consumption169

and the migration cost. Van et al. [33] implemented a method for power and170

performance-efficient provisioning of VMs and PMs by using a utility func-171

tion for the optimal tradeoff between energy and performance. Beloglazov172

et al. [7] proposed a method that initially determines the minimum number173

of migrating VMs for keeping the PMs’ utilization within a certain interval,174

followed by a modified FFD placement algorithm. Takahashi et al. [32] pre-175

sented a greedy heuristic to minimize the total power consumption and the176

performance degradation due to VM consolidation. Mi et al. [22] proposed177

a proactive VM placement reconfiguration method based on predicted appli-178

cation demand using a modified genetic algorithm that minimizes the overall179

PM power consumption and maximizes the utilization. Ferdaus et al. [14]180

implemented a colony optimization meta-heuristic for finding a dynamic VM181
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placement that balances the load among the the minimum number of PMs182

and minimizes the power consumption. All these works provided QoS guar-183

antees by constraining the PM utilization achievable by a VM placement.184

Other approaches look at the tradeoff between power consumption and185

performance degradation, but transform the problem into a single objective186

one by using a utility function or a weighted sum of the objectives. However,187

weighting and combining incompatible metrics in a single arithmetic function,188

despite being artificial and unrealistic, is an a-priori method with unclear189

impact on the solution. Li et al. [17] modeled the VM placement as a mixed190

integer linear programming problem that optimizes application performance,191

license cost and power consumption. Xu et al. [36] built a controller that192

places the VMs with optimized temperature, performance and power.193

2.2. Multi-objective placement194

Similar to our approach, several works focused on the simultaneous opti-195

mization of multiple objectives.196

Lama et al. [16] built an analytic queuing model simulated as a multi-197

objective problem that minimizes the response time and the number of PMs198

and VMs of an n-tier application using the NSGA-II algorithm [11] and a199

stress-strain decision making strategy. Contrary to [16], our approach does200

not focus on a particular workload type (i.e. three-tier applications), but201

considers heterogeneous workloads including the migration cost incurred by202

placement modifications (ignored in [16]).203

Sallam at al. [30] proposed a migration policy that selects a VM from a204

given set based on the migration cost, resources wastage, power consumption,205

thermal dissipation, and PM load. Our approach also accounts for migration206
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cost and resource wastage, however, our goal is to dynamically optimise the207

VM placements, while [30] focuses on selecting the “optimal” VM to migrate.208

To the best of our knowledge, our work is the first to exploit the con-209

flict between resource overcomittment and wastage represented as a tradeoff210

between energy consumption and performance metrics.211

3. Background212

3.1. Vector Bin Packing213

We theoretically model the VM placement as a Vector Bin Packing (VBP)214

problem, which maps a set of VMs with known resource demands onto a set of215

PMs with known resource capacities [24]. The demands of the VMs and the216

capacities of the PMs are v-dimensional vectors, whose components represent217

v resource types, such as CPU number, memory size, disk space, or network218

bandwidth. VBP’s goal is to place the VMs onto the minimum number of219

PMs, such that the cumulative demand of the VMs sharing the same PM is220

smaller than or equal to its capacity in each dimension.221

Fig. 3a gives a VM placement example across two resources: CPU and222

memory. The inner dotted line represents the resource capacity of a single223

PM, while the dimensions of the small rectangles indicate the two resource224

demand dimensions of six VMs. After placing the VMs in a vector fashion,225

their aggregated resource demand determines the wastage in each dimension.226

Fig. 3b shows an overcommitment example due to load fluctuations of the227

VMs allocated in Fig. 3a and requiring more physical resources than the228

total PM capacity. The virtualization technology copes with the overcom-229

mitment by multiplexing the PM resources shared among VMs, as shown230
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Figure 3: VBP allocation of six VMs onto one PM with 16 CPUs and 15 GB of memory.

by the red-shaded rectangles in Fig. 3c. Resource sharing increases with the231

overcommitment ratio and degrades the performance.232

Our method generalizes the original VBP by dealing with overcommit-233

ment and treating VM placement as a dynamic problem. In our model,234

VMs have a static size and a variable resource demand described by two235

v-dimensional vectors. PMs have an associated resource wastage, an over-236

commitment ratio and a VM migration cost. While the resource wastage237

and the overcommitment ratio depend on the demand and on the size of238

the placed VMs, the migration cost depends on the energy consumption re-239

quired to modify a placement. Our goal is to simultaneously optimize the240

PMs’ resources wastage, overcommitment ratio, and migration cost, which241

are conflicting objectives that require multi-objective optimization.242

3.2. Multi-objective optimization243

A multi-objective optimization problem consists of a vector of k objective244

functions
−−−→
f(−→x ) = (f1 (−→x ) , f2 (−→x ) , . . . , fk (−→x )). These objectives are usually245

in conflict with each other, meaning that optimizing one implies worsening at246
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least another one. Without loss of generality, we consider the minimization of247

all functions. The next section describes objectives considered in this work.248

The components of a solution vector (or simply solution)−→x = (x1, . . . , xn)249

are decision variables. The set of all possible solutions is called the search250

space S. In our case, each decision variable corresponds to a VM. The ith251

decision variable represents the identifier of the PM used for mapping the ith252

VM. Therefore, a solution represents a mapping of all the VMs placed onto253

the available PMs. The set of all possible mappings is the search space S.254

A solution −→x1 dominates another solution −→x2 (or mathematically −→x1 4 −→x2)255

if it is better in at least one objective and not worse in the rest: fi (−→x1) ≤256

fi (−→x2) , ∀i ∈ [1, n], and ∃j ∈ [1, n] such that fj (−→x1) < fj (−→x2).257

The solution of a multi-objective optimization problem is a set of non-258

dominated solutions representing a tradeoff among the objective functions.259

The set of tradeoff solutions non-dominated by any other solution in S is260

called Pareto optimal set, and the objective values of the solutions in the261

Pareto optimal set defines the Pareto frontier. A Pareto frontier usually262

consists of an infinite set of points whose computation is an NP-complete263

problem. The goal of a multi-objective optimization is to approximate the264

Pareto optimal set by maximizing two properties: (1) convergence by being265

as close as possible to the Pareto frontier, and (2) diversity by uniformly266

covering the range of tradeoff solutions in the Pareto frontier.267

3.3. NSGA-II268

Evolutionary algorithms are popular techniques to approximate the Pareto269

frontier of a multi-objective optimization problem. Among them, NSGA-II [11]270

is the most popular and well-known in the literature, presented in Algo-271
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rithm 1. NSGA-II works with a population T of N candidate solutions,272

initialized in line 1 and improved in convergence and diversity in an itera-273

tive process (lines 3 – 14). In each iteration, the algorithm generates a new274

set Q of solutions (line 9) by means of two operations: crossover (line 7)275

and mutation (line 8). These operations have their inspiration in the the-276

ory of species evolution, and try to exploit the content of T to seek higher277

quality solutions. The set R = T ∪ Q (line 11) generates the population T278

for the next iteration and uses the rankingAndCrowding function (line 12)279

to arranges the population in different fronts. The first front contains non-280

dominated solutions, the second front contains only solutions dominated by281

the first front, and so on. Each front sorts the solutions according to a density282

measurement metric called crowding distance [11] to ensure diversity. The283

selectBestIndividuals function finally selects the best N individuals from284

R (line 13) aiming to converge towards the Pareto frontier. The algorithm285

repeats these steps until reaching a termination condition (line 3).286

4. Model and Problem Statement287

We present the resource model and the objective functions of our method.288

4.1. Physical machines (PMs)289

We consider a data center composed of m PMs P = {p1, . . . , pm}. A290

resource capacity vector −−→CV (p) = (c1, . . . , cv) describes each PM p ∈ P ,291

where every dimension k ∈ [1, v] indicates the capacity of each PM phys-292

ical resource rk in the set R = {r1, . . . , rv}. In a typical Cloud scenario,293

R = {CPU ,memory, disk, network}, abstracted by the virtualization tech-294
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Algorithm 1: NSGA-II algorithm

1 T ← initializePopulation() ; // Initial population.

2 R← ∅ ; // Auxiliary population.

3 while terminationCondition() do

4 Q← ∅; // Offspring population.

5 for i← 1topopulationSize
2 do

6 parents← selection(T)

7 offspring← crossover(parents)

8 offspring← mutation(offspring)

9 Q← offspring

10 end

11 R← T ∪Q

12 rankingAndCrowding(R) ; // Population sorting.

13 T ← selectBestIndividuals(R)

14 end

Result: Non-dominated solutions from T .

nology [5]. Our study focuses on CPU and memory, as the most overcom-295

mited resources in data centers and strongly affect the VM migration [19].296

4.2. Virtual machines (VMs)297

We identify two sets of VMs that participate in the placement process.298

The incoming VMs are new VMs that scale up applications or create new299

application deployments. The hosted VMs are the currently running ones.300

All together, they define a set VM = {vm1, . . . , vmn} placed on an optimized301

subset of PMs Pused ⊆ P . Each vm ∈ VM has two v-dimensional vectors.302
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Resource size vector. −→SV (vm) = (s1, . . . , sv) indicates the amount sk of the303

resource rk requested by the VM vm, with k ∈ [1, v];304

Resource demand vector. −−→DV (vm, t) = (d1(t), . . . , dv(t)) defines the vm’s305

workload demand dk(t) for each resource rk at time instance t, with k ∈ [1, v].306

4.3. VM placement objectives307

We defined in Section 3.2 a placement of n VMs as −→x = (x1, . . . , xn),308

where each decision variable xi maps the ith VM vmi ∈ VM to a PM p ∈ P .309

Given −→x , we further define the set of VMs allocated on the same PM p ∈ P310

as follows: δ (p,−→x ) = {vmi ∈ VM | xi == p}.311

To facilitate the VBP problem formulation, we normalize (to values in the312

space [0, 1]v) the vector −−→CV (p) with respect to the resource capacity of the313

PM p, and the vectors −→SV (vm) and −−→DV (vm, t) with respect to the capacity314

of the PM hosting the VM vm. We define in the following the three objective315

functions targeted by our optimization process.316

4.3.1. Objective 1: resource wastage317

The first objective function f1 quantifies the resource wastage over each318

v resource dimension entailed by a placement −→x . We define the cumulative319

demand vector for a machine p at instant of time t as:320

−−−→
CDV (p, t,−→x ) =

∑
vm∈δ(p,−→x )

−−→
DV (vm, t).

This vector aggregates the resource demands of all VMs placed on a PM p at321

time instance t. If the components of −−−→CDV (p, t,−→x ) are larger than the ones322

in the resource capacity vector −−→CV (p) at any time instance t, the cumulative323

demand exceeds the PM capacity and the VMs contend for PM resources.324
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We define the resource wastage vector for a machine p at instance t as:325

−−→
WV (p, t,−→x ) = −−→CV (p)	−−−→CDV (p, t,−→x ),

where the operation 	 has the following definition:326

−→
A 	

−→
B = (max (A1 −B1, 0) , . . . ,max (Av −Bv, 0)) .

This vector indicates the amount of unused resources in each dimension.327

When−−−→CDV (p, t,−→x ) is larger than−−→CV (p) in one dimension, we set−−→WV (p, t,−→x )328

to 0 in that dimension, as the resource has 100% utilisation and no wastage.329

We define the total wastage vector at time instance t as the sum of the330

resource wastage vectors of across all used PMs:331

−−−→
TWV (−→x , t) =

∑
p∈Pused

−−→
WV (p, t).

We finally define the resource wastage f1 as the magnitude of the total332

wastage vector:333

f1 (−→x ) =
∣∣∣∣∣∣−−−→TWV (−→x , t)

∣∣∣∣∣∣ .
4.3.2. Objective 2: overcommitment ratio334

The second objective function f2 measures the overcommitment ratio, as335

the percentage of PM resources requested by VMs in excess to their capacity.336

Given a placement −→x , the overcommitment ratio f2 adds all the normalized337

resources size vectors −→SV (vm) = (s1, . . . , sv) of all the VMs divided by the338

number of PMs in use:339

f2 (−→x ) =
∑
p∈Pused

∑
vm∈δ(p,−→x )

∑v
i=1 si

|Pused |
,

where Pused = {p ∈ P | δ(p,−→x ) 6= ∅}.340
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4.3.3. Objective 3: migration cost341

The third objective f3 estimates the migration cost triggered by a place-342

ment
−→
x′ . Following the experimental motivation from Section 1.2, we calcu-343

late the VM migration cost as its energy consumption considering the page344

dirtying rate and the load of the source psrc and target ptrg PMs [18, 19]:345

P (vm, psrc, ptrg, t) = P (vm, psrc, t) + P (vm, ptrg, t) .

Therefore, the energy consumption of migrating a VM vm on a PM p is:346

E(vm, p) =
∫ tstop

tstart
P (vm, p, t) dt,

where tstop − tstart is the duration of the migration, as defined in [18]. Given347

a current placement of n VMs −→x = (x1, . . . , xn), the cost of migrating them348

to a new placement −→x ′ = (x′1, . . . , x′n) is:349

f3 (−→x ) =
∑

i∈[1,n]∧
xi 6=x′

i

E (vmi, xi) + E (vmi, x
′
i) .

5. Dynamic VM Placement in Cloud Data Centers350

In this section, we first describe the overall software architecture hosting351

our dynamic VM placement method, implemented in practice as part of the352

ASKALON Cloud computing environment [13]. Afterwards, we give illustra-353

tive examples of typical VM workloads under its operation that benefit from354

our approach. Finally, we describe the dynamic VM placement algorithm.355

5.1. ASKALON Cloud Computing Environment for Real-World Scientific356

and Industrial Workloads357

We carry out this research as part of the ASKALON [13] application358

development and computing environment for scientific and industrial appli-359
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cations on distributed high-performance Cloud infrastructures. ASKALON360

supports the scientists and engineers in designing applications as independent361

tasks or workflows through a number of services that transparently execute362

them as VMs onto the underlying heterogeneous PMs, as follows:363

1. Execution Engine is responsible for processing the incoming tasks and364

prepares them for scheduling, deployment and execution;365

2. Monitoring service observes the infrastructure workload and provides366

useful utilization metrics to the other services;367

3. Multi-objective optimisation applies techniques like the Island NSGA-II368

proposed in this paper (see Section 6) and identifies the “best” VM to369

PM mappings based on the user objectives (see Section 4.3);370

4. Decision making is a manual or automatic procedure that selects the371

preferred mapping from the set of Pareto optimal mappings;372

5. Dynamic VM placement uses a simple iterative algorithm to deploy the373

tasks wrapped in optimised VMs onto the PMs selected by the decision374

making service (see Section 5.3);375

6. Resource management optionally allocates or releases resources to min-376

imize the number of active PMs.377

We successfully applied ASKALON over the the last two decades together378

with various domain scientists for running computational intensive workloads379

on a number of applications, including computational chemistry, meteorol-380

ogy, astrophysics, graphics rendering, and online games.381
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Figure 4: ASKALON Cloud computing architecture.

5.2. Illustrative Target Workload Examples382

We target elastic predictable workloads running on data centers, such383

as periodic workloads. Periodic workloads are common in real-world, for384

example in business applications performing (monthly, yearly) auditing or385

balance computations, in transportation systems experiencing typical rush386

hours and idle times (during night), and in massively multiplayer online game387

(MMOG) servers with high player activity during afternoon and low numbers388

of connected player after midnight up (to early morning) [26].389

Our design follows a successful preliminary work on dynamic resource pro-390

visioning and VM placement for MMOGs, which achieved a 250% improve-391

ment in resource provisioning for RuneScape [26]. To guarantee a seamless392

interaction to all players at all times, we triggered in this work a simple393

dynamic VM placement algorithm (based on resource matchmaking) with394

a high frequency of two minutes using a low overhead live migration func-395

tionality with a low impact on the QoS below 3%. In such scenarios, the396

infrastructure operators typically perform dynamic resource management at397

regular intervals (e.g. hourly) to optimize their utilization, depending on398
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Algorithm 2: Dynamic VM placement algorithm.

Input : P = {p1, . . . , pm}; // Set of PMs

Input : VM0 = {vm1, . . . , vmn}; // Initial set of VMs

Input : −→x0; // Initial placement

1 t← 0

2 −→x ← −→x0

3 while t ≤ tend do

4 VMt+1 ← VMt + VMnew; // New VM set

5 S ← Island-NSGAII(P, VM,−→x ); // Pareto optimal set

6 −→x ← decisionMaking(S); // Preferred solution

7 t← t+ 1; // Next time instance

8 end

historical variable resource use at specific times of the day, week, month399

or year. Within a certain provisioning interval, the operators perform occa-400

sional adaptive VM placements depending on the dynamic CPU and memory401

load exhibited by individual VMs. The appropriate VM placement interval402

is workload dependent and can range from minutes to hours, days or longer.403

5.3. Dynamic VM Placement Algorithm404

Algorithm 2 describes our dynamic VM placement method with three405

input parameters: 1) the set P of PMs in the data center described by406

their capacity vector −−→CV , 2) the initial set of VMs VM described by their407

resource size −→SV and demand After approximating the Pareto frontier, a408

decisionMaking function selects in line 6 a preferred tradeoff VM placement.409

This procedure can be either manual or automatic based on environment-410
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specific rules or constraints defined by the resource provider, such as min-411

imizing the wastage without QoS violations or keeping VM migration cost412

bellow a server energy fraction. −−→DV vectors, and 3) an initial placement −→x0413

representing the initial state of the data center. The algorithm iterates over414

a series of timestamps to periodically optimize the VM placements according415

to the time-varying VM resource demands (lines 3–8). At each timestamp, it416

merges the set of incoming VMs VMnew with the already hosted ones VMt417

into a new set VMt+1 (line 4). Afterwards, the main IslandNSGA-II func-418

tion (line 5) implemented as an evolutionary multi-objective optimization419

heuristic periodically computes an approximation to the Pareto optimal set420

of possible VM placements onto the available PMs. This approximation con-421

tains “optimal” tradeoffs among the three objectives described in Section 4.3.422

6. Island NSGA-II Algorithm423

We research in this section an evolutionary algorithm that improves the424

convergence and diversity of NSGA-II [11] presented in Section 3.3 to deter-425

mine the Pareto optimal set of tradeoff placements, modelled as a general-426

ization of the NP-complete VBP problem [15] (see Section 3.1). Every VM427

placement is a vector −→x = (x1, . . . , xn), as defined in Section 4. NSGA-II428

works with a population T of candidate VM placements, randomly initialised429

by selecting a random PM p ∈ P for each decision variable xi of each place-430

ment −→x ∈ T . We employ a single-point crossover operator that selects two431

placements −→x1 and −→x2 from the population T , and generates a new placement432

−→x3 by combining the first half of −→x1 with the second half of −→x2. The mutation433

operator takes the new placement created by crossover, randomly selects a434
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VM, and changes its placement to a random PM.435

6.1. Pareto analysis436

The generated Pareto frontier has three dimensions corresponding to the437

three objective functions. To facilitate the analysis, we use two-dimensional438

representations of the Pareto frontiers mapping the resource wastage (f1) and439

the overcommitment ratio (f2) on one unit-less y-axis and the VM migration440

energy (in J) on the x-axis. For example, Fig. 5 represents the overcom-441

mitment ratio (blue cross) and resource wastage (red circle) as comparable442

Pareto frontiers. A placement −→x representing a tradeoff between a resource443

wastage f1 (−→x ), an overcommitment ratio f2 (−→x ) and a migration energy444

f3 (−→x ) is a (blue) cross at coordinates (f3 (−→x ) , f1 (−→x )) and a red circle at445

coordinates (f3 (−→x ) , f2 (−→x )). We can therefore conclude that the Pareto446

frontier in Fig. 5b provides a lower resource wastage than the one in Fig. 5a.447

In addition, a horizontal (green) line represents the solution computed by448

the FFD [25] introduced in Section 2.449

Fig. 5a displays the outcome of the NSGA-II algorithm for the homo-450

geneous scenario described in Section 7.1 at the first time instance. We451

compute the initial VM placement −→x0 using the FFD baseline method (see452

Section 2.1), which leads to a high resource wastage. Moreover, Fig. 5a453

shows that NSGA-II produces solutions that do not improve much the re-454

source wastage, even for placements involving a lot of migrations (indicated455

by high energy consumption towards the right part of the x-axis.)456

22



2e+07 2.1e+07 2.2e+07 2.3e+07
0
2
4
6
8

10
12
14
16
18
20
22
24
26

Migration cost(f3) (J)
 

f1
, f

2 FFD

Overcommitment ratio (f2)
Resource wastage (f1)

(a) Random.

2e+07 2.1e+07 2.2e+07 2.3e+07
0
2
4
6
8

10
12
14
16
18
20
22
24
26

Migration cost(f3) (J)
 

f1
, f

2 FFD

Overcommitment ratio (f2)
Resource wastage (f1)

(b) Stochastic.

0 2e+06 6e+06 1e+07 1.4e+07
0
2
4
6
8

10
12
14
16
18
20
22
24
26

Migration cost(f3) (J)
 

f1
, f

2 FFD

Overcommitment ratio (f2)
Resource wastage (f1)

(c) Biased stochastic.

0 8e+06 1.6e+07 2.4e+07
0
2
4
6
8

10
12
14
16
18
20
22
24
26

Migration cost(f3) (J)
 

f1
, f

2 FFD

Overcommitment ratio (f2)
Resource wastage (f1)

(d) Island.

Figure 5: Pareto optimal sets for different generation methods of the initial population.

6.2. NSGA-II with stochastic initial population457

To lower the resource wastage, we aim to improve the results of NSGA-II458

by initializing the population T with placements with minimum resource459

wastage that map all VMs onto one single PM from the set P . The idea is to460

start from optimal placements respect to the first objective f1 and explore the461

solution space for finding better solutions with respect to resource overcom-462

mitment f2 and migration cost f3. For generating the initial population, we463

first calculated the rate ηp = F (|δ(p,−→x0)|, ε) of expected placements on each464

PM p ∈ P , where ηp, ε ∈ (0, 1], |δ(p,−→x0)| is the number of VMs currently465
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placed on p, and ∑
p∈P ηp = 1. The parameter ε guarantees proportional466

placements on a PM p, which are not present in the current placement (i.e.,467

|δ(p,−→x0)| = 0). Afterwards, we simulated a roulette wheel with m = |P | slots468

of size proportional to ηp,∀p ∈ P , spun the wheel |T | times, and created each469

time a VM placement onto the winning PM p.470

The Pareto frontier in Fig. 5b improves on the original NSGA-II algo-471

rithm with several low resource wastage placements coming at higher over-472

commitment and migration costs (crowded towards the right of the x-axis.)473

6.3. NSGA-II with biased stochastic initial population474

To lower the migration costs, we insert the current placement in T , which475

introduces a bias towards the region of the Pareto optimal set with a low476

migration cost. Fig. 5c shows that, although the algorithm provides solutions477

similar to the current placement (i.e. low migration cost), they are far from478

the stochastic approach in resource wastage (or overcommitment).479

6.4. Island NSGA-II480

To increase the diversity of the population and converge to wider vari-481

ety of better solutions, we employed the island model, which conceptually482

consists of several populations (the islands) evolving independently of each483

other, potentially using different algorithms and occasionally exchanging in-484

dividuals. Algorithm 5 considers two islands corresponding to the stochastic485

and biased stochastic generation of the initial population, initialised in lines 6486

and 7. At every iteration (lines 5 – 14), we gather the populations of each487

island, merge them (line 8), extract the best individuals according to ranking488

and crowding metrics [11] (line 9), and update the current population of each489
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Algorithm 3: Island NSGA-II algorithm.

Input : P = {p1, . . . , pm}; // PM set

Input : VM = {vm1, . . . , vmn}; // Initial VM set

Input : −→x ; // Current placement

1 T1← ∅ ; // First island

2 T2← ∅ ; // Second island

3 i← 0

4 while i ≤ imax; // Iterate for imax generations

5 do

6 T1← stochasticGeneration(−→x , P, V M, T1)

7 T2← biasedGeneration(−→x , P, V M, T,)

8 Q← T1 ∪ T2

9 rankingAndCrowding(Q)

10 T ← selectBestIndividuals(Q)

11 T1← T

12 T2← T

13 i← i+ 1

14 end

island accordingly. This method forces individual islands to further explore490

solutions on the entire Pareto frontier and avoids focus on local areas only.491

Fig. 5d shows that the island algorithm finds better tradeoff placements,492

ranging from few migrations and similar resource wastage to many migrations493

and substantially different wastage (or overcommitment).494
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6.5. Complexity analysis495

MM MBDF, MM MBDF 2 and FFD have an O(n · m) complexity [7],496

where m is the number of PMs and n is the number of VMs. The Island497

NSGA-II algorithms consist of two phases. The first phase uses FFD to498

compute an initial solution with O(m · n) complexity. The second phase is a499

classical NSGA-II algorithm with a complexity of O (o · p2) [11], where o is500

the number of objectives and p is the population size. Since our problem has501

three objectives (m = 3), this results in an overall complexity of O(m·n+p2).502

Related work [12] demonstrated that the population size does not need to503

scale in the same magnitude as the decision variable vector (i.e. p � n)504

leaving our Island NSGA-II algorithm with quadratic complexity of O(m·n).505

7. Experimental Evaluation506

We first evaluate our method as a decision making tool in Section 7.3.507

Secondly, we compare it with other VM placement solutions in Section 7.4.508

7.1. Experimental setup509

We conducted the experiments using the GroudSim [28] discrete event-510

based simulator for Cloud environments, extended to consider CPU and511

memory overcommitment through mechanisms such as memory reclamation512

and CPU-proportional fair scheduling [5, 27].513

We simulated a data center with 200 PMs in two configurations displayed514

in Table 1: (1) homogeneous with PMs of type M2 only, and (2) heterogeneous515

four PM types (M1, M2, M3 and M4) of 50 PMs each. We set the initial516

number of VMs to 500 and computed the initial VM placement −→x0 using the517
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Table 1: Experimental data center.

PM type Virtual CPUs RAM Power [idle] Power [100%]

M1 32 (16×Opteron 8356) 32 GB 501 W 840 W

M2 40 (10×Xeon E5-2690v2 128 GB 164.2 W 382 W

M3 32 (8×Xeon E5-2660 32 GB 90 W 310 W

M4 32 (8×Xeon E5-2660 32 GB 105 W 340 W

basic FFD algorithm (see Section 2.1). Afterwards, we added and removed a518

random number of VMs at different time instances to simulate a real Cloud519

environment where users deploy and stop VMs in an unpredictable manner,520

as researched in [8].521

We simulated one full day of data center operation in each experiment.522

We set the interval between two periodic Pareto frontier computations to523

30 min, as Google cluster traces exhibit a long-term resource demand vari-524

ability [29] and a stable task resource demand within an hourly time period.525

We selected the size and the workload of each VM using the Google cluster526

traces [35] containing the resource use of 25,462,157 tasks over a period of 29527

days. Every task run on a separate VM and requested a maximum percentage528

of the PM resources. After deploying a simulated VM, we randomly selected529

a task and determined its VM size and workload demand by the maximum530

requested resources and by its resource use. The number of VMs migrated at531

each time instance depends on the amount of CPU load [21]. Our workload532

is typical to Web applications, whose load ranges from 10.7 − 87.6% with533

62.8% median [1] following a diurnal pattern (i.e. the load reaches its peak534

during daytime hours), as shown in Figure 4.535
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We collected the VM resource demand at a five second sampling rate.536

Upon each VM placement, we determined the resource demand vector −−→DV537

by averaging the collected resource demand over the considered period using538

an exponential moving average, which makes the computation of the resource539

wastage vector −−→WV robust to workload demand oscillations.540

The simulation aims to evaluate our dynamic VM placement algorithm541

using a large number of parameters and situations that are not easily repro-542

ducible in real life. Considering that the Google traces account for 29 days543

real execution, performing the same Pareto analysis using real experimenta-544

tion requires several years of execution. Apart from the workload injection,545

our algorithm uses precise resource information with no stochastic variables546

involved, indicating that the simulation matches the real execution.547

7.2. Evaluation metrics548

We use five metrics in our experimental evaluation:549

• Total energy consumption accounts for the CPU power consumption Pp550

consumed by all PMs p ∈ Pused , considering CPU as the most energy551

consuming resource according to [20], proportional to its utilization [23]:552

E =
∑

p∈Pused

∫ ts

0
Pp(t) · dt,

where: Pp(t) =
(
Pmax
p − P idle

p

)
+Up(t)·P idle

p , ts is the simulation time, Pmax
p553

and P idle
p are the power consumptions of the PM p at maximum and idle554

utilization levels (see Table 1), and Up(t) is p’s CPU utilization at instance555

t (i.e. complement of CPU component of wastage vector −−→WV (p, t));556
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• QoS violations is the percentage of VMs that receive less resources than557

their current demand relative to the entire simulation time;558

• Average number of active PMs during the complete simulation;559

• Energy consumption of VM migration is the energy consumed due to live560

migrations (i.e. objective f3 in Section 4.3). as a separate objective of our561

study motivated in Section 1.2;562

• Average overcommitment ratio is the average amount of resources allocated563

in excess to the overall PM capacities (i.e. objective f2 in Section 4.3).564

7.3. Dynamic VM placement565

We theoretically evaluated the adaptation of the dynamic VM placement566

method by considering a decision making procedure triggered at the second,567

ninth, and fourteenth hour of simulation, labeled as Choice I, II, and III.568

Fig. 6 displays the Pareto frontiers obtained before and after each choice569

using a two-dimensional graphical representation explained in Section 3.3.570

Choice I (Fig. 6b) taken after the first hour of simulation incurs a higher571

cost of migration leading to a low resource wastage. This placement results572

in a reduction of the power consumption by up to 80% by turning 92 PMs to573

a low power state (Fig. 7a). The consolidation of the VMs on the remaining574

32 active PMs brings a 9% increase in QoS violations (Fig. 7c), which may575

result in a high penalty for the Cloud provider under strict QoS requirements576

As a consequence, the decision maker has the option to select a more energy577

costly placement offering a better QoS.578

Choice II (Fig. 6c) taken after the fourth hour of simulation incurs a579

higher resources wastage and a lower overcommitment than the previous580
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Figure 6: Pareto frontier generated by different VM tradeoff placements.

placement. Fig. 7c shows that the lower overcommitment ratio reduces the581

QoS violations to 1.2%, however, the utilization drops to 20% due to fewer582

consolidated VMs onto the same PM (Fig. 7b).583

Choice III (Fig. 6d) taken after the ninth hour of simulation further584

increases the resources wastage. All 200 PMs present in the data center585

become active (Fig. 7a) and the power consumption increases by 130%. Fig.586

7c shows the benefit on QoS of this rather expensive choice.587

Following our experiments, we observe that for an overall resource load588

below 80%, at most 10% of maximum number of VMs are migrated, with589

peaks of 40% when system is fully loaded, as typical in other setups which590
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Figure 7: VM provisioning metrics after each tradeoff placement from Fig. 6.

exhibit similar load patterns [21]. In most cases, however, number of VM591

migrations is between 3− 10% of the maximum number of VMs, which has592

a limited impact on performance (i.e. QoS violations).593

7.4. Island NSGA-II594

We compare in this section the Island NSGA-II algorithm against two595

state-of-the-art VM placement algorithms presented in Section 2.1:596

• FFD as a baseline comparison method used by nearly all related works in597

evaluating their VM consolidation algorithms. We employ FFD by placing598

VMs according to their resource demand rather than request.599

• MM MBFD as one of the most cited and most recent dynamic placement600

algorithms in the literature that considers a trade-off between QoS and601

energy consumption metrics, similar to us;602

• MM MBDF 2 as our own extension to MM MBFD that includes memory603

utilization for a fair comparison, not considered in the original version [7].604

We experimented with different MM MBDF and MM MBDF 2 upper and605

lower thresholds with a 30% difference.606
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Figure 8: Simulation results for homogeneous data center.

As these algorithms generate a single placement instead of a Pareto fron-607

tier, we cannot consider multi-objective metrics such as the hypervolume [4]608

in their comparison. For a fair comparison of a single tradeoff placement,609

we select the solution on the Pareto frontier closest to MM MBDF 2 that,610

similar to us, considers both memory and CPU utilization in its optimization.611

Among the most recent related works (see Section 2), we do not consider612

the ACO-based approach in [14] because it focuses only on reducing power613

consumption, rather than on finding trade-off solutions. Similarly, we do not614

compare our method with [30], as it optimizes the offline VM placement.615
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7.4.1. Homogeneous data center (200 PMs of type M2)616

MM MBDF reduced the total energy consumption by 21% in average617

compared to Island NSGA-II (see Fig. 8a) by exclusively placing VMs accord-618

ing to their CPU demand and overcommiting the memory, which lowering the619

number of active PMs by 30% (see Fig. 8b). Fig. 8c shows that MM MBDF620

achieved an overcommitment ratio 48% higher than MM MBDF 2 in aver-621

age, and 45% higher than Island NSGA-II. The side effect is an increase622

in QoS violations, as displayed in Fig. 8d. MM MBDF 2 reduced the QoS623

violations by 20% in average compared to MM MBDF by jointly consider-624

ing both CPU and memory demands. Island NSGA-II performed close to625

MM MBDF 2 with respect energy consumption (see Fig. 8a), average active626

PMs (see Fig. 8b), and overcommitment ratio (see Fig. 8c). With respect to627

QoS, Fig. 8d shows that Island NSGA-II exhibited the same level of violations628

as MM MBDF 2 in low-consolidated scenarios, and deviated by no more than629

6% in high-consolidated ones. In addition, it reduced the migration cost by630

70% compared to MM MBDF 2, by 40.6% compared to MM MBDF, and631

by 64% compared to FFD (see Fig. 8e). Finally, FFD produced energy-632

inefficient placements consuming 110 kWh regardless of the lower and upper633

thresholds, since it allocated VMs according to their static resource requests634

that suffer from overprovisioning.635

We conclude that MM MBDF reduces the energy consumption while in-636

curring higher QoS violations than its memory-aware version. On the other637

hand, Island NSGA-II computes VM placements close in performance to638

MM MBDF 2, while decreasing the migration energy by up to 70%.639
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(b) Number of active PMs.
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(c) Overcommitment ratio.
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(d) QoS violations.
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(e) VM migration.

Figure 9: Simulation results for heterogeneous data center.

7.4.2. Heterogeneous data center (50 PMs of each type M1 – M4)640

In the heterogeneous data center Island NSGA-II decreased the energy641

consumption by 41% compared to MM MBDF 2 and by 63% compared to642

FFD (see Fig. 9a) by reducing the number of active PMs (see Fig. 9b), while643

keeping the QoS violations below 6% (see Fig. 9d). Fig. 9b shows that Island644

NSGA-II was able to use up to 50% less PMs than MM MBDF 2, and up645

to 75% less than FFD (Fig. 9b). Interestingly, Island NSGA-II achieved646

an energy consumption close to MM MBDF by overcommitting 71% less647

resources in average (see Fig. 9c) and bringing 40% less QoS violations (see648

Fig. 9d). Finally, Island NSGA-II significantly reduced the migration energy649

by 76% compared to MM MBDF 2, by 38% compared to MM MBDF, and650

by 62% compared to FFD, similar to the homogeneous experiment.651
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8. Conclusions and Future Work652

The effective tradeoff between resource wastage and overcommitment is653

a challenging task, and essential for reducing the energy cost of operating a654

data center while guaranteeing the QoS. A Cloud data center approaches this655

challenge by placing VMs to the available PMs. This paper addresses this656

complex research problem by bringing the following scientific contributions:657

1) a multi-objective formulation of the dynamic VM placement problem that658

uses resource wastage, overcommitment ratio, and migration cost to represent659

the energy and QoS tradeoffs; 2) an island-based evolutionary meta-heuristic660

to approximate the set of Pareto tradeoff VM placements; 3) a dynamic VM661

placement algorithm which supports decision making operators in optimizing662

VM placements according to energy and QoS constraints.663

We demonstrated using real traces from a Google data center cluster that664

single solution VM placement approaches, although very appealing to formu-665

late, understand and apply, are not effective compared to our multi-objective666

approach that approximates the Pareto optimal set that reveals uncovered667

regions of resource wastage, overcomittment, and live migration tradeoffs.668

Our algorithm is linear in complexity with the number of VMs and PMs669

and does not necessarily require human intervention for selecting prefered670

VM; placement tradeoffs from the Pareto frontier. A basic decision making671

with constant complexity can simply consider “energy budgets” or QoS con-672

straints projected onto the Pareto optimal set of tradeoff placements. More-673

over, multi-objective optimization literature showed that approximating the674

complete set of tradeoff solutions is in many cases cheaper than computing675

a single solution due to different navigaton of the search space. The Island676
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NSGA-II heuristic demonstrates performance close to other approaches and677

exhibits less than 6% more QoS violations, while significantly reducing the678

migration energy consumption by 55% in a homogeneous data center, and679

by 57% in a heterogeneous data center.680

In future work, we intend to extend the dimensions of our problem by681

taking into account network and disk resources. We also plan to research au-682

tomated decision making strategies to automate the selection of the “best”683

Pareto solution during the dynamic VM placement process. Another interest-684

ing work is to understand the interplay between the placement optimization685

interval and the data center overall dynamics, such as migration time and686

PM transition latency to a different (i.e. normal, low) power state.687
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