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Connections between Bell numbers, Stirling numbers of first and second
kind and Partitions. Evaluation of these numbers.

1. Introduction

Bell and Stirling numbers of first and second kind tell the number of ways that n objects, or n cycles in the
case of Stirling numbers of first kind, can be distributed in k cells. They are usually obtained through
recurrence rules. However, recurrence rules only tell how many distributions are possible, not the specific
form of each distribution, so they cannot be used to build the distributions themselves.

Here we present a relationship between these distributions and the P(n) and P(n,k) partitions, where P(n,k)
represents the partition of n objects in exactly k parts. Such a relationship shows the nature of these
distributions and provides a quick and direct way to compute them as well.

2. Review and some properties of Bell and Stirling numbers

Bell numbers - B(n)

Bell numbers are the number of ways n objects can be distributed among n cells. The order of the cells or
the order of the objects inside each cell doesn’t matter. Empty cells are allowed. For instance, B(3) = 5
means that there are 5 ways to distribute 3 objects (A, B, C) in 3 cells.

1st cell 2nd cell 3rd cell
A B C
A B C -
A C B -
B C A -
A B C - -

It is important to note, e.g., that, by definition, the 3rd mode (AC, B, –) is identical to (B, AC, –) or (–, CA, B)
and to (CA, B, –).

B(n) can be obtained through the recurrence rule:

● B(n+1) = ���
� �

�� ���� or it can be approximated through Comtet-Dobinsky’s formula:

B(n)� �
� ���

�� ��

��
�

For instance, for n=5, B(5) is equal to 52 and the Comtet-Dobinsky’s formula gives �ꦐ�貰䘀ꦐ䙈�䘀ꦐ䙈
�

= 51.99830018

when computed to its 10th term (using 9 significant digits).

● B(n) = ���
� �

�� where
�
� are Stirling numbers of second kind.

● The sequence of B(n) values is available through OEIS - A000110 where the first few values are:

n 0 1 2 3 4 5 6 7 8 9 10
B(n) 1 1 2 5 15 52 203 877 4140 21147 115975
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Stirling numbers of the second kind

Stirling numbers of the second kind provide the number of ways that n objects can be distributed among k

cells (boxes). No empty cells are allowed. They are represented as
�
� . Examples of values are given in

Table 1.

● As discussed above, the definition implies B(n) = ���
� �

��

For instance, B(4) = ꦐ
� + ꦐ

� + ꦐ
䘀 + ꦐ

ꦐ = 1+7+6+1=15

● The recurrence rule
�
� � � � � �

� � � � �
� � � holds, that is useful to compute the value table.

● The values of Stirling n numbers of the second kind can be obtained using the formula:

�
� � �

�� ���
� �� ������ �

� ��

For instance: �
䙈 � �

䙈�
䙈
� �� � 䙈

� �� � 䙈
䘀 䘀� � 䙈

ꦐ ꦐ� � 䙈
䙈 䙈� =

�
���

䙈 � �� ꀀ 䙈�� � �� ꀀ ��䙈�䘀 � 䙈 ꀀ �䙈��ꦐꦐ� ��䙈䘀��䙈 =�䘀ꦐ���
���

� 䙈�䙈�

This formula is fast and fairly easy to use but it doesn’t tell how to “build” Stirling numbers, i.e. how the 9
objects in the example are distributed among the 5 cells.

● It’s important to note that these ‘constructions’ are not unique; there are k!
�
� of them (M. Fiorentini.

Stirling di prima specie – bitman.name/math/article/32).

Stirling numbers of the first kind

Stirling numbers of the first kind provide the number of ways n cycles, not objects, can be distributed in k
non-empty cells. Cycles with only 1 element are allowed. They were initially (~1730) introduced as

coefficient in the series expansion of � � , i.e. x*(x+1)*(x+2)…..= ���
� �

�� ��

For instance: x(x+1)(x+2)= 䘀
� � 䘀

� �� � 䘀
� �� � 䘀

䘀 �䘀=2x+3�� � �䘀

●We remind the reader that n elements generate (n–1)! cycles. For instance, 4 objects (A, B, C, D) produce
the 3!=6 cycles below:

A B C D� A A C B D � A A D C B� A A B D C � A A C D B� A A D B C � A

● Some properties:

The recurrence rule
�
� = � � �

� � � � �� � �� � � �
� holds, used to compute the values in Table 2.
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� = � � �
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(Lah numbers)

3. Evaluation of B(n),
�
� and

�
� using partitions

To see B(n), i.e. to see its form, and to compute its values, we start from the partition of n, P(n).

P(n) is made ofm parts: mpppp ,,,, 321 

Each part ip is made by many elements maaaa ,,,, 321  , the sum of which is obviously n. Some elements

of one part may occur more times, let mRRRR ,,,, 321  be the number of repetitions of the same element

ia inside the same part ip .

For instance, for n = 4, P(4) is made of 5 parts: 1p = 4 with 11 R , 2p = 3 1 with 11 R and 12 R , 3p =

2 2 with 21 R , 4p = 2 1 1 with 11 R and 22 R , 5p = 1 1 1 1 with 41 R

It is possible to evaluate a contributing amount ic for each part ip so that:
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i 


(1)

For each part ip the contribution ic is:
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as
�
�� is the number of ways a1 objects can be chosen among n objects, after which n–�� objects are left,

that can be chosen in
� � ��
�� ways and so on.

For instance, the contribution of the 211 part of B(4) is ꦐ
�

�
�

�
�

�
��
=6*�

�
= 6

In the same example, the two parts 4 and 31 contribute 4 ꦐ
ꦐ � � and 31 ꦐ

䘀
�
� � ꦐ,

respectively.

Part 22 contributes ꦐ
�

�
�

�
��
� 䘀 and part 1111 contributes ꦐ

�
䘀
�

�
�

�
�

�
ꦐ�
= 1

Summing all contributions, we get 1+4+3+6+1 = 15.
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Therefore, B(4) = 15.

Because of how binomial coefficients are defined, formula (2) can be written:

!
1

!
1

!
1

!!!!
!
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 (2b)

● Example: Let’s determine the value and composition of B(5), which we already know to be 52: P(5) is
made of the following 7 parts: 5, 41, 32, 311, 221, 2111, 11111. Using (2b):

5 䙈�
䙈�
� � 41 䙈�

ꦐ���
� 䙈 32 䙈�

䘀���
� ��

311 䙈�
䘀���

�
��
� �� 221 䙈�

������
�
��
� �䙈 2111 䙈�

��������
�
䘀�
=10

11111 䙈�
����������

�
䙈�
� �

Therefore B(5) = 1+5+10+10+15+10+1 = 52, as already established above.

Evaluation of Stirling numbers of the second kind

The construction and evaluation of Stirling numbers of the second kind
�
� is the same of the one for B(n).

Formulas (1), (2), and (2b) are still valid as long as P(n,k) are substituted for P(n), i.e. the partition of n in
exactly k elements is used.


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(3)

Where the contributions ic are evaluated with formula (2) or (2b).

For instance, let’s build �
䙈 = 6951. The parts which make P(9,5), i.e. 51111 42111 33111 32211 22221,

and the corresponding contributions are (we are omitting 1!=1):

51111 ��
䙈�

�
ꦐ�
=126 4211 ��

ꦐ���
�
䘀�
=1260 33111 ��

䘀�䘀�
�
��
�
䘀�
=840

32211 ��
䘀�����

�
��
�
��
=3780 22221 ��

��������
�
ꦐ�
=945

Therefore �
䙈 = 126+1260+840+3780+945 = 6951

Evaluation of Stirling numbers of the first kind

To build Stirling numbers of the first kind we should remember that
�
� gives the number of ways that n

cycles, not elements, are distributed among k cells. Given that n elements generate (n–1)! cycles, we just
need to multiply each part of the partition P(n,k) by ��� � �)! (�� � �����䘀 � ���� (where ��t ��are the
elements of the part.
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where the contributions ic are evaluated with formula (2) or (2b).

From formula (5), t can be directly expressed as:

!
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 (5b)

This formula is very useful to compute Stirling numbers of the first kind.

For instance, in the case of �ꦐ = 6769, we have P(8,4) = 5111 4211 3311 3221 2222, and, therefore,

the various contributions are given by:

5111 ��
䙈
�
䘀�
=1344

4211 ��
ꦐꀀ�

�
��
=2520

3311 ��
䘀ꀀ䘀

�
��

�
��
� ����

3221 ��
䘀ꀀ�ꀀ�

�
��
� �䙈��

2222 ��
�ꀀ�ꀀ�ꀀ�

�
ꦐ�
= 105

Therefore, �ꦐ = 1344+2520+1120+1680+105 = 6769

4. Examples of evaluation and construction

Examples of evaluation of Stirling numbers of the second kind

In addition to knowing in how many ways n objects can be distributed among k non-empty cells, it is also
interesting finding out how this distribution occurs.

For instance, let’s consider 䙈
ꦐ � ��貰 We know that P(5,4) = 1, i.e. 2111. Because of (2b), 2111 gives

䙈�
��
�
䘀�
� ��. Therefore, each of the 5 objects ABCDE appears 10 times among all the cells. The 4 cells contain

2 objects, 1 object, 1 object, and 1 object, respectively.
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One possible construction is:

1st cell 2nd cell 3rd cell 4th cell
AB C D E
AC B D E
AD B C E
AE B C D
BC A D E
BD A C E
BE A C D
CD A B E
CE A B D
DE A B C

The objects appear in the various cells with different frequencies; such frequencies are listed below each
object.

1st 2nd 3rd 4th
ABCDE ABCDE ABCDE ABCDE
44444 63100 03430 00136

It is immediately apparent that, using this construction, the frequency of each element in a cell is irregular:
D and E are missing in the 2nd cell, A and E are missing in the 3rd cell, and A and B are missing in the 4th cell.
Only the 1st cell is homogenous.

However, the construction showed above for 䙈
ꦐ is not the only possibility. For each

�
� there are k!

�
�

possible constructions. This means that, in our example, we have 4! 䙈
ꦐ = 24*10 = 240 options. Exchanging

objects among the 2nd, 3rd, and 4th cell, we get the following:

1st 2nd 3rd 4th

AB C D E
AC D E B
AD C B E
AE B C D
BC D E A
BD E A C
BE A C D
CD E A B
CE B D A
DE A B C

Now, the object frequencies in the 2nd, 3rd and 4th cell become (no changes for the 1st cell):

2nd 3rd 4th
ABCDE ABCDE ABCDE
22222 22222 22222
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● When
�
� comes from several parts, as in the case of 䙈

䘀 � �䙈, that is constructed from P(5,3) = 311 and

221, each part has to be optimized individually. As an example, let’s focus on the construction related to

the 311 part. The contribution to 䙈
䘀 given by the 311 part is 䙈�

䘀�
�
��
=10. Exchanging objects among cells, this

contribution can be optimized to:

ABC E D
ABD C E
ABE D C
ACD B E
ACE B D
ADE C B
BCD E A
BCE D A
BED A C
CED A B

where the frequencies are:

1st 2nd 3rd
ABCDE ABCDE ABCDE
66666 22222 22222

Similarly, for the 221 part (that contributes 䙈�
��ꀀ��

�
��
� ���

�
� �䙈) we get:

AB CD E
AC BE D
AD CE B
AE CD B
BC AE D
BD AE C
BE CD A
CD BE A
CE BD A
DE AC B
BC AD E
DE AB C
DA BC E
CE AB D
AB ED C

with optimized frequencies:

1st 2nd 3rd
ABCDE ABCDE ABCDE
66666 66666 33333
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Examples of evaluation of Stirling number of the first kind

Let’s consider, for instance ꦐ
� � �� P(4,2) = 31 - 22

Using (5b), we get that part 31 contributes ꦐ�
䘀
� �ꦐ

䘀
= 8 while part 22 contributes ꦐ�

ꦐ
�
��
=�ꦐ
�
� 䘀

The optimized construction of part 31 contribution is:

ABC D
ACB D
ACD B
ADC B
ABD C
ADB C
BCD A
BDC A

The 1st cell frequency is ABCD, while the 2nd cell frequency is ABCD
6666 2222

Part 22 contributes in 3 cases:

AB CD
AC BD
AD BC

The 1st cell frequency is 3111, while the 2nd cell frequency is 0222.

Given the small number of elements and cells, the contribution due to part 22 cannot be optimized.
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Table 1 �
�

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
n = 0 1
n = 1 0 1
n = 2 0 1 1
n = 3 0 1 3 1
n = 4 0 1 7 6 1
n = 5 0 1 15 25 10 1
n = 6 0 1 31 90 65 15 1
n = 7 0 1 63 301 350 140 21 1
n = 8 0 1 127 966 1701 1050 266 28 1
n = 9 0 1 255 3025 7770 6951 2646 462 36 1
n = 10 0 1 511 9330 34105 42525 22827 5880 750 45 1

Table 2 �
�

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
n = 0 1
n = 1 0 1
n = 2 0 1 1
n = 3 0 2 3 1
n = 4 0 6 11 6 1
n = 5 0 24 50 35 10 1
n = 6 0 120 274 225 85 15 1
n = 7 0 720 1764 1624 735 175 21 1
n = 8 0 5040 13068 13132 6769 1960 322 28 1
n = 9 0 40320 109584 118124 67284 22449 4536 546 36 1
n = 10 0 362880 1026576 1172700 783680 269325 63273 9450 870 45 1


