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ABSTRACT In this paper, we derive a performance comparison be-

In this paper, we derive a performance comparison betweefveen the TDMT and DDST schemes. More particularly, we
the conventional time-multiplexing training based schemdrovide approximative theoretical closed-form expressio
and the most-recently proposed data-dependent superinf@’ the BER and also determine for both schemes the opti-
posed training scheme, when using linear receivers. Fomal power allocation between data and piloFor applica-
both schemes, we derive an approximative closed-form e%ons in which the BER should be less than a given threshold,
pression for the Bit Error Rate (BER) and determine the opWe show that the DDST scheme can be interesting only for
timal power allocation between pilot and data that minirsize large frames. o _

the BER. Simulations are conducted to assess the accuracy of Notations: Subscriptis' and” denote, respectively, her-
the provided expressions and to determine contexts forwhidnitian and pseudo-inverse operators. THex K) identity

it is more interesting to opt for the data-dependent superimmatrix is denoted byix. The (i, j)-th entry of a matrixA is
posed training scheme. denoted byAJ; ; or A (i, j) . ||.|| denotes the Euclidean norm
of a vector. Moreover]lk denotes théK x K) matrix of all

Index Terms— Bit error rate, data-dependent superim- o\ & =40 ores the real part of a complex entity.

posed training, time multiplexing, optimal power allocatti
2. SYSTEM MODEL
2.1 Time-Division Multiplexing

1. INTRODUCTION

Time-Division Multiplexed Training (TDMT) is the most
commonly used technique for channel estimation [1]. BeWe consider aM x K Multiple-Input Multiple Output
cause of its simplicity, it has been used in many practi{MIMO) system operating over a flat fading channel. Two
cal communication systems, e.g. in Global System fophases are considered:

Mobile Communications (GSM) [2]. Although accurate First Phase: In the first phase, each transmitting antenna
channel estimation can be obtained with low-computationalsendsN; pilot symbols. The received symbdl; writes as:
complexity receivers, this technique results in a low band- Vi — HP +V

width efficiency, especially when a large number of pilots is 1=HPt+ V1

required. _ o where H is the M x K channel matrix with independent
Recently, Superimposed Training (ST) has evolved agnd identically distributed (iid) Gaussian variables wigho
a new promising alternative to TDMT schemes due t0 itSnean and variancé, V7 is theM x N; matrix whose entries

high bandwidth efficiency. It consists in transmitting pilo e iid zero mean with varianag? andP is theK x N; pilot

and data symbols simultaneously at the same time and Oﬁ{atrix. It is well known that the Mean Square Error of the

Lhee;fg?nT eed f[)e}/qﬁgr;;:i}r/] gdgg}f;lr;ss. aﬁh:dndr}tei\l/eesst(l)wgéogfli otihseghannelzestimation is minimized subject to a fixed training
joweras, when the pilot matrix satisfies [11]:

The first proposed (ST) schemes use induced cyclostatio
arity (eg. periodic pilot sequence) ssymptoticallymiti- PP} = Ny 02Ix.

gate the cross-correlation between training and data sgmbo ! P

[3, 4, 5]. The major problem in this case is the data-pilotSecond Phaseiln the second phasél, data symbols with
non-zero cross-correlation for small or finite sample sizespowera? are sent by each antenna so that the received signal
thus limiting its potential over TDMT schemes to the casesY writes as:

of multi-carrier based systems [6] or short channel cohmren Yo =HW;+Vy,

times [7]. o . whereW; is theK x N, data matrix with iid data symbols of
In order to enhance the channel estimation quality in SUpowera? andV is theM x N, additive noise matrix.

perimposed training based systems, Ghoghal. proposed W

in [8, 9] to introduce linear distortion to the data priortei 22 pata-Dependent-Based Scheme

sertion of the pilot symbols so as to guarantee the orthogo- ne of the maior shortcominas of Conventional Superim

nality between pilot and data sequences for finite length da € major S Ings ventic upenm-

frames. The proposed method was referred to as the DatR0S€d Training (CST) schemes is the low quality of the chan-

Dependent Superimposed Training (DDST) scheme and wdlel estimation caused by the embedded unknown data which

ShQWn in [10] to outperform the conventional superimposed  inote that this optimal power allocation and the one in [3] aséintt as
training technique. the considered pilot design schemes are different.
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acts as an additive source of noise. In order to improve th8.2 Data-Dependent Superimposed Training
channel estimation quality, Ghoglat al. [8] proposed to
distort the data so that it becomes orthogonal to the trginin
sequence. The proposed distortion mamixs defined by:

For the data-dependent superimposed training scheme, the
channel estimate is given by:

D=Iy-J Hy = YPj(PyPy) ™
whereJ = %1% ®1Ix (we assume tha} is integer valued, H+AHq

N being the sample size). This distortion matrix was shown _ " wy —1 P : .
to be optimal in the sense that it minimizes the averaged E%%Cg;es}.ld = VP (PaP) " The zero-forcing estimate is
clidian distance between the distorted and non-distord¢al, d y:
[12]. The received signal at each block is therefore given by

o~

W, = (ﬁd)#Y(IN—J)

Y=HW (In-J)+HPy4+V
= Wy+AWy
where Wy is the data matrix with iid data symbols of

power gz, Py is the K x N training matrix andV is the  where using the Taylor expansion, we have:
M x N matrix whose entries are i.i.d zero mean with vari-

anpeo\,z. The chosen pilot matri®y should fqui_II two re- AWy, = —WJ —H#AHdW(IN ~J)
quirements. It should be orthogonal to the distorsion ma- 4 " u

trix D, thus satisfyingDP¥ = 0, and also verify the or- + (H"—H'AHgH") V (In - J).
thogonality relationPyP!} = N0§,IK in order to minimize

the channel estimation error subject to fixed training power 4. PERFORMANCE ANALYSIS

A possible pilot matrix that fulfills these requirement i§:[8 - . : .
5 _ _ For finite system dimensions, the performance analysis of
Pgy(k,n) = /05 exp(j2rkn/K), with k=0,--- ,K —1and  the TDMT and DDST schemes is difficult. Instead, we will

n=0,--,N—1. work under the asymptotic regime whéh K andM grow
to infinity with a constant rateﬁ — ¢, withO<c; <1and
3. CHANNEL ESTIMATION AND DATA M — ¢, > 1. For the TDMT scheme, we assume also tiat
DETECTION andN; go to infinity such thaf,j—i — r. Moreover, the nota-
3.1 Time-Division Multiplexing tion N — oo will refer to this asymptotic regime. Note that all

In the first phase, we assume that the receiver estimates tREPOfS are omitted due to space limitation but are available
channel in the least square sense. Hence, the channel e&ft line at [13].
mate is given by:

4.1 Asymptotic Post-Processing Noise Distribution

o -1
Hy = YiP{(PiPY) Under the asymptotic regime, it is possible to prove the
= H+ VP! (PtPt”)‘l gsymptotic convergence of_ the post-processing noise by us-
H -+ AH, ing the ‘characteristic function‘ approach:
whereAH; = V1 P} (P.P) L. 4.1.1 Time-division multiplexing

In the data transmission phase, the linear receiver Usegegrem 1 Under the asymptotic regime, and conditioned
the channel estimate in order to retrieve the transmittéal da o, the channel, the post-processing noise experiencecby th
thus yielding the estimated data matrix given by: i-th antenna at each time k for the TDMT scheme behaves
asymptotically as a Gaussian random variable:

—~ ~\#
W, = (Ht) Ys. 1)
: , o [(1"H) ], 15
Assuming that the channel estimation error is small, the E [GJD(MW‘(""))} —e a N—>0
pseudo-inverse of the estimated matrix can be approximated e
by the linear part of the Taylor expansion as: where
~ \# 2 2 4
(Fu) =H*—H*(aH)H". & —c1en % al+nos

o 0z 0205(co—1)
Hence, the zero-forcing estimate of the transmitted matrix

can be expressed as: 4.1.2 Data-dependent superimposed training
= Theorem 2 Under the asymptotic regime, and conditioned
# # # # )
Wi =W — H'AH:W; + (H —H'AH:H )VZ- on the channel, the post-processing noise experienced by
. . . the i-th antenna at each time k behaves asymptotically as a
Consequently, the effective post-processing ndi%¥: =  55,,ssian mixture random variable, i.e:

X/R\/‘t — W; could be written as:
ﬂ26"0%{(HHH)ALi

B
AW, = —H*AH;W + (H* - H*AHH") V. B [el05 AWl 3 pelliE e o

N—oo
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where 2 is the cardinal of the set of all possible values Hence, the BER expression is given by:

l/Cl
of W(i,k) =1 z W(i,k) and p is the probability that 1
o K=1 1 “ k ok L X
W (i, k) takes the valuer;. Moreover,dy is given by: BER= 2%_11[‘3 kzl 1 Q((1+c(2k— o X]).
= 1
c1o? o2 cioy Using (3), the BER can be expressed as:
d=01-c)| -5t 2T 1o2a2 |-
o5 05 (c2—1)o50; -
1 % 1
4.2 Bit Error Rate Expression BER=—— 5 JM—K+1,Kd, (1+ci(2k— a))z)
In the sequel, we derive the closed-form expression for the 20 k= (5)
BER under QPSK constellation and Gray encoding. Whereci = % is assumed to be integer.
1

4.2.1 Time-division multiplexing 5. OPTIMAL POWER ALLOCATION

Following the same lines as in [14], it can be proved that for

: P eferring to (2) and (5), we can easily see that the optimal
the TDMT based scheme, the Bit Error Rate (BER) is 9]Nedaqmount of power allocated to data and pilot for the TDMT

by: . -
scheme (resp. for the DDST scheme) is the one that mini-
BER=J(M —K +1,Kg,1), @ e ((resrﬁéd)_ )
where:
. 5.1 Time-Division Multiplexing Scheme
J(ma,b) = [_L/ e XM 1Q(vbx)dx (3) Letr=Ny/N; andc; = (1+4r)ci. Minimizing & with re-
(m) Jo spect tog ando under the constraint thah o3 + N202 =
Let c = 2. Then, it can be easily seen thatdf= 0, (N1 + Np) o7 (this is a simple second-order polynomial opti-

J(ma,b) = 05. If cis strictly positive, then this integral Mization), we get:
has the following closed-form expression [15]:

(1+1)0f,r (1+1)07+2%)

Ve/mr(m+ 3 1 1 2_
‘J(mv a, b) = / (1 - 2) 2Fl(l, m+ -, m+1, 7); s 2, &o? x 2, rag - ©
2(14¢)™ 31 (m+ 1) 2 1+c r(fr(@nod+ 2%+ fa((@+rnod+ )
(4)
wherezF1(p,g,n,z) is the hypergeometric function [16], and f(1+r)0T2\/61 ((1+f)0T2 + c'z"jzl)
I is the complete gamma function defined as: op= — — O
r <\/r ((1+r)o$ + %) + \/61 ((l+ ro?+ chO_vl))

M(x)= / t*le'dt.
JO
5.2 Data-Dependent Superimposed Training Scheme

o i i The optimal data and pilot powers that minimiggsubject
Let N(i, j) denote the post-processing noise such that we, a\f, + 0,3, = 02 are given by:

have:

4.2.2 Data-dependent superimposed training

Wi, i) = Wa(i, ) + N, J).

As it has been showil; j behaves as a mixture of Gaussian 52 _ 7
i i i 2 )02
random variables. Using the symmetry of noise and data, the (1-c) ( (1—cy) (02 +9%) 1\ Jey02 + 9l C1)D'v>

102
(1-c) (o% + C;‘_fvl) o2

BER expression under QPSK constellation is given by: et e-1
G o2 aof + 94 4% of ©
AT (i Lo w = :
BER = P [DWd(h i) >0[0Wq(i, ) = \/:] (1-¢p) <0T2+ gfvzl) /a0 + Cl(:(L:;EI:L)U\?
o o,

— plomin> 5
2 wolvx (1 [Pa 6. SIMULATIONS
B &1 P Ow 6.1 Accuracy of the Asymptotic Results

Despite being valid only for the asymptotic regime, our re-
where the expectation is taken over the distributiorXeE  sults are found to yield good accuracy even for very small
% given by: system dimensions. Fig. 1 plots the empirical and theaktic
S (HH) BER using QPSK modulation fod = 32, K = 2, andM = 4

for the TDMT and DDST based schemes. All comparisons
(KoM KM are conducted in the context when both schemes (TDMT and
(M —K)! € : DDST) have the same total energy. The number of pilots is
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settoN; =2 (N2 = 30) for the TDMT scheme. Forlow SNR 6.3 Application 2
values (SNR until 6 dB), both schemes achieve approxima-
tively the same BER performance, and therefore the DDS
scheme outperforms its TDMT counterpart in terms of dat
rate since it has a better bandwidth efficiency. For high SN
values, the noise caused by the data distorsion is higher th
the Gaussian additive noise, thus affecting the performancb
of the DDST scheme.

this experiment, we also consider a scenario where the
ER should be below 1. We set the packet lenghhto 32
nd the number of transmitting and receiving antennas to 2
nd 4. Using (6), (7) and (2), we determine the minimum
umber of required pilot symbols to meet the BER lower
ound requirement. We note that if the SNR is below 2 dB,
the BER requirement could not be achieved. This is to be
‘ compared with the DDST scheme where the SNR should be
O DosTemprica BER set at least to 16 dB so as to meet the BER lower bound re-
h— ' o TOMTeoetealBER quirement as it can be shown in fig. 3. Moreover, for a BER
2 : : more than & dB, the minimum number of pilot symbols for
channel identification (equal t€) is sufficient to meet the
BER requirement.

SNR (dB)

Figure 1: Theoretical and empirical BER for the TDMT and

DDST based schemes. ‘o i

6.2 Application 1 I T U T
SNR (dB)

We consider an application in which the BER should be be-

low a certain threshold, say 18 This may be the case Figure 3: Required versus SNR for BER 10-2.

for instance of circuit-switched voice applications. We se
2
the SNR2 % to 15 dB and the number of transmitting and

receiving antennas to 2 and 4, respectively Kex 2 and 7. CONCLUSION

M = 4). We then vary the ratio; from 0.01 to Q5. For each . . . I
value ofci, we compute the BER by using our results asBased on an asymptotic analysis, we have derived in this pa-
illustrated in Fig. 2. We note that the data-dependent supeP&" closeg-form ex;;lressuo_ns for thef BER fo(; the TDMT andd
imposed training may be interesting for low valuespfsay ~DDST schemes, when using zero-forcing detection. Base
below 0.125), i.e., for long enough frames. For small frame&" these expressions, we have calculated the optimal pilot
(high distorsion ratia;), the distortion of the data becomes nd data power expressions that minimize the BER. We have

; ; ; shown that in applications in which the BER should be less
too high thus reducing the interest of the DDST scheme. than a given threshold, the DDST scheme with linear re-

ceiver might be interesting for large enough frames. For the
———mur same kind of application, we have determined for the TDMT
B scheme the minimum required number of pilot symbols that
_________ could meet the BER lower bound requirement. However,
E overall, and for the considered context, the TDMT scheme
1 seems to be more interesting (performant) than the DDST
L scheme when using zero-forcing receivers. Future exten-
Gop S sion of this work would be to analyse the performance of the
P DDST scheme when using non-linear receivers as the one
/ considered in [8].

10°
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