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ABSTRACT
To enable automated software testing, the ability to automatically
navigate to a state of interest and to explore all, or at least sufficient
number of, instances of such a state is fundamental. When test-
ing a computer game the problem has an extra dimension, namely
the virtual world where the game is played on. This world often
plays a dominant role in constraining which logical states are reach-
able, and how to reach them. So, any automated testing algorithm
for computer games will inevitably need a layer that deals with
navigation on a virtual world. Unlike e.g. navigating through the
GUI of a typical web-based application, navigating over a virtual
world is much more challenging. This paper discusses how con-
cepts from geometry and graph-based path finding can be applied
in the context of game testing to solve the problem of automated
navigation and exploration. As a proof of concept, the paper also
briefly discusses the implementation of the proposed approach.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Interactive games.

KEYWORDS
automated game testing, automated play testing, agent-based test-
ing
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1 INTRODUCTION
The computer games industry has been around for quite a long
time, 50 years, since the first game console was brought to the
market in early 70s. The industry has become huge, with estimated
revenue of over 120 billions USD in 2019 (to grow to 200 billions in
2023) [13]. As it is now, computer games have simply become an
inseparable part of our contemporary culture.

Quite paradoxically though, the technology supporting its qual-
ity assurance lags quite far behind that of other types of software
industries, such as services, web-based applications, or even mobile
applications. The common practice to test a computer game is still
by ’play-testing’ it, where human users are deployed to play the
game to run a bunch of test scenarios and subsequently report their
finding (e.g. if they notice visual, functional, or performance issues).
The process is mostly manual and therefore expensive. Technol-
ogy for automated testing, except at the very rudimentary level, is
practically absent. Perhaps it is because the research community, or
even the industry itself, do not really consider computer games to
be business critical, and hence have less drive to invest in automated
testing. Regardless the reason, the effect is the same: the high cost
of play testing, and its slow process (we cannot expect to get feed-
back in less than an hour), slow down the development process and
hamper companies’ ability to quickly market new games. Especially
for small companies and startups this is a major disadvantage.

To automate play testing one can think of applying well known
automated testing techniques such as Model-based Testing (MBT)
[20] or Search-based Testing (SBT) [10]. However, directly trying to
apply them to computer games is likely to be ineffective due to the
very fine grained level of interactivity of computer games.When the
player controls his/her in-game character by moving his/her mouse,
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the game samples the mouse at the rate of 60-100 times/second.
So, every update will only move the character a tiny distance in
the game world. While this improves the sense of realism, at this
level of details the game state space would be extremely large to be
handled by the aforementioned techniques. An abstraction layer
needs thus to be introduced to make the state space tractable for
available testing techniques such as MBT and SBT.

Imagine the task of verifying N levers in some game level, that
each correctly opens the right in-game doors. To do this by auto-
mated play testing, imagine we introduce a software agent that
automatically plays the corresponding in-game character that a
human tester would play. Abstractly, it is the same task as verifying
the return value of N functions. At this level, the problem is easily
tractable by even random testing. In the play testing setup however,
the human play tester would first need to navigate to each lever,
pull it, and then he/she would have to navigate to relevant doors
to check that only the right one is open. Since the test agent is
intended to simulate a human tester, it also has to do the same. To
simply teleport to the levers might give an incorrect verdict, e.g.
if one of the levers turns out to be unreachable from the player’s
starting location1. Notice that navigation over the game’s virtual
world is thus part of the problem. If the test agent does not know
how to navigate to a lever, it cannot test it either. Another way
to look at this is that equipping test agents with automated world
navigation and exploration will allow them to test the game at
the more functional level, and hence enabling the integration of
techniques such as MBT and SBT.

This paper will show how concepts from geometry and auto-
mated path finding can be applied in the context of game testing
to provide the aforementioned auto-navigation and exploration
skills to test agents. While the subjects were much studied in other
contexts, e.g. robot control [8, 14], we have not seen it discussed in
the context of software testing, so we hope that this paper also pro-
vides useful insight for the software testing research community in
developing techniques and better tools for testing computer games.
As motivated before, the industry can really use such a push. As a
proof of concept, we ourselves have implemented the approach as
part of the iv4XR project2, which is a project to provide an open
source agent-based automated testing framework to test extended
reality based systems (which include computer games)3 [16, 17]. A
demo-project is also available4, demonstrating features of iv4XR’s
automation on a demo game called Lab Recruits5.

The paper is organized as follows. Section 2 describes the basic
testing setup that we will assume. Section 3 discusses the problem
of auto-navigation in the context of automated play testing, and
how it can be solved. Section 5 discusses auto-exploration, which
is needed if the locations of the target in-game entities that need
verification are not known upfront, or have changed due to some
1The issue is analogous to checking correctness by partial versus total correctness.
2https://github.com/iv4xr-project
3 While iv4XR tries to be generic, one should keep in mind that every game is in many
ways unique as it has a unique world with its own ontology, along with a unique way to
interact with it. No general testing framework, including iv4XR, can be plugged into an
arbitrary game without some integration effort. However, in return the developers will
then get access to iv4XR’s features such as agent-based programming, reasoning-based
AI, and auto-navigation and exploration as this paper will discuss (and more in the
future as we work on adding more AI capabilities).
4https://github.com/iv4xr-project/iv4xrDemo
5https://github.com/iv4xr-project/labrecruits

design decisions. Section 5 discusses several concepts of navigation-
related test coverage. Section 7 discusses some related work, and
finally Section 8 concludes and mentions some future work.

2 AUTOMATED PLAY TESTING: BASIC SETUP

Figure 1: A simple agent-based setup of game testing.

Figure 1 shows a simple setup of agent-based game testing using
iv4XR. The idea behind the setup is however general, namely to
use agents which are programmed to play and test a given game,
and hence they can be used to replace human play testers. Multiple
agents can be deployed to simulate multiple play testers, if the game
has a multiplayer mode. In iv4XR, the agents would be programmed
in Java; the framework furthermore allows reasoning and goal-
based strategies to be added to implement complex plays.

For simplicity, in this paper we will only consider a single test
agent setup. We will assume a typical execution model of an agent-
based system [4, 11], iv4XR agents also follow this model: an agent
runs in cycles, interacting with an ’environment’. In our case, this
environment is a game under test, or some interface to this game
under test. At every cycle, the agent observes its environment, de-
liberates, and then sends a command to the environment to try to
steer it towards some goal state6. The agent controls an in-game
player character. The commands it sends to the game are typically
primitive commands, such as moving the controlled character a
small distance, or to make it interacts with another in-game entity
within in its interaction range.

Importantly, we will assume that when the agent requests obser-
vation, the game under test will send back a structurally repre-
sented observation (e.g. listing relevant in-game entities and their
states) rather than simply sending an image. Having structural ob-
servation allows much more accurate inspection of the game state,
rather than having to depend on image recognition.

Since the chosen testing approach is ’play testing’, it is important
that the agent behaves as an actual human tester. This means that
the control and observation by the agent should abide to the
same constraints that apply to human players. E.g. the agent
cannot just teleport to a location, nor can it see through a solid
wall.

3 AUTOMATED NAVIGATION FOR PLAY
TESTING

Imagine a testing task to verify the state of a certain in-game entity
at a certain location in the target virtual world. Obviously, it would

6We can furthermore distinguish between synchronous and asynchronous setups. In
the first the agent controls how much the game can progress between cycles, whereas
in the latter the control is absent. For testing, the first setup is preferable as it makes
test runs more repeatable. This aspect is however beyond the scope of this paper.

https://github.com/iv4xr-project
https://github.com/iv4xr-project/iv4xrDemo
https://github.com/iv4xr-project/labrecruits
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be helpful if the test agent can automatically navigate to the goal
location. An algorithm to do this may already be implemented in
the game under test itself, e.g. to guide the movement of in-game
enemy entities. The test agent can in principle reuse it. There are
however several considerations that may prevent such reuse: the
implementing module may not be accessible to an external agent,
and besides that, a test agent may need test-specific features that are
not present in the game’s native auto-navigation. For this reason,
our iv4XR Framework offers its own navigation and exploration
modules which are better suited to support testing related tasks.
But, before we discuss the more testing-related aspects, let us first
discuss how to do auto-navigation in general.

To go from location A to B in some virtual world, simply taking
the straight line between them will not work in most situations as
there are often obstacles between them. Directly trying to find a
path by quantifying over all possible paths does not work either,
because most virtual worlds form in principle a continuous space,
and hence the number possible paths is infinite. A typical solution
used in many games, e.g. those using the Unity game engine, is
to first divide the navigable surface of the target 3D world into
a so-called navigation mesh [12], consisting of a finite number of
connected polygons (also called faces) as shown in the example in
Figure 2. Finding a path in the world can now be reduced to the
problem of finding a path over the mesh. This navigation mesh is
typically static, so if the game under test already has it, we just
need to extend it a bit so that it exports this mesh. As we will see
below, having this mesh will allow the test agent to do its own
auto-navigation.

Figure 2: A simple world (left) created with the Unity. The
world has two ground-floor rooms reachable from each
other through stairs via another floor (not shown). The pic-
ture on the right shows the navigation mesh (blue) of this
world. The mesh is generated by the game engine of Unity.

To actually do navigation the agent converts the mesh to a navi-
gation graph, also called navgraph, G = (V ,E) where V is a set of
vertices, each represents a location on a face in the mesh and E is the
set of edges between them, such that when (a,b) ∈ E the straight
line between them is physically navigable in the game’s virtual
world and is clear of any (static) obstacle. Any path in G is thus
guaranteed to be physically navigable. Such aG can be constructed
from a navigation mesh by taking the corners of the faces as the
vertices, connected by the corresponding edges in the faces. Figure
3 shows an example. Additionally, since a human player tends to
walk in the middle, e.g. when moving through a corridor, we will

also add the center points of the faces toV . We also connect centers
of neighboring faces (faces with an edge in common), as indicated
by the red lines in Figure 3.

Figure 3: From a navigation mesh (left), we construct a nav-
graph (right), which is graph over location-vertices (black).
We can now do navigation over this finite graph.

Let G .pathfinder be a chosen graph-based path finding algo-
rithm, such as A* [6, 12] or Dijkstra [5]. Given two vertices a,b ∈ V ,
G .pathfinder(a,b) will return a path over the edges of G that goes
from a to b, provided b is indeed reachable from a.

So, to auto-navigate from A to B, e.g. as in Figure 3, the agent
first searches the set V for vertices a and b which are closest to
respectively A and B. Then, invoking G .pathfinder(a,b) will give
the agent the path to go from a to b,

3.1 Dynamic obstacles and hazards
Many games have dynamic obstacles, whose state may change at
the runtime, influencing which parts of the world they block. An
example is an in-game fence or door. When closed, it is an obstacle,
but otherwise it is not. Obviously, the test agent should also know
how to deal with such an obstacle.

Many game worlds also have hazardous areas, such as a lava
field in the a navigable area, though walking over it is hazardous
for the agent, e.g. it might die. In most cases we would want the
test agent to steer away from such a field, but not always. There
may be a game level where crossing over a lava field is necessary
to get to some goal state. To flexibly deal with hazardous areas we
can therefore treat them as dynamic obstacles, whose state the test
agent can flip from blocking to non-blocking depending on whether
it wants to avoid them or not.

To do dynamic obstacle avoidance, we extend the edges e in the
G to have a state e .clear, which is true if the edge is clear, and false
if it is blocked by an obstacle. When the agent observe that the
state of an obstacle O has changed, and furthermore we assume
that the observation includes the location and dimension of O , the
agent would know which edges in E are affected by the change,
namely the edges whose lines intersect with O . Figure 4 shows
an example. The blue area represents the a navigable surface in
the game under test. A part of its navgraph is overlayed on this
surface, with dark circles indicate its vertices connected with edges.
Imagine the test agent wants to go from a to b, and then a fence
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becomes closed. The edge (a,b) represents the straight line route
from a to b. Unfortunately, this line intersects with the fence, so the
agent cannot take this route to go to b. Likewise, all edges marked
with a red-cross are also blocked, as long as the fence stays closed.
Fortunately b is still reachable, e.g. through the yellow colored path,
which the test agent can follow to get to b.

Figure 4: In the above example the agent wants to go from a
to b, but as it is about to do that the fence changes its state
from open to close.

Let ⌊G⌋ be the subgraph ofG consisting of only clear (unblocked)
edges, and the vertices they connect. To avoid obstacles, the test
agent should not invokeG .pathfinder, but rather: ⌊G⌋ .pathfinder(a,b).
Obviously, for this to work the test agent will need to track the
states of dynamic obstacles. This is another reason why we cannot
always rely on the game’s native auto-navigation, as it may not
be designed to deal with dynamic obstacles, e.g. when it is used to
steer enemy units, the route may be as such that these enemy units
will never encounter dynamic obstacles anyway.

3.2 Finer auto-navigation control
For testing purposes we may want the auto-navigation to take dif-
ferent routes than ’normal’, e.g. the ones that the game’s native auto-
navigation would come up with. E.g. the native auto-navigation
may insist on a path that avoid hazard, while a test agent may oc-
casionally want to take a path through some hazard. The solution
discussed in the previous section can coerce a test agent to consider
a hazardous area as navigable, but this is not always sufficient to
actually force the agent to navigate through it. This implies that a
test agent needs to have a finer control on the kind of path that its
path finding algorithm should look for.

For each edge e ∈ E let’s define e .cost to be the cost of traversing
the edge. Its natural (default) cost is just the geometric distance
between its end points (the length of the straight lines between
these end points). The cost of a path is the sum of the cost of its
edges. Path finding algorithms such as A* and Dijkstra are optimal
as they will return the best path (one with the least cost) to the
asked destination.

To influence G .pathfinder the agent can define a set G .prefs of
preferred vertices. The cost of an edge (a,a′) is increased over its
natural cost if a′ < G .prefs. This will encourage an optimal path
finder to find a path through preferred vertices7.

7An alternative would be to decrease the cost of going to preferred vertices. However,
note that this may not work well if we use A* as the path finder. A* can find the
best path very fast, but it requires so-called heuristic cost (estimated cost) of going
between any two vertices (a, b) to be provided. This heuristic cost should ideally

For example, marking center vertices (in Figure 3 these are ver-
tices connected by red lines) as preferred will encourage the test
agent to choose a path through the center of corridors. In contrast,
marking ’border vertices’ will encourage the test agent to walk
along the walls, e.g. suitable if we want to randomly check if the
walls are indeed solid (the character cannot pass through them). A
vertex is a border vertex if it belongs to a border edge. A border edge
is an edge that is not shared by two faces.

4 LESS POSITIONAL-DEPENDENT TESTING:
EXPLORATION

The approach described before enables a test agent to find an in-
game entity, assuming its physical location is known. However,
relying on locations to find entities that require checking is not
a robust testing approach, as such a test would break if the game
designer decides to move the entities to a different location; some-
thing that happens often during the game development. A better
approach, inspired by good practices in GUI testing [9, 18], is to
assign unique ids to in-game entities. If an entity x with id i cannot
be found in its old location, the test agent can decide to search the
virtual world, until it sees an entity x ′ with x ′.id = i . Since the i is
unique, x ′ must thus be x itself.

The above will require the agent to systematically search the
virtual world. This can be made simpler if the exported navigation
mesh is fine grained enough with respect to the agent’s visibility
range (mesh granularity assumption). That is, the size of the
faces should be as such that the distance of each face’s corners to
the face’s center should be less that the agent’s visibility range. This
guarantees that every point in (the navigable part of) the virtual
world is visible from some vertex in the navgraph. Note that if the
mesh exported by the game is too coarse grained, we can always
split the faces to get them to the desired granularity.

An exploration algorithm that visits all vertices in G, such as
Depth First Search (DFS), is thus guaranteed to find x (actually,
exploring all centers of the faces is sufficient). However, things get
more complicated due to dynamic obstacles. DFS may not work
because a dynamic obstacle may close the agent’s backtracking path.
An alternative is to use a DFS-like exploration algorithm over a
directed graph [8]. Because the graph is directed, such an algorithm
does not assume that it can just backtrack to the previous vertex,
but instead explicitly looks for a route to the backtrack vertex. Both
algorithms assume the agent to have the visibility range of 0. That
is, an agent can only discover one unexplored vertex (which is then
marked as ’explored’) at a time. However, most in-game character
has a visibility range > 0. This means, when an agent traverses to
an unexplored vertex b, it might also see more unexplored vertices,
e.g. c and d . We can exploit this.

We therefore propose the following frontier-based exploration.
To illustrate the algorithm imagine the navgraph is as in Figure 5,
and the test agent is searching the entity x indicated by the candle
(e.g. it wants to check that the candle is not lighted).

be an under-estimation of the real cost, or else A* might not return the best path. A
good and easy measure to be used as the heuristic distance is the geometric distance
between a and b . Now, if we adjust the real cost of some edges, to become less than
the geometric distance between their end points, this may break the assumption on
the heuristic cost defined as previously mentioned.
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Figure 5: In this example the agent wants to navigate to the
candle, but it does not know its location. So, it explores the
navgraph to find it. The yellow region indicates the part of
the game world it has seen so far. The red vertices form the
current exploration frontier. The agent chooses one of the
frontier vertex to navigate next.

(1) Maintain a set S of the vertices in G that is marked as ’ex-
plored’; initially only the currently visible vertices are in
S .

(2) In Figure 5 imagine now that the agent is at the green node
and the yellow area is the area explored so far. So, all the
vertices in this area are in S .
Calculate the set F of frontier vertices. These are vertices in
V /S with one edge that connect them to some vertex in S ,
and are moreover reachable through unblocked paths from
the agent current position (indicated green in Figure 5). The
frontier vertices are marked red in Figure 5.

(3) If F is empty the exploration is done (there is no more unseen
and reachable vertex to explore to).
Otherwise choose one frontier vertex f from F that is pre-
ferred, e.g. such that f is the closest to the agent’s current
position, or else simply choose randomly. Then calculate a
path to f , and navigate to it.

(4) Whenever an agent sees a vertex that is not yet in S , it
is added to S . If the agent also sees the goal entity x , the
exploration is done.

(5) Repeat from step 2.

Keep selecting the closest frontier to explore will yield an algo-
rithm that behaves much like DFS. When the agent sees no more
frontier in its close vicinity, it will go to the next one a bit further
away, which is comparable to DFS’s backtracking. However, the
next frontier to explore does not have to be in the agent’s back-
tracking path. While DFS will get into a problem if the backtracking
path becomes closed, our algorithm can still progress as long as
there is a frontier left.

No pure exploration algorithm can however deal with a dynamic
obstacle that persistently cuts off the access to some vertices un-
less the agent manages to somehow flip the obstacle’s state. This
requires some reasoning to be incorporated into the agent, which
furthermore can be very game specific. This is outside the scope of
this paper.

5 COVERAGE
’Coverage’ is a metric of the sufficiency of a test. Since we use
navgraph, this naturally suggests the use of graph-based coverage
concepts [1] such as vertex coverage. However, not all of them
would make sense (e.g. trying to cover all non-cycling paths would
quickly become unfeasible), and which one to use may depend on
the testing task at hand. Below we mention few examples:

• The task is to verify the state of an in-game entity x , but
the agent cannot find x . If all vertices in the navgraph are
explored, this implies that x does not exists, and therefore
the test verdict is a ’fail’. If not all vertices are explored (or
at least, all center vertices), the verdict is ’inconclusive’.

• The task is to verify the state of all entities of typeT . Suppose
the agent manages to find N of them, and they are all in the
correct state. We would want to have full vertex coverage,
or else the verdict would still be inconclusive.

• The task is to check that all walls are ’solid’. That is, the
agent cannot walk through them. We would want to have
coverage over all border edges.

• The task is to verify that the game has no cheat spot, e.g.
where the player cannot be shot at. A typical place for such
a spot is a corner. So, we would want to cover all corners.
They can be identified as border vertices, whose outgoing
border edges form an angle of less than e.g. 150◦ (there is
one marked example in Figure 3).

• The task is to verify that some entity x in a room R can only
be reached by crossing a lava field. If checking all possible
(non-cyclic) paths is not feasible, we can introduce different
path types. E.g. paths that only go through the center vertices
in R, the path that clockwisely follows the border edges, and
the path that counter-clockwisely follows the border edges.
We can then insist on covering all these types of paths.

6 IMPLEMENTATION
As a proof of concept, the auto-navigation and exploration dis-
cussed in Sections 3 and 4 have been implemented as part of the
automation in the agent-based testing framework iv4XR. Figure 6
shows a more elaborate setup than in Figure 1 for using iv4XR to
test a computer game. Multiple test agents can be deployed. From
an agent’s perspective, it interacts with an ’Environment’, which
actually is a Java interface that handles the communication with
the game under test. An agent can register to a communication
node, which will allow it to send and receive messages to/from
other agents that register to the same communication node, thus
enabling them to coordinate their actions.

Figure 6: A simple agent-based setup of game testing.

The code snippets below shows a simple program of a test agent
in iv4XR:
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1 SEQ ( e n t i t y I s I n t e r a c t e d (button1 ) ,
2 doo r I s InRange (door1 ) ,
3 e n t i t y I n v a r i a n tChe c k ed ( t e s tAgen t ,
4 door1 ,
5 ( E n t i t y x ) → x . g e tBoo l e anP rope r t y ( " isOpen " ) ) )

Agents are programmed in Java, in a goal-based style. The pro-
gram above says that the agent has three goals: first (line 1) to
interact with an in-game entity button1, then (line 2) to get door1
in its visual range, and then (lines 3-5) to verify that door1 is open.
Solving a goal will require actions, which are programmed in so-
called tactics. Each goal should have a tactic intended to solve it
(not shown in the above snippet). For example, to interact with
button1 the agent first needs to be standing close to the button,
which in turns requires it to first navigate to the button. The tactic
that programs this navigation looks as shown below:

FIRSTof ( nav i ga t eTo ( e n t i t y I d ) ,
e x p l o r e ( ) ,
ABORT ( ) )

A tactic is executed in an implicit loop. Recall that an agent
executes in cycles. At each cycle, the tactic of the agent’s current
goal is checked if it is enabled. If it is, it will be executed for one
cycle. Else, the agent will do nothing, hoping that the game will
change its state at the next cycle, which may enable the tactic, or
until it runs out of budget and declares the current goal as failed.

In the above example, the tactic is to choose the first of its
subtactics that is enabled on the current agent’s state. The tac-
tic navigateTo(x) implements auto-navigation discussed in Section
3, and will steer the agent to the location of entity x , if its location
is known. Else the tactic is not enabled. The tactic explore imple-
ments the auto-exploration from Section 4. So, if the location of
x is unknown to the agent, it will do exploration. This tactic is
enabled as long as there are frontier vertices to go to. Note that full
exploration is not always needed. Once the agent sees x , its posi-
tion becomes known, and hence the tactic navigateTo(x) becomes
enabled, and will be the one that will be chosen in the next cycle
thanks to the FIRSTof operator. If none of the above two tactics
are enabled (implying the agent has searched, but cannot find x),
we have ABORT, that is always enabled, but will cause the current
goal to be declared as fail.

For more on programming iv4XR, see [17] and the provided
documentation of the framework8

7 RELATEDWORK
There are tools such as the Unity Test Framework9 andGameDriver10
that allow game testing tasks to be scripted, hence they can be exe-
cuted repeatedly by a computer rather than manually. This works
well for games with coarse grained interactions where every in-
teraction corresponds to a functional behavior. Chess and most
text-based adventure games are examples of such games. More
generally, games that have no movable agent are coarse grained.
In contrast, games that are played on continuous 2D or 3D vir-
tual worlds are usually fine grained. The scripting approach does
not work well on such games, as scripting more complex testing
tasks becomes increasingly tedious and error prone. Some tools
8https://github.com/iv4xr-project
9https://unity.com/
10https://www.gamedriver.io/

like GameDriver and MAuto [19] can record a play and replay it
as a test. While this removes the need to script the test, record and
replay tests are unfortunately also fragile. They break when the
game designers change the layout of a game level, or move the
positions of in-game entities.

Examples of advanced automation can be found in the tools
Icarus [15] and Prowler [3]. Both use learning algoritms to learn
how to do a given testing task. Once this is learned, the task can
be executed repeatedly without manual intervention. Icarus’ case
study shows that the approach works for a coarse grained game.
Prowler’s example is Minecraft, which is a 3D, fine grained game,
but only simple testing tasks were attempted. Compared to the
above mentioned approaches, our iv4XR Framework [17] offers an
approach that lies in between. As in the scripting approach, develop-
ers have to program the tests. However, iv4XR comes with various
automation support such as reasoning and tactical programming,
allowing tests to be programmed at a much higher level to handle
fine grained games. Auto-navigation and exploration are essen-
tial parts of iv4XR automation. It is not a push-button technology
like Icarus and Prowler, though on the other hand, being able to
program the test agents makes iv4XR a versatile approach, and its
insistence to use structured observation makes it highly accurate
in its assessment.

Learning as in Icarus and Prowler is not the only way we can
obtain automation in testing. Model based testing (MBT) and search
based testing (SBT) can also give us automation. MBT allows tests
to be generated from a behavioral model of the system under test
(e.g. in the form of an FSM). MBT has been widely studied in other
types of software systems, e.g. libraries, services, web applications,
and mobile applications. The application of MBT for game testing
has not been well studied though. Among the few work we could
find was that of Iftikhar et al [7]. The case study is the Super Mario
Brother, which is a fine grained game, thus implying that MBT can
be applied to a fine grained game. However, the studied behavior
is very limited and it does not involve much navigation. Also, in
the standard MBT setup, the used model would describe the full
behavior of the system under test. We should keep in mind that
such a complete model for a game would be very large and too
costly if it is to be manually crafted.

As a case for SBT, people have also studied the use of e.g. genetic
algorithms to train an agent to play games, e.g. a game similar to
Super Mario [2]. Although ’playing’ is not literally the same as
testing, it is conceivable that the same approach can be used to
search an interaction sequence (a test case) that would automate a
given testing task. Although the game is fine grained, the number of
possible interactions is limited (just 22 in [2], e.g. moving left, right,
up, down, shooting, etc), which makes the search space tractable
compared to e.g. Minecraft where the character can move in any
direction in 360◦ and hence its set of possible actions is infinite. For
such a game, auto-navigation as discussed in this paper would be
essential, basically to provide an abstraction that reduce the search
space to become a finite space again.

8 CONCLUSION AND FUTUREWORK
Ability to do auto-navigation and exploration is crucial for auto-
mated play testing of computer games. Without this ability, the

https://github.com/iv4xr-project
https://unity.com/
https://www.gamedriver.io/
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more functional automation will not be possible. In this paper we
have discussed the problems for games that are played in a con-
tinuous 2D or 3D virtual world, and how known concepts and
algorithms from geometry and path finding can be applied to solve
them. Although many games do have built-in auto navigation al-
gorithm, we cannot always reuse them for testing purposes, as
the later need more refined control on the generated paths, e.g. to
specifically explore the borders, or to avoid dynamic obstacles. The
most flexible solution would be to have a dedicated navigation and
exploration library for testing purposes, such as the one provided
by iv4XR, or for the game developers to invest in developing a
common one for both for testing and in-game purposes.

The presence of dynamic obstacles is prevalent in many games.
A pure navigation algorithm can only deal with them up to a cer-
tain extent. A more powerful way to deal with them would be by
incorporating reasoning on how to remove the obstacles when this
becomes necessary. Unfortunately, such reasoning is likely to be
quite game specific. But perhaps there may be common pattern-
s/heuristics that work on similar games. This is future work. This
paper is also limited in discussing surface navigation (though the
surface might be 3D). Testing games that allow full 3D movement
(e.g. when the player drives a spaceship that can move freely in all
directions, so not just on a surface) would need a different kind of
navigation. This is also future work.
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