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ABSTRACT 

Human observation is commonly used to collect pavement 

surface distress data, during periodic road surveys. This 

method is labour-intensive, subjective and potentially haz-

ardous for both inspectors and road users. This paper pre-

sents a novel framework for automatic crack detection and 

classification using survey images acquired at high driving 

speeds. The resulting images are pre-processed using mor-

phological filters for reducing pixel intensity variance. Then, 

a dynamic thresholding is applied to identify dark pixels in 

images, as these correspond to potential crack pixels. 

Thresholded images are divided into non-overlapping blocks 

for entropy computation. A second dynamic thresholding is 

applied to the resulting entropy blocks matrix, used as the 

basis for identification of image blocks containing crack pix-

els. The classification system then labels images as contain-

ing horizontal, vertical, miscellaneous or no cracks. Two 

image databases are used for test purposes, to infer about the 

method’s robustness, one of which acquired using profes-

sional high speed equipment. 

1. INTRODUCTION 

Roads are important infrastructures that exhibit distresses 

due to their constant usage. These distresses, usually in the 

form of cracks in pavement surface, reduce pavement per-

formance, implying loss of asset value, poor quality of ser-

vice and constraining the access to remote areas. To avoid 

such problems, good road maintenance policies are required, 

relying on the establishment of adequate rehabilitation man-

agement procedures.  

Road surveys provide the necessary data collection tools 

about the pavement surface condition. To achieve this, in-

spectors typically travel along the surveyed roads collecting 

data (including images) about surface distress types and 

locations. This type of survey, based on human observation, 

requires driving slowly along the road (usually less than 

10 km per day), prone to subjectivity, since two inspectors 

can produce different analysis results over similar distress 

situations, and raise some security concerns for both the 

inspectors and the other road users, especially in high speed 

roads like highways [1]. 

To successfully implement adequate rehabilitation actions, 

automatic systems for fast and reliable pavement surface 

defects acquisition and analysis are being developed, instead 

of relying solely on the more conventional, slow, labour-

intensive and subjective, human inspection procedures [2]. 

Automation of the procedures leads to cost reductions, as 

well as more objective and standardized rehabilitation deci-

sions. 

An image based automatic pavement surface distress survey 

system poses some challenges. The hardware for data acqui-

sition can be complex and expensive [3] [4], and also com-

plex data processing techniques are needed due to the vari-

ability of pavement conditions and textures. Neural networks 

[1][5], Markov random fields [6], artificial living systems 

approaches [7], among others [2], have been reported in the 

literature. 

In this paper, a simple system architecture for the analysis of 

images acquired during road surveys is proposed. Two dis-

tinct databases are used for testing purposes: the first one is 

acquired using the high speed acquisition system; the second 

was collected during a human observation survey. A different 

analysis technique for crack detection had been previously 

implemented over this second database, allowing a compara-

tive study to be conducted, by using well-known metrics and 

a ground truth manually created for evaluation purposes.  

The rest of the paper is organized as follows. Section 2 

briefly presents the image acquisition procedures. The pro-

posed unsupervised crack detection and classification system 

architecture is described in section 3. Section 4 presents ex-

perimental results and section 5 draws some conclusions and 

presents some hints for future work. 

2. HIGH SPEED IMAGE ACQUISITION: THE 

LRIS SYSTEM 

Automatic systems for road pavement surface distress data 

acquisition and processing is an active research field. De-

spite the performance improvements of recent equipments, 

some problems still remain, for instance related with imple-

mentation costs, processing speed or accuracy [3]. In [8], 

INO presented a system, LRIS, capable of acquiring pave-

ment surfaces images during road surveys at speeds that can 

surpass 100 km/h.  

The LRIS system is composed by two high speed/high reso-

lution linescan cameras (each one acquiring half road lane 

images) in conjunction with high power lasers, see Figure 1.  

The cameras and the projectors are aligned in the same plane 

in a symmetrically crossed optical configuration. This con-

figuration increases the visibility of very small cracks since 
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the incident illumination angle of the laser causes the projec-

tion of shadows in crack areas. 

  
Figure 1: Schematics of LRIS system [8]. 

A very good contrast is provided between crack’s and no 

crack’s areas and, due to the high power lasers, the system 

can operate in full daylight, being immune to variations in 

outside lighting conditions and to shadows cast by road side 

objects, viaducts and the inspection vehicle itself [8]. Two 

samples of the LRIS image database (DB1), acquired during 

a road survey while driving at 70km/h, are shown in Figure 

2. The images acquired by each sensor have a dimension of 

4096×2048 pixels. 

As an alternative, human observation is commonly used to 

gather information about pavement surface distresses, during 

road surveys made by inspectors. Usually, digital photos of 

defects are also taken during such surveys. Two samples of 

the human observation image database (DB2) considered in 

the scope of this paper, are shown in Figure 3. These images 

were captured along Portuguese roads, using a digital camera 

with its optical axis perpendicular to the road pavement sur-

face and have a dimension of 2048×1536 pixels.  

The images of both databases are processed in grayscale. 

         
Figure 2: Two sample LRIS database original images (DB1) [8]. 

The left sensor image reveals a relevant longitudinal crack (left), 

while the right sensor image reveals the absence of defects (right). 

    
Figure 3: Two sample original images from the database acquired 

during a human observation survey (DB2). 

3. SYSTEM ARCHITECTURE 

In this paper, a simple unsupervised system for the auto-

matic detection of cracks in images acquired during road 

surveys, and their classification into a predefined set of 

crack classes (defined according to the Portuguese Distress 

Catalogue [9]) is proposed, following the system architec-

ture show in Figure 4. For each database (DB1 and DB2), 

different pre-processing strategies are adopted as explained 

in the next section. The remaining modules use the same 

strategy for both image databases. 
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Figure 4: System architecture for crack detection and classification. 

3.1 Pre-processing 
Due to the different characteristics of DB1 and DB2 images, 

the pre-processing operations required in each case, to 

achieve the best possible crack detection results, are also 

different. 

Analysing DB1, the image histograms are bimodal when 

containing road pavement cracks (crack pixels appear darker 

than non crack pixels when using INO hardware [8]), pre-

senting one large mode at the middle and a smaller one near 

the origin, as cracks correspond to darker image areas – see 

the left histogram of Figure 5. This reveals that a threshold, 

can be used to separate the two modes (at approximately 

Th1), segmenting the image into crack pixels and non crack 

pixels. 

 

Figure 5:  Histograms of the images show in Figure 2. 

For images without the presence of crack pixels, the histo-

gram shows a single mode, which can be modelled by a 

Rayleigh probability density function (pdf) – see the right 

side of Figure 5. 

DB1 images present a high variance in pixel intensities, as 

can be observed in the plot shown in the left part of Figure 

6, for row 945 of the left image of Figure 2. Nevertheless, 

this plots shows that a threshold could be used to segment 

almost all crack pixels. DB2 images present a lower pixel 

Crack 

pixels  

Th1 
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intensity variance, as can be observed in the right plot of 

Figure 6. Again, a threshold can be used for image segmenta-

tion into crack pixels and non crack pixels, even if in this 

case the threshold value needs to be higher than the one used 

for DB1.  

 

Figure 6: Pixel intensities for row 945 of Figure 2 left image (left) 

and for column 740 of Figure 3 left image (right). 

Additionally, DB2 images present a non-uniform illumina-

tion (in opposition to what was observed for DB1), due to the 

digital camera falloff effect. To correct this, the pre-

processing strategy described in [10] is applied to DB2 im-

ages. Images are divided into non-overlapping blocks of di-

mension 75 × 75 pixels, being normalized based on the 

block’s average pixel intensities, without losing information 

about crack pixels. The effect of this normalization procedure 

is illustrated in Figure 7, where image blocks are adjusted to 

the same mean intensity value, except for those blocks possi-

bly containing crack pixels. 

 
Figure 7: DB2 normalization procedure, reducing non-uniform 

background illumination effects. The contrast to blocks  

potentially containing crack pixels is enhanced. 

After normalization of DB2 images, a common pre-

processing stage for all images (of DB1 and DB2) is applied, 

to reduce the intensity variance observed in Figure 6: 

  Img � se = (Img � se) ⊕ se. (1) 

where the symbol � represents the morphological opening 

operation, � denotes the morphological erosion while ⊕ 

stands for the morphological dilation. se represents a disk-

shaped structuring element with a radius of 5 pixels [11], 

empirically chosen as it provides good experimental results.  

  

Figure 8: Pixel intensities corresponding to the case shown in Figure 

6, after morphological opening operation. 

Morphological opening results, show that the variance of 

pixel intensities is lower when compared with the original 

ones (Figure 6), as show in Figure 8. After applying morpho-

logical filtering to reduce pixel intensities variance, the 

threshold value (Th1) needs to be computed.  

Since DB1 and DB2 images usually present different mean 

pixel intensities, a further normalization step is applied. The 

aim is to change pixel intensities in each image, so that its 

average becomes equal to a predefined mean reference inten-

sity value. From the research previously conducted by the 

authors, a gray level value of 125 seems to be a good average 

reference intensity value, being adopted here (this gray level 

value represents the average of pixel intensities computed 

using both image databases). 

A dynamic threshold value, Th1, unique for each image, is 

then computed according to the expression: 

  )std( Th(Ot) -  Th Img5.01 ×=  (2) 

where Th(Ot) is the threshold value computed according to a 

modified Otsu method [12], using only the intensity levels 

lower than the mean intensity level for each image. This pro-

vides increased immunity to noise. std(Img) is the standard 

deviation of all image pixel intensities. The output of the 

thresholding operation assigns label ‘0’ to pixels whose value 

is above the threshold Th1, and ‘1’ to potential crack pixels, 

those with intensity below Th1. 

3.2 Crack Detection 

Each binary image obtained after applying the threshold Th1 

(for both database images), is divided into non-overlapping 

blocks of dimension 75 × 75 pixels. This dimension, empiri-

cally chosen, provides a good compromise between com-

plexity and accuracy. 

For each binary image block, its entropy Ebinblock [11] is com-

puted according to the expression 

  )(log)(log 121020 ffffEbinblock ×+×= , (3) 

where f0 and f1 are respectively the frequency of pixels la-

belled with ‘0’ and ‘1’. The variation of the entropy function 

in terms of the number of block pixels labelled ‘1’, is repre-

sented by the plot shown in Figure 9, for a generic binary 

image block of dimension 75 × 75 pixels. This plot was ob-

tained considering the presence of a square of size dimen-

sion × dimension inside the block, to illustrate the entropy 

evolution. This square side dimension is represented in the 

horizontal axis of the plot.  

 
Figure 9: Entropy function, for a generic binary image block of 

dimension 75 × 75 pixels. The horizontal axis represents the side 

dimension of a square of ones completely inside the block. 
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As can be observed, entropy provides a fast measurement of 

crack pixels presence in an image block, being invariant to 

the position of crack pixels inside the block. Additionally, the 

presence of only a few cracks pixels in the block is made 

more evident than if a linear function would be used. The 

entropy is maximized when half the block pixels are cracks 

(i.e., when dimension takes value 53). 
In order to classify image blocks as containing crack pixels 

or not, another thresholding operation (Th2) is applied, now 

to the entropy blocks matrix: 

  
binblockOtThTh )(5.02 ×= , (4) 

where Th(Ot)binblock is a threshold computed using a modified 

Otsu method [12], as done for Th1. Histograms of entropy 

blocks matrix computed for the left images show in Figure 2 

and Figure 3 are show in Figure 10.  

 
Figure 10: Histograms for the entropy blocks matrix computed for 

the left side images of Figure 2 and Figure 3. The computed Th2 

values are marked in both histograms. 

After block entropy thresholding, the resulting isolated 

blocks labelled with ‘1’ are removed. These blocks typically 

correspond to noise due, e.g., to oil stains in the pavement.  

3.3 Crack Type Classification 

After detection of regions with crack pixels, they can be clas-

sified into types. The crack types considered here follow the 

specifications of the Portuguese Distress Catalogue [9]: lon-

gitudinal (L), transversal (T) or miscellaneous (M). Crack 

type classification uses a classification system exploiting 

another 2D feature space according to the technique devel-

oped in [13]. A classification is assigned to each connected 

crack region identified during the detection phase.  

The 2D feature space used is show in Figure 11. Crack classi-

fication uses the standard deviation of the column (feature 

one) and row (feature two) coordinates, of the detected crack 

regions, i.e., image regions labelled with ‘1’ in the detection 

results matrix.  

 
Figure 11:  2D feature space used for crack classification. T1 repre-

sents the crack shown in Figure 2, being classified as transversal. 

Crack classification is performed by computing two dis-

tances: dL and dA, for each connected crack region, which is 

represented by a point in the 2D feature space. 

A probability of a crack belonging to longitudinal or trans-

versal classes is computed, according to: 

( )
LiAi

Ai
i

dd

d
1|

+
−== icr xcyP ,  (5) 

and the probability of a crack belonging to the miscellaneous 

class is computed according to: 

( )
LiAi

Li
i

dd

d
1|

+
−== iM xcyP ,         (6) 

where cr is one of the class indexes T or L, dAi is the distance 

from point i to the nearest axis, dLi is the distance from point i 

to the bisectrix and xi is the observation i. The decision for a 

given crack type is made when the corresponding probability 

is greater than 0.5. 

4. EXPERIMENTAL RESULTS 

The proposed system for automatic crack detection and clas-

sification is evaluated using DB1 and DB2. For each test 

image the corresponding ground truth was manually ob-

tained. The test subsets are composed by 20 and 56 gray-

scale images for DB1 and DB2, respectively.  

For the pre-processing module, a disk-shape structuring ele-

ment with a radius of 5 pixels was used for all DB1 and 

DB2 images. The left images of Figure 12 show segmenta-

tion results obtained for the left images of Figure 2 and 

Figure 3. The right images of Figure 12 represent the corre-

sponding, manually obtained, ground truth results. 

The ground truth information is used to evaluate the system 

performance (see Table 1), by computing a global error-rate 

(classification error for the detection of regions with and 

without crack pixels), a crack error-rate (1 minus the Recall 

value), Precision (pr), Recall (re) and a Performance Crite-

rion (PC) metric, reflecting the overall classifier perform-

ance: 

detected regionscrack  of number Total

cracks as classified correctly regions of Number
=pr

.        (7) 

truth) (ground regionscrack  of number Total

cracks as classified correctly regions of Number
=re

.        (8) 

repr

repr

+

××
=
2

PC .                   (9) 

For comparison purposes, the two bottom lines of Table 1 

show the results of processing both image databases using 

the crack detection methodology described in [10], where a 

pattern recognition system based on a Gaussian quadratic 

classifier was considered. DB1* values were computed in the 

scope of this work, but using the methodology of [10], while 

DB2* results are the ones reported in Table 1 of [10]. 

The evaluation results of Table 1 show that the proposed 

methodology achieves better Precision results than the tech-

nique reported in [10] for both image databases (84.0% 

against 59.3% for DB1 and 95.1% against 92.5% for DB2).  

Also the overall system perform (PC) is better, using the pro-

posed methodology, for both image databases (89% and 95% 

against 60.5% and 94.7% for DB1 and DB2, respectively).  

In terms of Recall (viewed as the most important metric for 

Th2=0.16  Th2=0.12  
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this type of application, where missing crack areas must be 

more penalised), the proposed methodology achieves a sig-

nificantly better value for DB1 (94.8% against 61.7%). Al-

though the results for DB2 are not better than those described 

in [10] (95.6% against 97.0%), the gain in system robustness 

leads to the conclusion that the proposed methodology’s 

global performance is quite good. 

In terms of crack classification, 100% recall and precision 

were obtained for all classes of detected cracks, which re-

veals a very good overall system performance.  

      

  
Figure 12: Detection results (left) for the left side images of Figure 2 

and Figure 3 and the corresponding ground truth (right). 

Table 1: Crack detection results for the proposed method (top two 

rows) and for the method proposed in [10] (bottom two rows). 

Image 

DB 

Global 

Error-

rate 

Crack 

Error-

rate 

pr re PC 

DB1 0.26% 5.3% 84.0% 94.8% 89.0% 

DB2 0.02% 4.5% 95.1% 95.6% 95.0% 

DB1* 2.95% 38.3% 59.3% 61.7% 60.5% 

DB2* 0.64% 3.0% 92.5% 97.0% 94.7% 
 

Moreover, the proposed methodology presents faster process-

ing times, when compared to those reported in [10]. Using 

the same hardware and software platforms, the proposed 

system takes 5 seconds/image against the 31 seconds re-

ported in [10], for DB1 images, and 3 seconds/image against 

18 seconds for DB2 images.  

5. CONCLUSIONS AND FUTURE WORK 

In this paper a simple unsupervised system for crack detec-

tion and classification into several classes is proposed, 

achieving promising performance results. It was demon-

strated that the present proposal is able to deal with images 

acquired using distinct imaging sensors, showing an interest-

ing robustness, which is reflected in the similar recall values 

obtained (94.8% and 95.6%, for DB1 and DB2, respec-

tively). Moreover, a faster processing was also achieved 

with the proposed methodology when compared to the one 

developed in [10]. 

Future developments will consider the usage of additional 

filtering techniques to further reduce the variance of pixel 

intensities in road surveys image databases. Also additional 

work towards a more accurate dynamic thresholding method 

will be conducted, to further improve the crack detection 

results. Additionally, the different features used in both 

methodologies could be combined, also envisaging the im-

provement of crack detection results. 
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