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Abstract: We propose the signal quality index (SQI) algorithm as a novel tool for quantitatively
assessing the functional near infrared spectroscopy (fNIRS) signal quality in a numeric scale from
1 (very low quality) to 5 (very high quality). The algorithm comprises two preprocessing steps
followed by three consecutive rating stages. The results on a dataset annotated by independent
fNIRS experts showed SQI performed significantly better (p<0.05) than PHOEBE (placing
headgear optodes efficiently before experimentation) and SCI (scalp coupling index), two
existing algorithms, in both quantitatively rating and binary classifying the fNIRS signal quality.
Employment of the proposed algorithm to estimate the signal quality before processing the fNIRS
signals increases certainty in the interpretations.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Functional near-infrared spectroscopy (fNIRS) neuroimaging technique makes it possible to
non-invasively investigate brain activity in both experimental and clinical settings [1–12]. In
order to guarantee a reliable estimation of the functional hemodynamics in the brain cortex, the
initial task of a researcher is to collect signals with a good quality. A poor signal quality may
lead to wrong interpretations of the collected data and to consequent findings of false positives
and false negatives in the analysis. False positives and false negatives in fNIRS functional
experiments are changes in O2Hb and HHb concentrations over a certain brain area that can
be caused by task related systemic activity and/or extracerebral hemodynamics, but could be
mistakenly interpreted as increased neural activity (false positives) in that brain area, or could
mask the neuronally induced hemodynamic response (false negatives) [13].
To the best of our knowledge, there are no standardized criteria for quantitatively assessing

fNIRS signal quality unlike, for example, in electroencephalography (EEG), where the impedance
of the electrodes with the human scalp can be assessed to infer good scalp contact. These
impedances are usually measured and reported, providing researchers with a reference metric for
conducting proper set-up and contributing to a standardized assessment of EEG signal quality
over the entire research community [14]. In the case of fNIRS, however, it is currently up to the
researcher’s expertise and subjective judgment to deem a signal good enough, which makes it
difficult to have reliable and reproducible studies. In addition, researchers new to the field of
fNIRS are often faced with the issue that they lack the experience to judge the quality of the
signals, leading to recordings of poor or inconsistent quality data. Therefore, it is necessary to
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have an objective measure that quantifies fNIRS signal quality independently of the researcher’s
experience and subjective judgment.
A high quality fNIRS signal is characterized by the presence of a strong cardiac component,

which is the main indicator of a good optode-scalp coupling and can be employed for the
assessment of fNIRS signal quality. The reason behind this is that in fNIRS, emitted near infrared
light travels through superficial and cerebral layers. When the light passes through these layers,
intrinsic and extrinsic factors affect the absorption and scattering of the transmitted light. The
intrinsic factors are hemodynamics caused by systemic artefacts in the cerebral and extracerebral
compartments, as well as the functional brain hemodynamics in the cerebral compartment [10,15].
The heartbeat is one of such systemic artefacts, present in both compartments [10,13]. Hence,
its presence in fNIRS signals indicates that enough light has reached the brain and that most
of the absorption and scattering are caused by intrinsic factors. This is not the case when
extrinsic factors excessively limit the amount of light reaching the brain, causing a decrease in
the optode-scalp coupling and compromising fNIRS signal quality. Examples of extrinsic factors
are looseness of the optodes, scalp and skull thickness, skin properties, and hair density and color
in the cases where hair is present [16].

With the purpose of assessing the strength of the scalp-optode coupling and the presence of a
clear heartbeat in fNIRS signals, two algorithms have been proposed for distinguishing between
good and bad quality fNIRS signals: SCI (Scalp Coupling Index, [17]) and PHOEBE (Placing
Headgear Optodes Efficiently Before Experimentation, [18]). SCI and PHOEBE, though, are
not designed to discern low and high quality signals from medium quality signals. Instead, they
are designed to binary discriminate between good and bad quality signals. Such a distinction
is sharp and does not consider the different levels of signal quality that a good quality signal
may have. For challenging cases in which the amount of light reaching the brain is strongly
limited due to unavoidable extrinsic factors, the best quality signal that can be achieved will
not have the characteristics of a high quality signal achieved for a less challenging case. Being
aware of these differences in the signal quality of the collected data and reporting them is
important for subsequent analysis and interpretations. While for photoplethysmography (PPG),
an optical modality sharing the same principles as fNIRS, several signal quality measures have
been proposed [19,20], for fNIRS no efforts have been conducted so far to rate fNIRS signal
quality in more than two levels. Here, we propose an algorithm for quantitatively rating the
fNIRS signal quality based on the strength of the optodes coupling with the scalp, providing the
fNIRS research community with an objective estimate of fNIRS signal quality and eliminating
the researchers’ subjective bias. In this study, the proposed Signal Quality Index (SQI) algorithm
is compared with the SCI and PHOEBE algorithms in quantitative rating as well as binary
classification of the fNIRS signal quality.

2. Materials and methods

2.1. Data collection and annotation

We assembled two sets of data from previously recorded, unpublished data: a training dataset, to
develop and fit the parameters of the algorithm; and a validation dataset, to provide an unbiased
evaluation of the performance of the algorithm on an unseen set of data.

2.1.1. Training dataset

The training dataset used in this study consisted of fNIRS recordings of adult healthy volunteers
collected with the following devices using OxySoft software (Artinis Medical Systems B.V., Elst,
The Netherlands): OctaMon, Brite 23, Brite 24, and OxyMon (all by Artinis Medical Systems
B.V., Elst, The Netherlands). The transmitters for all of these devices emit light at two different
wavelengths in the near infrared spectrum. This dataset consisted of 158 10-second signal
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segments of optical densities and HHb and O2Hb concentration changes, which were sampled
at 50Hz. The dataset contains two optical density signals per signal segment, corresponding
to the two wavelengths used by each device. The data was collected from 14 participants. The
signal segments were sampled from arbitrary channels of the dataset. Source detector distances
ranged from 3 to 3.5 cm, and the brain areas measured were prefrontal cortex, temporal cortex
and parietal cortex.

Seven independent fNIRS experts (annotators A-G) working at Artinis Medical Systems B.V.
rated all 158 signal segments on the presence of motion artefacts and overall signal quality.
Presence of motion artefacts was assessed as a “Yes/No” question. Signal quality was rated on an
ordinal scale ranging from 1 (very low quality) to 5 (very high quality). We chose these 5 levels
of quality because it is the scale most often used by fNIRS experts working at Artinis Medical
Systems B.V. (the annotators) for discriminating between different levels of fNIRS signal quality.
For each signal segment, both the changes in optical densities and the corresponding changes in
O2Hb and HHb concentrations were shown to the annotator. The signal segments were presented
to the annotators in randomized order. Figure 1 and Fig. 2 show, respectively, an example of a
signal segment rated as having very low and very high signal quality by all annotators.

Fig. 1. A sample signal segment having a very low quality. This signal segment was rated
as having very low quality by all annotators in the training phase. (A) Orange and black
curves represent the detrended optical density signals for the wavelengths 850 and 760 nm,
respectively. (B) Red and blue curves represent the detrended changes in O2Hb and HHb
concentrations, respectively.

Signal segments containing motion artefacts according to at least half of the annotators were
excluded, leaving a total of 123 signal segments. The resulting dataset includes a similar number
of signal segments for each of the five different signal quality levels. Figure 3 shows the ratings
given by the annotators for each of the 123 signal segments. Generally, very low (1) and very
high (5) rated signal segments received similar ratings across annotators, while there was less
agreement across the annotators ratings for signal segments that were rated from low (2) to high
quality (4). We used the mean annotators rating as the reference rating for the quality of the
fNIRS signal segments in the training phase (see section 2.3.1).

2.1.2. Validation dataset

For the validation phase, a new set of data was assembled, which comprised fNIRS recordings of
adult healthy volunteers collected with the same devices as the training dataset, using OxySoft
software (Artinis Medical Systems B.V., Elst, The Netherlands): OctaMon, Brite 23, Brite 24,



Research Article Vol. 11, No. 11 / 1 November 2020 / Biomedical Optics Express 6735

Fig. 2. A sample signal segment having a very high quality. This signal segment was rated
as having very high quality by all annotators in the training phase. (A) Orange and black
curves represent the detrended optical density signals for the wavelengths 846 and 757 nm,
respectively. (B) Red and blue curves represent the detrended changes in O2Hb and HHb
concentrations, respectively.

Fig. 3. The ratings given by the annotators for each of the signal segments included in the
training dataset. The x-axis represents the mean annotators rating for each of the signal
segments from very low to very high signal quality. The y-axis shows the ratings of the seven
annotators A-G. The colorbar on the right represents the ordinal rating scale considered
by the annotators: 1 (Very Low), 2 (Low), 3 (Medium), 4 (High), and 5 (Very High). The
signal segments were sorted in ascending order based on their mean annotators rating.

and OxyMon (all by Artinis Medical Systems B.V., Elst, The Netherlands). This dataset consisted
of 40 10-second signal segments of optical densities, which were sampled at 50Hz (as the data in
the training dataset). The data was collected from 4 participants, 3 of which were also included
in the training dataset. The signal segments were sampled from arbitrary channels of the dataset.
Source detector distances ranged from 3 to 3.5 cm, and the brain areas measured were prefrontal
cortex, temporal cortex and parietal cortex.
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The validation dataset was rated by the same annotators as in the training dataset, and two
additional fNIRS experts working at Artinis Medical Systems B.V., each with more than 10
years of experience in the field of fNIRS. The validation set was free of motion artefacts, and
hence the annotators were only asked to rate the signal quality on an ordinal scale ranging from 1
(very low quality) to 5 (very high quality). For the rating, the signal segments were presented
to the annotators in the same manner as was done for the training dataset. Figure 4 shows the
ratings given by the annotators for each of the 40 signal segments. Although there was less
agreement between the annotators ratings for the signal segments that were annotated as having
low (2) and medium (3) quality; very low (1), high (4), and very high (5) rated signal segments
received similar ratings across annotators. The mean of the annotators ratings was considered
as the reference rating for the quality of the fNIRS signal segments in the validation phase (see
section 2.3.2).

Fig. 4. The ratings given by the annotators for each of the signal segments included in the
validation dataset. The x-axis represents the mean annotators rating for each of the signal
segments from very low to very high signal quality. The y-axis shows the ratings of the nine
annotators: the seven annotators that rated the training dataset (A-G) and the two additional
annotators I-H. The colorbar on the right represents the ordinal rating scale considered by
the annotators: 1 (Very Low), 2 (Low), 3 (Medium), 4 (High), and 5 (Very High). The
signal segments were sorted in ascending order based on their mean annotators ratings.

2.2. SQI algorithm workflow

The here developed Signal Quality Index (SQI) algorithm comprises two preprocessing steps
(see section 2.2.1) followed by three consecutive rating stages: 1) identifying very low quality
signals, 2) identifying very high quality signals and 3) signal quality rating. Rating stage one and
two hereby serve as heuristics to identify signal segments with clear characteristics of very low
quality signals or very high quality signals, respectively, early on. In the third stage, a signal
segment could still be rated as having very low or very high quality, but could also receive a
rating in between.

The workflow of the SQI algorithm per signal segment is as follows (see Fig. 5). After signal
preprocessing (see section 2.2.1), the signal segment enters rating stage one (for more details, see
Materials and Methods, section Rating stage one: identifying very low quality signals), where
it is identified as a very low quality signal or otherwise enters rating stage two. If the signal
segment is identified as a very low quality signal in rating stage one, it is rated with the lowest
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rating (i.e. 1) and does not go through the subsequent stages of the algorithm. Similarly, in rating
stage two (for more details, see Materials and Methods, section Rating stage two: identifying
very high quality signals) the signal segment is identified as a very high quality signal or not. If
the signal segment is identified as a very high quality signal, it is rated with the highest rating (i.e.
5) and does not enter the signal quality rating stage. If instead the signal segment is not identified
as a very high quality signal in rating stage two, then it enters the signal quality rating stage. In
this third stage (for more details, see Materials and Methods, section Rating stage three: signal
quality rating), a rating between 1 (very low quality) and 5 (very high quality) is assigned to the
signal segment.

2.2.1. Preprocessing

First, the received light intensities digitized with 16-bit resolution were converted to optical
densities (OD). The optical densities were then converted into oxygenated hemoglobin (O2Hb)
and deoxygenated hemoglobin (HHb) changes in concentration by applying the modified Beer-
Lambert law [21]. In the following, we processed the OD values as well as O2Hb and HHb, as
each of them was required for different features. Two preprocessing steps were applied to ODs,
O2Hb and HHb. Firstly, HHb, O2Hb and OD signal segments were detrended by subtracting the
least-squares fit of a straight line to the data. Secondly, these signal segments were band-pass
filtered using a zero-phase forward Hamming-windowed sinc FIR filter of order 208 with cutoff
frequencies (−6 dB) of 0.4Hz and 3Hz. The transition width of the filter was of 0.8Hz, with a
passband between 0.8-2.6Hz, and a stopband (−53 dB) between 3.4 - 25Hz. The filter order
was estimated based on the normalized transition width for the Hamming window [22]. This
band-pass filter was implemented using ft_preproc_bandpassfilter function in the FieldTrip
toolbox [23], commit 62c9a0d on master branch. In order to avoid edge artefacts, prior to filtering,
the signal segments were zero-padded with a sample length corresponding to two seconds of
data both in the beginning and end of the signal segment.

2.2.2. SQI features

Rating stage one: identifying very low quality signals We used three different features for
assessing whether a signal segment is identified as a very low quality signal in this stage:

• Absolute light intensity (abbreviated as intensity): this feature represents the intensity of
the measured light, which should be within a certain range in order to guarantee a linear
response from the system and a sufficient signal-to-noise ratio. Bright ambient light, low
pigmentation in skin and hair, or lack of hair can saturate the detector, while too little or
no light could indicate that there is too much light absorption, e.g. by hair between the
scalp and the optodes. We use a thresholding of the raw light intensity, as has previously
been used in [16,24]. Lower (too much light) and upper thresholds (too little light) were
respectively set to 0.04 OD and 2.5 OD. If the signal segment exceeded these thresholds, it
was identified as a very low quality signal.

• Standard deviation of the ODs per wavelength (std_ODs): this feature detects whether
one or both optical density signal segments are flat, and thus have a standard deviation of
zero, indicating a poor coupling with the scalp. This feature was calculated as the standard
deviation of the optical density over the whole 10-second length of the signal segment. If
the signal segment obtained a value of zero for either wavelength, it was identified as a very
low quality signal. The feature std_ODs was constrained to be equal to zero rather than
being evaluated by a higher threshold, because empirical evaluation showed that values
different than zero were not discriminative.

• Ratio of oxygenated and deoxygenated hemoglobin summation (sumHb_ratio): high quality
fNIRS signals are characterized by a clear heartbeat for O2Hb signals, with a smaller and
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Fig. 5. Flowchart of the rating process implemented by the SQI algorithm. The SQI
algorithm comprises two preprocessing steps followed by three consecutive rating stages: 1)
identifying very low quality signals, 2) identifying very high quality signals, and 3) signal
quality rating. A 10-second signal segment is input into the algorithm in the form of raw
optical densities and HHb and O2Hb concentration changes. After signal preprocessing
(see section 2.2.1 for details), the signal segment enters rating stage one, in which it is
evaluated by three consecutive features (see Materials and Methods, section Rating stage
one: identifying very low quality signals): absolute light intensity (abbreviated as intensity)
assesses whether the intensity of the measured light is within a certain range, standard
deviation of the ODs per wavelength (std_ODs) detects whether one or both optical density
signal segments are flat, and ratio of oxygenated and deoxygenated hemoglobin summation
(sumHb_ratio) assesses the difference in amplitude between O2Hb and HHb. If any of these
features exceeds the thresholds for the signal segment, it is identified as a very low quality
signal, obtaining the lowest rating (i.e. 1), and does not go through the subsequent stages
of the algorithm. Otherwise, it enters rating stage two. In this stage, the feature standard
deviation of the difference between optical density signals autocorrelation (acorrDiff_ODs)
evaluates whether the two optical densities in the signal segment have similar amplitude and
shape. If the value obtained for this feature is lower than the threshold, the signal segment is
identified as a very high quality signal, it is rated with the highest rating (i.e. 5), and does
not enter the signal quality rating stage. Otherwise, it enters the signal quality rating stage.
In this stage, the signal segment is evaluated by the feature logarithm of the ratio between
the standard deviation of O2Hb and HHb (logStdHb). This feature characterizes the relative
presence of the heartbeat in O2Hb and HHb signals. The raw value obtained for this feature
is then converted to assign a rating between 1 (very low quality) and 5 (very high quality).
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attenuated one for HHb signals (see Fig. 2). This difference makes the sum of the absolute
values of the O2Hb signals greater than that of the HHb signals. In contrast, for very
low quality fNIRS signals, the opposite happens. Feature sumHb_ratio, considers this
difference by computing the ratio between the sum over samples of the absolute value of
O2Hb and the sum over samples of the absolute value of HHb for the 10-second signal
segment (Eq. (1), where |x| represents the absolute value of x). Low values for this feature
indicate very low signal quality due to the prominence of HHb signal amplitude over that
of O2Hb. The threshold for this feature was empirically derived from the training dataset
and set to 1.95. If the signal segment obtained a value lower than this threshold, it was
identified as a very low quality signal.

sumHb_ratio =
∑
|O2Hb|/|HHb| (1)

Rating stage two: identifying very high quality signals In this stage, we used one feature
for assessing whether a signal segment is identified as a very high quality signal:

• Standard deviation of the difference between optical density signals autocorrelation
(acorrDiff_ODs): for very high quality signals, the autocorrelation for the two optical
densities of a signal segment have similar amplitude and shape. Hence, the standard
deviation of the difference between them is low. This feature was calculated by Eq. (2),
where OD1acorr and OD2acorr are the autocorrelations of the optical densities measured
for each wavelength, and std() is the standard deviation.

acorrDiff_ODs = std(OD1acorr − OD2acorr) (2)

A threshold of 0.025 was used, as empirically derived from the training dataset. If the signal
segment obtained a value below this threshold, it was identified as a very high quality signal.

Rating stage three: signal quality rating In this stage, we used one feature for rating the
signal segment between 1 (very low quality) and 5 (very high quality).

• Logarithm of the ratio between the standard deviation of O2Hb and HHb (logStdHb): the
natural logarithm of the ratio of the standard deviation of the 10-second O2Hb and HHb
time series was computed by Eq. (3). Its output value was used to quantitatively rate the
quality of the signal segment in an adimensional magnitude. High quality fNIRS signals
are characterized by a strong clear heartbeat as the strongest signal component. For high
quality signals, the magnitude of the heartbeat is higher in the O2Hb signal than in HHb.
Therefore, the standard deviation of O2Hb is higher than the standard deviation of HHb for
high quality fNIRS signals. Consequently, the higher the signal quality, the higher the ratio
between them, which adopts an exponential trend. This trend is made linear by means of
the natural logarithm implemented in this feature.

logStdHb = ln(std(O2Hb/HHb)) (3)

2.3. Performance assessment

We assessed the performance of the SQI algorithm in two different phases: training phase and
validation phase. All computation and analysis in this study were done using MATLAB R2019b
(MathWorks, Natick, Massachusetts), on an ASUS workstation with Intel Core-i7-8565U @
1.99GHz CPU and 16 GB RAM.
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2.3.1. Training phase

First, we assessed the correctness of each of the features of the SQI algorithm on the training
dataset. Next, we assessed the performance of the SQI algorithm with respect to the mean
annotators rating.

Features correctness assessment In order to assess and compare the correctness of the different
features included in rating stage one (identifying very low quality signals) and rating stage two
(identifying very high quality signals) of the algorithm on the training dataset, we computed the
following quantitative metrics: precision in correct identifications, number of signal segments
identified as very low quality signals (for features in rating stage one) and number of signal
segments identified as very high quality signals (for the feature in rating stage two), correct
and incorrect decisions. For rating stage one of the algorithm, the identified signal segments
for which the mean annotators ratings were below or equal to 2 (low quality) were classified
as correct decisions, and otherwise classified as incorrect decisions. Similarly, for rating stage
two of the algorithm, the identified signal segments for which the mean annotators ratings were
above or equal to 4 (high quality) were classified as correct decisions, and otherwise classified as
incorrect decisions.

For evaluating the correctness of the rating feature logStdHb in the third stage of the algorithm,
we used Pearson’s correlation coefficient between the raw feature values and the mean annotators
ratings for all 123 signal segments in the training dataset. To test for the significance of the
correlation, we considered a significance level α=5% and computed the p-value using a Student’s
t distribution as implemented in Matlab’s corr function. We applied the Benjamini-Hochberg
method [25] to correct for multiple comparisons.

Algorithm performance assessment We assessed the performance of the SQI algorithm in 1)
quantitative rating the signal quality, 2) binary classification of the signal quality (good or bad
signal quality). We compared the performance of the SQI algorithm with the performance of two
existing algorithms used for binary assessing fNIRS signal quality: SCI [17] and PHOEBE [18].
SCI quantifies the similarity of the cardiac component in both optical densities to determine

the strength of the coupling between the scalp and the optodes. The algorithm computes the
zero-lag cross-correlation between both optical density signal segments as a quantitative measure
of the signal-to-noise ratio of the signal segment [17]. According to the original implementation
of the SCI algorithm, signal segments with a zero-lag cross-correlation value above 0.75 are
considered high quality signals. The PHOEBE algorithm evaluates the similarity of both optical
density signal segments by means of the SCI metric, as well as the spectral power of their
cross-correlation to determine the strength of the cardiac component. According to the original
implementation of the PHOEBE algorithm, signal segments with a spectral value above 0.1 are
considered high quality signals. Both SCI and PHOEBE were computed as implemented by the
main author of the original papers [26].

Quantitative rating performance A regression analysis was performed to obtain the linear
models that convert the raw values of the rating feature in the signal quality rating stage of SQI to
the 1 - 5 scale that the annotators used for rating. The linear model was built by computing a least
squares regression between the mean annotators ratings and the raw values of the rating feature
logStdHb on the training data to obtain the slope and intercept. This regression was carried out
only on the signal segments that were not identified in rating stage one or two, and that hence
entered rating stage three in the SQI algorithm workflow. The slope and intercept were then used
to convert the raw value of the rating feature logStdHb to a rating on the 1-5 scale. In order to
compare the performance of SCI and PHOEBE with the proposed algorithm, the raw values of
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the rating features used in SCI and PHOEBE were also converted into a 1-5 scale in the same
manner. In this conversion, we considered the zero-lag cross-correlation between the two optical
density signals and the peak spectral power of the cross-correlation as the rating features used in
SCI and PHOEBE, respectively (see Materials and Methods, section Algorithm performance
assessment). The ratings obtained for each of the algorithms in a 1-5 scale will be hereon referred
to as estimated ratings.
Moreover, Bland Altman limits of agreement (BLA) [27] were computed between the mean

annotators ratings and the estimated ratings introduced in this section for each of the evaluated
algorithms SQI, SCI, and PHOEBE. Bland Altman limits of agreement were computed by
calculating 1.96 times the standard deviation of the error, representing the range in which 95% of
the differences between the mean annotators ratings and estimated ratings fell. Three quantitative
measures were calculated to further compare the performance of the evaluated algorithms: mean
of error (ME), standard deviation of error (StdE), and coefficient of determination (r2) assessed by
Pearson’s correlation coefficient. To test for the significance of the correlation, we considered a
significance level α=5% and computed the p-value using a Student’s t distribution as implemented
in Matlab’s corr function. In addition to the three quantitative measures, the computation time
using our reference implementation in MATLAB R2019b (MathWorks, Natick, Massachusetts)
for a single signal segment was measured five times and then averaged to compare the time
required for each of the algorithms to obtain the estimated rating.

Binary classification performance To conduct a binary classification for the proposed SQI
algorithm, signal segments identified in rating stage one (identifying very low quality signals)
were classified as “bad quality” signals; while those identified in rating stage two (identifying
very high quality signals) were classified as “good quality” signals. For the signal segments that
entered rating stage three, a threshold for the raw value of the feature logStdHb was empirically
derived on the training dataset. This threshold value was set to 1.478. Signal segments with a
value equal or higher than this threshold were classified as “good quality” signals. They were
otherwise classified as “bad quality” signals. For SCI and PHOEBE, we used the thresholds
proposed in the original papers (see [17,18]): a zero-lag cross-correlation value of 0.75 and a
peak spectral power of 0.1. For both algorithms, signal segments with values equal or higher
than the considered thresholds were classified as “good quality” signals. They were otherwise
classified as “bad quality” signals.

To assess the binary classification performance of the algorithms, the mean annotators ratings
were binarized by thresholding at a value of 3.5. Signal segments rated lower than this threshold
were labeled as “bad quality” signals, while those rated equal to or higher than this threshold were
labeled as “good quality” signals. Accuracy, sensitivity, specificity, precision, and F1-Score were
computed as performance measures in the binary classification of the signal quality. We applied
McNemar’s binomial test [28] with a significance level α=5% to assess whether the classification
accuracies obtained for the different algorithms were significantly different from each other. We
applied the Benjamini-Hochberg method [25] to correct for multiple comparisons.

2.3.2. Validation phase

In the validation phase, the performance of the SQI algorithm was assessed in the validation
dataset in the same manner as performance was assessed in the training dataset. For the
quantitative rating, this assessment included computing the estimated ratings of the SCI and
PHOEBE algorithms for the validation dataset to allow a comparison with their performance.
For this, the feature values of SCI and PHOEBE were converted to a continuous scale from 1
(very low quality) to 5 (very high quality) using the linear models fitted in the training phase (see
Materials and Methods, section Quantitative rating performance). For the binary classification,
we proceeded as explained in Materials and Methods, section Binary classification performance.
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3. Result

3.1. Training phase

3.1.1. Features correctness assessment

The here proposed fNIRS signal quality algorithm, SQI, assesses the quality of fNIRS signal
segments in three consecutive rating stages: 1) identifying very low quality signals, 2) identifying
very high quality signals and 3) signal quality rating (see section 2.2 for more details). Here, we
assess the correctness of these features.
In rating stage one (identifying very low quality signals), the algorithm identifies very low

quality signal segments based on three features: the absolute light intensity (abbreviated as
intensity), the standard deviation of the ODs per wavelength (std_ODs), and the ratio of oxygenated
and deoxygenated hemoglobin summation (sumHb_ratio). For each of these features, we applied
an empirically derived threshold to identify signal segments having very low quality. Figure 6
shows the identification of each signal segment by these features. Each signal segment identified
as a very low quality signal had a mean annotators rating indicating a low or very low signal
quality. This means none of these features incorrectly identified medium, high, or very high
quality signal segments as very low quality signals. Although the feature std_ODs correctly
identified signal segments with very low quality, its identification completely coincided with
the identification of the features intensity and sumHb_ratio. Moreover, the number of identified
signal segments is lower than that of the other two features in this stage. Nonetheless, we decided
to include this feature in the algorithm because of two reasons. Firstly, it is an intuitive feature

Fig. 6. Signal segments identified during rating stage one (identifying very low quality
signals) and two (identifying very high quality signals) of the SQI algorithm. The y-axis
shows the three features included in rating stage one at the top, and the feature included in
rating stage two at the bottom. The features in rating stage one are: the absolute light intensity
(abbreviated as intensity), the standard deviation of the ODs per wavelength (std_ODs),
and the ratio of oxygenated and deoxygenated hemoglobin summation (sumHb_ratio). The
feature in rating stage two is the standard deviation of the difference between optical density
signals autocorrelation (acorrDiff_ODs). The x-axis represents the mean annotators rating
for each of the 123 signal segments. The signal segments were sorted in ascending order
based on their mean annotators ratings. Cells in the plot filled with a speckle pattern represent
the signal segments that were identified as either very low or very high quality signals in the
respective rating stage by the feature. Cells left blank represent the signal segments that
were not identified by the features in rating stage one and two.
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that identifies signal segments having at least one optical density signal as a flatline, which is a
clear sign of a very low quality signal. Secondly, it potentially avoids misclassification of signal
segments in subsequent stages of the algorithm (see Appendix 1 for more details).
In rating stage two (identifying very high quality signals), the algorithm identifies very high

quality signal segments based on one feature: the standard deviation of the difference between
optical density signals autocorrelation (acorrDiff_ODs). We applied an empirically derived
threshold to identify signal segments with clear characteristics of very high quality signals.
Figure 6 shows the output of the feature acorrDiff_ODs and its threshold. Note that we show
all 123 signal segments, although the signal segments identified as very low quality signals in
rating stage one would not enter rating stage two in the SQI algorithm. The figure shows that
most of the signal segments identified as very high quality signals had mean annotators ratings
of 4 (high quality) or higher. However, some medium quality signal segments as well as one
very low quality signal segment were incorrectly identified as very high quality signals in this
stage. As can be seen in Fig. 6, this very low quality signal segment was identified as a very low
quality signal by feature sumHb_ratio in rating stage one. This means that in the SQI algorithm
workflow, it would not enter rating stage two and would hence not be incorrectly classified by the
algorithm.

Quantitative metrics evaluating the correctness of the features in rating stage one and two are
reported in Table 1 (for more details, see Materials and Methods, section Features correctness
assessment). Regarding the features included in rating stage one, the features intensity and
sumHb_ratio identified a greater number of signal segments as very low quality signals than the
feature std_ODs. Both features achieved a high precision in the identification (both above 94%).
The feature std_ODs identified less signal segments as having very low quality than the other two
features, though with 100% precision. In rating stage two, feature acorrDiff_ODs identified 37
signal segments as very high quality signals with a precision of 83.78%.

Table 1. Quantitative metrics for correctness assessment of the proposed features identifying very
low (intensity, std_ODs, and sumHb_ratio) and very high (acorrDiff_ODs) quality signal segments in

rating stage one and two of the SQI algorithm, respectively

Feature
Precision

(%)
Number of identified
signal segmentsa

Number of correct
decisions

Number of
incorrect decisions

intensity 96.67 30 29 1

std_ODs 100 2 2 0

sumHb_ratio 94.44 36 34 2

acorrDiff_ODs 83.78 37 31 6

aNumber of signal segments identified as very low quality signals (for features in rating stage one) and number of signal
segments identified as very high quality signals (for the feature in rating stage two).

In rating stage three (signal quality rating), using the feature logStdHb (the logarithm of the
ratio between the standard deviation of O2Hb and HHb), the SQI algorithm rates the signal
quality for those signal segments which have not been identified in rating stage one and two.
Figure 7 shows a scatter plot of this feature for all 123 signal segments, revealing a significant
positive linear relationship (r2 = 0.79, p-value < 0.05) between the raw values of the feature
logStdHb and their mean annotators ratings. Signal segments that were identified by features
in rating stage one and two are shown in red (very low quality) and blue (very high quality),
respectively.

3.1.2. Algorithm performance assessment

Quantitative rating performance The raw values of the rating features were converted to a
continuous scale from 1 to 5 (for more details, see Materials and Methods, section Quantitative
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Fig. 7. Scatter plot of the feature logStdHb in rating stage three (signal quality rating) of
the SQI algorithm. Raw values (y-axis) obtained for the feature logStdHb (logarithm of the
ratio between the standard deviation of O2Hb and HHb) with respect to the mean annotators
ratings (x-axis) for each of the signal segments are depicted. Each dot represents one of the
123 signal segments included in the training dataset. Red dots represent signal segments
that were identified as very low quality signals in rating stage one. Blue dots represent
signal segments that were identified as very high quality signals in rating stage two. Black
dots represent signal segments that were not identified as very low or very high quality
signals in rating stage one and two and consequently entered rating stage three. The gray
line represents the regression line obtained between the raw values for the feature logStdHb
and the mean annotators ratings.

rating performance) in order to evaluate the performance of SQI, SCI and PHOEBE algorithms
in quantitatively rating fNIRS signal quality. We refer to these as estimated ratings.

Figure 8 illustrates the scatter plots comparing the estimated ratings with the mean annotators
ratings for SQI, SCI and PHOEBE algorithms. The proposed algorithm exhibits a better fit to
the mean annotators ratings than PHOEBE and SCI, although a significant positive correlation
can be observed for the three algorithms (p< 0.05). While SQI explains 88% (p-value < 0.05)
of the variance, PHOEBE and SCI explain 52% and 58% (p-value < 0.05) of the variance,
respectively. Data points in the scatter plots for the PHOEBE and SCI algorithms are more
sparsely distributed around the y= x line than for SQI. This is reflected by the higher Bland
Altman limits of agreement obtained for PHOEBE (BLA=1.99) and SCI (BLA=1.92) with
respect to SQI (BLA=1.16). Quantitative measures showing the similarity between the mean
annotators ratings and estimated ratings for each of the algorithms are reported in Table 2.
SQI had a lower standard deviation of error than SCI and PHOEBE. The mean of error of all
considered algorithms was below 0.07. The computation time took the longest (53.11ms) for the
SQI algorithm, whereas for SCI and PHOEBE this time was approximately 20% and 60% of the
SQI computation time, respectively.
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Fig. 8. Scatter plots for the estimated rating after the regression to a 1-5 continuous scale.
The scatter plots show the estimated ratings (y axis) for each of the signal segments with
respect to the mean annotators ratings (x axis). Each dot represents one of the 123 signal
segments included in the training dataset. The full and dashed lines are, respectively, the
y= x line and the Bland Altman limits of agreement. From left to right, the figure shows the
scatter plots for: SQI (A), SCI (B) and PHOEBE (C).

Table 2. Quantitative measures for comparing the performance of the considered algorithms in
quantitatively rating the fNIRS signal quality on the training dataset.

Method MEa StdEb r2 p-value of correlationc Computation Timed (ms)

SCI 0.06 0.98 0.58 <0.01 10.77

PHOEBE −0.004 1.01 0.52 <0.01 31.42

SQI 0.04 0.59 0.88 <0.01 53.11

aMean of error.
bStandard deviation of error.
cP-values were corrected for multiple comparisons applying the Benjamini-Hochberg method.
dThe computation time was calculated for a single signal segment using our reference implementation in MATLAB
R2019b (MathWorks, Natick, Massachusetts) without considering the time to compute the linear regression.

Binary classification performance We compared the binary classification performance of the
three considered algorithms in classifying the signal segments into “bad quality” and “good
quality” signals. To assign these binary labels to the training dataset, the mean annotators ratings
were thresholded using a threshold value of 3.5. The binary classification of fNIRS signal quality
performed by the considered algorithms was conducted as explained in Materials and Methods,
section Binary classification performance.
The binary classification performance results on the training dataset are reported in Table 3.

The SQI, PHOEBE and SCI algorithms performed with an accuracy equal or higher than
65%, which is above chance level (50%). All three algorithms showed a high specificity and
precision (above 92%), with SCI obtaining the highest for both measures. SQI showed the highest
sensitivity (sensitivity= 92.86%) of all three algorithms, with PHOEBE and SCI showing a high
(sensitivity= 78.57%) and low (sensitivity= 38.57%) sensitivity, respectively. The results of the
statistical comparison of the binary performance of all algorithms against each other (see Table 4)
exhibit that all three algorithms performed significantly differently from each other.

3.2. Validation phase

We further assessed the performance of the SQI algorithm on the validation dataset in i)
quantitative rating fNIRS signal quality and ii) binary classification of fNIRS signal quality. In
both cases, we compared its performance with the performance of SCI and PHOEBE algorithms.



Research Article Vol. 11, No. 11 / 1 November 2020 / Biomedical Optics Express 6746

Table 3. Performance measures for comparing the performance of the considered algorithms in
binary classification of the fNIRS signal quality on the training dataset

Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score (%)

SCI 65.04 38.57 100 100 55.67

PHOEBE 84.55 78.57 92.45 93.22 85.27

SQI 92.68 92.86 92.45 94.20 93.53

Table 4. Z-scores and p-values calculated by applying McNemar’s binomial test to compare the
classification accuracies between each pair of algorithms with respect to the binarized mean
annotators ratings on the training dataset. P-values were corrected for multiple comparisons

applying the Benjamini-Hochberg method.

SCI PHOEBE SQI

SCI - z(123)=−4.15, p < 0.01 z(123)=−5.21, p < 0.01

PHOEBE z(123)=−4.15, p< 0.01 - z(123)=−1.82, p < 0.05

SQI z(123)=−5.21, p < 0.01 z(123)=−1.82, p < 0.05 -

3.2.1. Quantitative rating performance

For all three algorithms, the raw values of the rating features were converted to the continuous
scale from 1 to 5 (estimated rating) by using the linear models fitted on the training dataset.
Quantitative measures showing the similarity between the mean annotators ratings and the
estimated ratings for each of the algorithms are reported in Table 5. These results are consistent
with the results obtained for the training dataset. While SQI explained 85% (p-value < 0.05) of
the variance, PHOEBE and SCI only explained 43% and 65% (p-value < 0.05), respectively. In
addition, SQI showed a lower standard deviation of error than both SCI and PHOEBE algorithms.
The mean of error (ME) for SQI was lower than 0.1 and was the lowest of all three algorithms.

Table 5. Quantitative measures for comparing the performance of the considered algorithms in
quantitatively rating the fNIRS signal quality on the validation dataset.

Method MEa StdEb r2 p-value of correlationc

SCI −0.15 0.80 0.65 <0.01

PHOEBE 0.44 1.01 0.43 <0.01

SQI −0.09 0.60 0.85 <0.01

aMean of error.
bStandard deviation of error.
cP-values were corrected for multiple comparisons applying the Benjamini-Hochberg method.

3.2.2. Binary classification performance

We compared the binary classification performance of the three considered algorithms on the
validation dataset in classifying the signal segments into “bad quality” and “good quality” signals.
We binarized the output of the three considered algorithms as well as the mean annotators
ratings as detailed in Materials and Methods, section Binary classification performance. The
threshold used for the logStdHb feature in rating stage three of the SQI algorithm was the same as
empirically derived in the training phase. The thresholds used for PHOEBE and SCI were those
suggested in the original papers (see [17,18]). The binary classification performance results
are reported in Table 6. All considered algorithms performed with an accuracy equal or higher
than 65%, which is above chance level (50%). However, the accuracy for the SQI algorithm
(accuracy= 95%) was 30% higher than SCI (accuracy= 65%) and 20% higher than PHOEBE
(accuracy= 75%). Although both PHOEBE and SCI obtained a 100% for both specificity
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and precision, they obtained low sensitivity values: 39.13% SCI and 56.52% PHOEBE. This
shows that, despite correctly classifying all good quality signals, they did not perform well at
classifying bad quality signals. This is reflected in the lower accuracy and F1-score obtained for
both algorithms compared to SQI. Conversely, the SQI algorithm showed high values for the
three metrics (specificity= 94.12%, precision= 95.65%, sensitivity= 95.65%). We conducted a
binomial test to determine whether the differences in performance of the considered algorithms
were significant. The results for this test are reported in Table 7. The SQI algorithm performed
significantly differently (p-value < 0.05) from SCI and PHOEBE at binary classifying fNIRS
signals quality, while SCI and PHOEBE did not perform significantly differently from each other.
Furthermore, since 3 out of the total of 4 participants included in the validation dataset were
also common to the training dataset (see section 2.1.2), in Appendix 2 we analyzed whether they
introduced any bias in the classification.

Table 6. Performance measures for comparing the performance of the considered algorithms in
binary classification of the fNIRS signal quality on the validation dataset

Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score (%)

SCI 65 39.13 100 100 56.25

PHOEBE 75 56.52 100 100 72.22

SQI 95 95.65 94.12 95.65 95.65

Table 7. Z-scores and p-values calculated by applying McNemar’s binomial test to compare the
classification accuracies between each pair of algorithms with respect to the binarized mean

annotators ratings on the validation dataset. P-values were corrected for multiple comparisons
applying the Benjamini-Hochberg method.

SCI PHOEBE SQI

SCI - z(40)= -1.53, p > 0.05 z(40)=−2.76, p < 0.01

PHOEBE z(40)=−1.53, p > 0.05 - z(40)=−1.99, p < 0.05

SQI z(40)=−2.76, p < 0.01 z(40)=−1.99, p < 0.05 -

4. Discussion

In this study, we developed a novel algorithm, Signal Quality Index (SQI), capable of quantitatively
assessing the quality of fNIRS signals in a numeric scale from 1 (very low quality) to 5 (very high
quality). To the best of our knowledge, the SQI algorithm is the first algorithm to quantitatively
rate fNIRS signal quality in more than two quality levels. Current existing algorithms, like SCI
[17] and PHOEBE [18], offer only a sharp distinction between two quality levels of good and
bad signal quality. We found that, despite higher computation time, the SQI algorithm showed a
significantly better performance (p< 0.05) in quantitatively rating the fNIRS signal quality than
PHOEBE and SCI (see Tables 2 and 5). SQI numerically showed a greater positive correlation
(r2 = 0.85, p< 0.05) between the estimated ratings and the mean annotators ratings than PHOEBE
(r2 = 0.43, p< 0.05) and SCI (r2 = 0.65, p< 0.05). Furthermore, we found that SQI showed a
significantly better performance in binary classification of the fNIRS signal quality (p< 0.05)
than PHOEBE and SCI, in terms of accuracy, sensitivity, and F1-score (see Tables 3 and 6).

The novelty of the here developed SQI algorithm is that, rather than using a single metric for
directly rating the signal quality as SCI does, or a combination of two metrics as done by the
PHOEBE algorithm, the SQI algorithm is composed of three different rating stages: identifying
very low quality signals (rating stage one), identifying very high quality signals (rating stage
two), signal quality rating (rating stage three). Each of these stages includes one or more features,
which were selected in order to translate current heuristics in visual assessment of fNIRS signal
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quality into a numeric rating. The performance of the features in rating stage one and two on
the training dataset (see Table 1) showed that they are well suited for identifying very low and
very high quality signals with high precision (>80%). The performance results of the feature
logStdHb in rating stage three demonstrated that it is well suitable for fNIRS signal quality rating.
This claim is supported by the significant positive linear relationship (r2 = 0.79, p-value < 0.05)
observed between the raw values of this feature and the mean annotators ratings (See Fig. 7).
Furthermore, including rating stage one and two in the algorithm improves its performance,
since the features in these stages identify very low and very high quality signal segments that
would otherwise be incorrectly rated by the feature logStdHb in rating stage three. This shows
the efficacy of including three rating stages in the SQI algorithm workflow, outperforming the
state-of-the-art algorithms SCI and PHOEBE.

In this study, the SCI and PHOEBE algorithms used for comparison were implemented as done
by their authors (see [26]). We used the thresholds proposed in the original papers [17,18] for
binary classification. Though beyond the scope of this study, these thresholds could be optimized
on the training dataset to improve their performance. Further studies could be conducted to
evaluate the performance sensitivity of the SQI, SCI, and PHOEBE algorithms to different
thresholds.
Binary approaches for signal quality assessment, such as SCI and PHOEBE, provide a sharp

distinction between “bad” and “good” quality signals. Conversely, three or more levels of signal
quality rating allow for the discrimination of “bad” and “good” quality signals into different
levels of quality. In some experiments, recording “good” quality signals is very hard to achieve,
e.g. when the signals are recorded from subjects or brain areas with a high density of dark hair.
In such cases, although the signal might show a weak pulsatile heart beat component because
a great part of the transmitted light is absorbed by hair, the quality of such signal segments
might still be considered sufficient for certain types of analysis. In a binary approach, these
signal segments would either be classified as “bad” or “good” quality signals, depending on
the sensitivity of the classifier. In a three or more levels signal quality approach, however, an
intermediate quality rating for such signal segments allows the researcher to decide whether the
achieved level of quality is sufficient for the analysis. Furthermore, the five-level scale provided
in the SQI algorithm makes it possible to decrease the resolution of rating to either a three-level
scale or a binary one, which is not possible for the other way around. Therefore, depending on
the type of analysis that is to be conducted, the researcher can convert this five-level scale to
fewer levels.
Although the results we obtained for the SQI algorithm are promising for both offline and

online applications, further improvements are possible. We did not include a stage identifying and
rating signal segments affected by motion, since it was beyond the scope of this study. Therefore,
in the current work, the analysis of the algorithm performance was limited to data free of motion
artifacts. However, motion artifacts are an important source of noise in fNIRS signals. These
artifacts, often caused by head and body movements, are unavoidable especially in challenging
subject groups like infants and in rehabilitation research and sport science, which often deal
with subjects in motion [29–32]. Subject movement causes motion between the optodes and the
scalp, leading to rapid shifts in the optical coupling. These rapid shifts take the form of transient
spikes in fNIRS signals, and have a scale and frequency composition that are distinct from the
background fNIRS signal [32].
The features included in the SQI algorithm use heuristics about meaningful physiological

components and characteristics of fNIRS signals, therefore the presence of motion artifacts
might affect the performance of the algorithm. We included a section in Appendix 3 where we
compared the performance of the considered algorithms on a motion-corrupted dataset. We
found that none of the algorithms performed well in quantitatively rating fNIRS signal quality.
Therefore, to improve the performance of the SQI algorithm in the presence of motion, future
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research should consider the effects of motion on fNIRS signal quality and include a stage for
motion artefact recognition [29,31].

In addition, both the training and validation of the SQI algorithm were conducted in a set of data
collected from healthy young adults. Because functional and systemic-related hemodynamics
depend on age [33,34], further studies could be conducted to assess the SQI algorithm in a more
extensive dataset, comprising data from infants and elderly people as well as from subjects with
cardiac abnormalities.
In this study, we introduced an algorithm, SQI, which is capable of quantitatively rating and

binary classifying fNIRS signal quality and outperforms current state-of-the-art algorithms. It
can be used as an offline tool for identifying and rejecting channels and trials with a poor signal
quality, as well as for online assessment of fNIRS signal quality during set-up and data acquisition.
The SQI algorithm was designed to run over 10-second sliding windows. When applying the
algorithm to either offline or online data, the user can compute the SQI values for every 10
seconds of data. This allows for an estimation of the varying signal quality of long recordings
over time, making it possible to drop trials with poor signal quality rather than the channels
themselves. We believe that the widespread use of this algorithm for reporting signal quality
ratings for each of the measured channels would ensure that experiments are carried out in proper
conditions for collecting actual hemodynamic information and reducing artefacts. Therefore,
whether a novice or an experienced researcher conducts an experiment would no longer be an
issue for guaranteeing the collection of good quality fNIRS data. The source code for the SQI
algorithm is available at https://github.com/Artinis-Medical-Systems-B-V/SignalQualityIndex.
The algorithm will be implemented in Artinis’ fNIRS software OxySoft 3.3.

5. Conclusion

In this study we have developed an algorithm, signal quality index (SQI), to quantitatively assess
NIRS signal quality in a numeric scale from 1 (very low quality) to 5 (very high quality). The
results demonstrate the adequacy of the proposed algorithm for both binary and quantitatively
rating the NIRS signal quality. The SQI algorithm performed better than SCI and PHOEBE,
existing algorithms in the literature. The promising results obtained in this study suggest that the
SQI algorithm could be exploited in different applications: from offline use after recording the
signals to online use during recording or optodes setup.

Appendix 1

Although the feature std_ODs correctly identified signal segments with very low quality,
its identification completely coincided with the identification of the features intensity and
sumHb_ratio. Moreover, the number of identified signal segments is very low compared with the
number of signal segments identified by the other two features in this stage. Nonetheless, we
decided to include this feature in the algorithm because of two reasons. Firstly, it is an intuitive
feature that identifies signal segments having at least one optical density (OD) signal as a flatline,
which is a clear sign of a very low quality signal. Secondly, it potentially avoids misclassification
of signal segments in subsequent stages of the algorithm.
Misclassification of such signal segments could arise in cases where the amplitude of the

flatline OD signal is within the permitted range for feature intensity in rating stage one. The signal
segment would not be rated by this feature as a very low quality signal and would then be evaluated
by feature sumHb_ratio. This feature could fail at identifying the signal segment as a very low
quality signal because of using concentration changes in O2Hb (∆[O2Hb]) and HHb (∆[HHb])
signals, obtained from OD signals by means of the Modified Beer-Lambert Law (Eq. (4)). For
illustrative purposes, we replaced in Eq. (4) the values for the molar extinction coefficients of
each chromophore for two sample wavelengths used by the devices (1= 850 nm, 2= 760 nm),
the source detector distance (d= 3 cm), and the differential pathlength factor (DPF= 6). This is

https://github.com/Artinis-Medical-Systems-B-V/SignalQualityIndex
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simplified in Eq. (5). The resulting HHb and O2Hb signals are a linear combination of both OD
signals, as shown in Eq. (6) and (7), respectively.

∆[HHb]

∆[O2Hb]

 = (d)−1

εHHb,λ1 εO2Hb,λ1

εHHb,λ2 εO2Hb,λ2


−1 
∆OD(∆t, λ1)/DPF(λ1)

∆OD(∆t, λ2)/DPF(λ2)

 (4)


∆[HHb]

∆[O2Hb]

 =

−23.2 44

63.6 −29.9



∆OD(∆t, λ1)

∆OD(∆t, λ2)

 (5)

∆[HHb] = −23.2 × ∆OD(∆t, λ1) + 44 × ∆OD(∆t, λ2) (6)

∆[O2Hb] = 63.6 × ∆OD(∆t, λ1) − 29.9 × ∆OD(∆t, λ2) (7)

Feature sumHb_ratio of rating stage one considers a scale ratio between HHb and O2Hb signals.
If one of the OD signals is a flat line of constant amplitude, i.e. it has a zero standard deviation,
the resulting O2Hb and HHb signals will be a factor of the OD signal having a non-zero standard
deviation plus a constant value introduced by the OD signal with a zero standard deviation (see
Eq. (6)). This constant value is removed from the O2Hb and HHb signals in the preprocessing
stage. Depending on which of the OD signals is a flat line, the ratio between the filtered O2Hb
and HHb signals will be either greater or lower than one. In the case in which this ratio is lower
than one, the signal segment will be correctly identified as a very low quality signal by feature
sumHb_ratio. In the opposite case, however, it would enter subsequent stages of the algorithm,
which could result in its misclassification. Therefore, considering that the computation time of
the standard deviation is low, including the feature std_ODs is necessary to guarantee a better
performance of the SQI algorithm.

In the present study, the two signal segments having a standard deviation of zero were correctly
identified as very low quality signals by feature intensity, because they had null amplitudes. They
were also correctly identified by the feature sumHb_ratio, because they are examples of the case
where the ratio between O2Hb and HHb signals is lower than one. However, as explained above,
this is not necessarily always the case.

Appendix 2

We checked whether the three participants common to the training and validation datasets
introduced any bias in the classification. In order to do so, we split the validation dataset into
two sets: one with only the common participants (set A) and the other with only the additional
participant not present in the training dataset (set B). We compared the binary classification
performance of the algorithms for each of these sets (see Table 8). We found that the performances
of the algorithms were consistent for both sets of data and thus conclude that there was no bias in
the classification.

Table 8. Accuracy for comparing the performance of the considered algorithms in binary
classification of the fNIRS signal quality on two sets of the validation dataset: one with the

participants common to both training and validation datasets (set A) and the other with only the
additional participant not present in the training dataset (set B).

Method Accuracy (%) for set A Accuracy (%) for set B

SCI 63.3 70

PHOEBE 76 70

SQI 96.7 90
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Appendix 3

We further assessed the performance of the SQI algorithm on a validation dataset contaminated
with motion artifacts, in both quantitatively rating and binary classifying fNIRS signal quality.
We compared the performance of the SQI algorithm with the performance of SCI and PHOEBE.
The dataset used comprised 35 10-second signal segments, which had been excluded in the
training phase as signal segments containing motion (see section 2.1.1). Figure 9 shows one of
the signal segments rated as having motion artifacts by all annotators in the training phase.

Fig. 9. A sample signal segment contaminated with motion artifacts. This signal segment
was rated as containing motion artifacts by all annotators in the training phase. (A) Orange
and black curves represent the detrended optical density signals for the wavelengths 846 and
757 nm, respectively. (B) Red and blue curves represent the detrended changes in O2Hb and
HHb concentrations, respectively.

Quantitative rating performance

For each of the three algorithms, estimated ratings in the 1-5 scale were obtained for the motion
corrupted validation dataset by applying the linear models fitted on the training dataset (see
Materials and Methods, section Quantitative rating performance). Quantitative measures showing
the similarity between the mean annotators ratings and the estimated ratings are reported in
Table 9. While PHOEBE explained 31% (p-value < 0.01) of the variance, SQI and SCI explained
20% and 11% (p-value < 0.05) of the variance, respectively. SCI and PHOEBE had a lower
standard deviation of error than SQI. The mean of error of all considered algorithms was below
0.9, and was higher for SCI than for SQI and PHOEBE.

Table 9. Quantitative measures for comparing the performance of the considered algorithms in
quantitatively rating the fNIRS signal quality on the motion-corrupted validation dataset.

Method MEa StdEb r2 p-value of correlationc

SCI 0.87 1.06 0.11 <0.05

PHOEBE −0.18 0.91 0.31 <0.01

SQI 0.03 1.39 0.20 <0.01

aMean of error.
bStandard deviation of error.
cP-values were corrected for multiple comparisons applying the Benjamini-Hochberg method.
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Binary classification performance

For the three considered algorithms, we compared the binary classification performance on
the motion corrupted validation dataset as explained in Materials and Methods, section Binary
classification performance. The binary classification performance results are reported in Table 10.
Both SQI and PHOEBE algorithms performed with an accuracy higher than chance level (50%),
while SCI performance was below chance level. Although SCI showed the highest specificity
and precision (100%), its sensitivity and F1-score were very low, and were the lowest of the three
algorithms.

Table 10. Performance measures for comparing the performance of the considered algorithms in
binary classification of the fNIRS signal quality on the motion-corrupted validation dataset.

Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score (%)

SCI 28.57 7.41 100 100 13.79

PHOEBE 80 92.59 37.50 83.33 87.72

SQI 65.71 74.07 37.50 80 76.92

The results of the statistical comparison of the binary performance of all algorithms against
each other are reported in Table 11. These results show that SQI and PHOEBE did not perform
significantly differently from each other (p-value > 0.05). However, both algorithms performed
significantly differently (p-value < 0.01) from SCI at binary classifying fNIRS signals quality.

Table 11. Z-scores and p-values calculated by applying McNemar’s binomial test to compare the
classification accuracies between each pair of algorithms with respect to the binarized mean

annotators ratings on the motion-corrupted validation dataset. P-values were corrected for multiple
comparisons applying the Benjamini-Hochberg method.

SCI PHOEBE SQI

SCI - z(35)=−2.94, p < 0.01 z(35)=−2.33, p < 0.01

PHOEBE z(35)=−2.94, p < 0.01 - z(35)=−1.47, p > 0.05

SQI z(35)=−2.33, p < 0.01 z(35)=−1.47, p > 0.05 -

Funding

European Regional Development Fund (PROJ-00872); Horizon 2020 Framework Programme
(No. 813234, No. 813843).

Acknowledgements

The authors would like to thank Dr. Roemer van der Meij and Liucija Svinkunaite for their
contribution to an early version of the algorithm, as well as the fNIRS experts working at Artinis
Medical Systems B.V., who participated in annotating the quality of the fNIRS signal segments.

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References
1. B. Chance, Z. Zhuang, C. UnAh, C. Alter, and L. Lipton, “Cognition-activated low-frequency modulation of light

absorption in human brain,” Proc. Natl. Acad. Sci. U. S. A. 90(8), 3770–3774 (1993).
2. N. Hakimi and S. K. Setarehdan, “Stress assessment by means of heart rate derived from functional near-infrared

spectroscopy,” J. Biomed. Opt. 23(11), 1 (2018).

https://doi.org/10.1073/pnas.90.8.3770
https://doi.org/10.1117/1.JBO.23.11.115001


Research Article Vol. 11, No. 11 / 1 November 2020 / Biomedical Optics Express 6753

3. P. Pinti, I. Tachtsidis, A. Hamilton, J. Hirsch, C. Aichelburg, S. Gilbert, and P. W. Burgess, “The present and future
use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience,” Ann. N. Y. Acad. Sci. 1464(1),
5–29(2020).

4. A. C. Ehlis, S. Schneider, T. Dresler, and A. J. Fallgatter, “Application of functional near-infrared spectroscopy in
psychiatry,” NeuroImage 85, 478–488 (2014).

5. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): A new tool to
study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154(1-2), 101–104
(1993).

6. Q. a. Ferrari, “A Mini-Review on Functional Near-Infrared Spectroscopy (fNIRS): Where Do We Stand, and Where
Should We Go?” Photonics 6(3), 87 (2019).

7. N. Hakimi, A. Jodeiri, M. Mirbagheri, and S. K. Setarehdan, “Proposing a convolutional neural network for stress
assessment by means of derived heart rate from functional near infrared spectroscopy,” Comput. Biol. Med. 121,
103810 (2020).

8. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near
infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90
(2001).

9. W. N. J. M. Colier, V. Quaresima, B. Oeseburg, and M. Ferrari, “Human motor cortex oxygenation changes induced
by cyclic coupled movements of hand and foot,” Exp. Brain Res. 129(3), 0457–0461 (1999).

10. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M. Pavia, U. Wolf, and M. Wolf, “A review on continuous
wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27
(2014).

11. Y. Hoshi and M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during
mental work in man,” Neurosci. Lett. 150(1), 5–8 (1993).

12. T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring
by means of near-infrared spectroscopy,” J. Cereb. Blood Flow Metab. 13(3), 516–520 (1993).

13. I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues,
challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).

14. E. Huigen, A. Peper, and C. A. Grimbergen, “Investigation into the origin of the noise of surface electrodes,” Med.
Biol. Eng. Comput. 40(3), 332–338 (2002).

15. M. Caldwell, F. Scholkmann, U. Wolf, M. Wolf, C. Elwell, and I. Tachtsidis, “Modelling confounding effects from
extracerebral contamination and systemic factors on functional near-infrared spectroscopy,” NeuroImage 143, 91–105
(2016).

16. F. Orihuela-Espina, D. R. Leff, D. R. C. James, A. W. Darzi, and G. Z. Yang, “Quality control and assurance in
functional near infrared spectroscopy (fNIRS) experimentation,” Phys. Med. Biol. 55(13), 3701–3724 (2010).

17. L. Pollonini, C. Olds, H. Abaya, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai, “Auditory cortex activation to
natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy,” Hear.
Res. 309, 84–93 (2014).

18. L. Pollonini, H. Bortfeld, and J. S. Oghalai, “PHOEBE: a method for real time mapping of optodes-scalp coupling in
functional near-infrared spectroscopy,” Biomed. Opt. Express 7(12), 5104 (2016).

19. M. Elgendi, “Optimal signal quality index for photoplethysmogram signals,” Bioengineering 3(4), 21 (2016).
20. J. A. Sukor, S. J. Redmond, and N. H. Lovell, “Signal quality measures for pulse oximetry through waveform

morphology analysis,” Physiol. Meas. 32(3), 369–384 (2011).
21. D. T. Delpy, M. Cope, P. Van Der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through

tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
22. E. C. Ifeachor and B. W. Jervis, Digital Signal Processing: A Practical Approach. Prentice Hall, Upper Saddle River,

NJ, 2002.
23. R. Oostenveld, P. Fries, E. Maris, and J. M. Schoffelen, “FieldTrip: Open source software for advanced analysis of

MEG, EEG, and invasive electrophysiological data,” Comput. Intell. Neurosci. 2011, 1–9 (2011).
24. T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: A review of time-series analysis

methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
25. Y. Benjamini and Y. Hochberg, “Controlling the False Discovery Rate: A Practical and Powerful Approach to

Multiple Testing,” J. R. Stat. Soc. Ser. B 57(1), 289–300 (1995).
26. [26] L. Pollonini and J. Perry, “PHOEBE (2020), Github repository,” 2020. [Online]. Available:

https://bitbucket.org/lpollonini/phoebe/wiki/Home. [Accessed: 01-Sep-2020].
27. D. G. Altman and J. M. Bland, “Measurement in Medicine: the Analysis of Method Comparison Studies †,” Am Stat.

32(3), 307–317 (1983).
28. T. G. Dietterich, “Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms,”

Neural Comput. 10(7), 1895–1923 (1998).
29. S. Brigadoi, L. Ceccherini, S. Cutini, F. Scarpa, P. Scatturin, J. Selb, L. Gagnon, D. A. Boas, and R. J. Cooper,

“Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to
real cognitive data,” NeuroImage 85(0 1), 181–191 (2014).

30. M. D. Pfeifer, F. Scholkmann, and R. Labruyère, “Signal Processing in Functional Near-Infrared Spectroscopy
(fNIRS): Methodological Differences Lead to Different Statistical Results,” Front. Hum. Neurosci. 11, 641 (2018).

https://doi.org/10.1111/nyas.13948
https://doi.org/10.1016/j.neuroimage.2013.03.067
https://doi.org/10.1016/0304-3940(93)90181-J
https://doi.org/10.3390/photonics6030087
https://doi.org/10.1016/j.compbiomed.2020.103810
https://doi.org/10.1006/nimg.2000.0674
https://doi.org/10.1007/s002210050913
https://doi.org/10.1016/j.neuroimage.2013.05.004
https://doi.org/10.1016/0304-3940(93)90094-2
https://doi.org/10.1038/jcbfm.1993.66
https://doi.org/10.1117/1.NPh.3.3.031405
https://doi.org/10.1007/BF02344216
https://doi.org/10.1007/BF02344216
https://doi.org/10.1016/j.neuroimage.2016.08.058
https://doi.org/10.1088/0031-9155/55/13/009
https://doi.org/10.1016/j.heares.2013.11.007
https://doi.org/10.1016/j.heares.2013.11.007
https://doi.org/10.1364/BOE.7.005104
https://doi.org/10.3390/bioengineering3040021
https://doi.org/10.1088/0967-3334/32/3/008
https://doi.org/10.1088/0031-9155/33/12/008
https://doi.org/10.1155/2011/156869
https://doi.org/10.1364/AO.48.00D280
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://bitbucket.org/lpollonini/phoebe/wiki/Home
https://doi.org/10.2307/2987937
https://doi.org/10.1162/089976698300017197
https://doi.org/10.1016/j.neuroimage.2013.04.082
https://doi.org/10.3389/fnhum.2017.00641


Research Article Vol. 11, No. 11 / 1 November 2020 / Biomedical Optics Express 6754

31. F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to detect and reduce movement artifacts in
near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662
(2010).

32. R. J. Cooper, J. Selb, L. Gagnon, D. Phillip, H. W. Schytz, H. K. Iversen, M. Ashina, and D. A. Boas, “A Systematic
Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy,” Front. Neurosci.
6, 147 (2012).

33. T. Peng, P. N. Ainslie, J. D. Cotter, C. Murrell, K. Thomas, M. J. A. Williams, K. George, R. Shave, A. B. Rowley, and
S. J. Payne, “The effects of age on the spontaneous low-frequency oscillations in cerebral and systemic cardiovascular
dynamics,” Physiol. Meas. 29(9), 1055–1069 (2008).

34. L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin,
and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch.
Gerontol. Geriatr. 39(3), 207–225 (2004).

https://doi.org/10.1088/0967-3334/31/5/004
https://doi.org/10.3389/fnins.2012.00147
https://doi.org/10.1088/0967-3334/29/9/005
https://doi.org/10.1016/j.archger.2004.03.007
https://doi.org/10.1016/j.archger.2004.03.007

