
Results of Applying TracIMo to Introduce
Traceability in a Mortgage Broker Company

Blinded for review

Blinded for review

1 Background

TracIMo is a newly defined traceability introduction methodology. It contains
explicit steps on how to define a company- or project-specific traceability strat-
egy, introduce the strategy, and evaluate the strategy. In this document, we
describe how TracIMo was used to define and introduce a traceability strategy
in an agile development team of a company in the finance domain. The company
develops a website for mortgage applications that connects potential borrowers
with money lenders.

2 Applying TracIMo at the Case Company

TracIMo consists of ten steps, which are split into two phases as shown in Fig-
ure 1. The first phase consists of steps of eliciting the traceability needs from the
company and defining a suitable traceability strategy, while the second phase
consists of steps for tool selection, deployment and evaluation of the traceability
strategy. In the next subsections, we describe how each step was applied at the
company and the results of the steps.

2.1 Step 1: Analyze existing software development process

The first step in TracIMo is to gather data on the development process of the
company in order to understand the different activities and roles involved in
the development as well as their goals. To collect this data, we conducted two
interviews, one with the lead developer(LD) and one with the business analyst
(BA). The interviews were conducted via Skype, since the researchers and the
company were located in two different countries. We used an interview guide
available as part of the supplemental material [1]. The interviews lasted around
one hour each and were both recorded and later transcribed. We analyzed the
transcribed interviews to identify the roles, goals, and tasks for these roles in
the development process. This was done through thematic coding, where we
had explicit codes for roles, tasks, and process goals. Form this information we
derived a conceptual process model that shows all the development processes, the
different roles and the different tasks associated with the roles. We also defined
explicit process goals for each of the activities in the development process. The

2

Step 1: Analyze
existing Software

Development
Process

Step 2: Identify
Traceability Goals

Step 3: Derive
Traceability

Information Model
(TIM) Step 5: Assess

Traceability Goals
against TIM

Step 4: Assess
the Process Goals

against
Traceability Goals

Process
Model

Traceability
Goals

Traceability
Information

Model
(TIM)

Step 7: Select and
customize tool

Step 8: Deploy
process and tool

Step 9: Evaluate
process and tool

Step 10: Anchor
the process and

tool

Phase 1: Define traceability strategy

Phase 2: Refine, deploy, and evaluate strategy

Step 6: Derive
Traceability

Process

Traceability
Process

Traceability
Tool

Reused from Rempel et al. (2013) Modified from Rempel et al. (2013) Added

Legend: Colors

Legend: Shapes

Step Artifact

Legend: Arrows
Input/output Navigate to previous step

Traceability
Scenarios

Fig. 1. The Traceability Introduction Methodology – TracIMo

3

conceptual process model is shown in Figure 2 and the process goals and the
associated activities are shown in Table 1. We showed these results to the BA for
member checking [2], to make sure that we correctly understood the development
process at the company. In Section 2.1, we give a description of the current
development process at the company in more detail. We also describe existing
traceability practices in the company. Even through these practices are informal,
they help us to understand which trace links the company already has and finds
useful.

Create
prototypes

Design marketing
videos

Lead Developer
Plan development

tasks

Estimate story
points

Product Owner Manage areas
e.g., CRM

Create
specification

Scrum Master
Push team to
follow agile
principles

Business Analyst
Specify requirements

Analyze complexity of
requirements

Provide specifications
to developers

QA Engineer Make test plan

Write tests for
features

Copy writer Write copy

Check use of
copies

Art Designer

Create front
end artifacts

Agile Coach

Advice on agile
principles

Digitalization
program manager

Plan digitalization
projects

Video Marketer

UI/UX Designer

Control reports
and dashboards

Web Analyst

Monitor business
performance

Customer
Intelligence Analyst

Analyze business
needs

Legend:
Role

Task

Fig. 2. Roles and tasks in the development process.

Development process at the company The company works in an agile way
and uses Scrum as their agile method. As the scrum methodology instructs,
the company has product owner, scrum master, developer and quality engineer
(tester) roles in the team.

In the company, the development team is a horizontal group of developers
distributed on different value teams. A value team is a group of people with
different expertise (development, marketing, operations) that work together to
achieve a defined goal. The company consists of four value teams that are de-
picted in the Figure 3. Each team has dedicated developers that will contribute
to implement features to achieve the team’s goal. In detail:

– Operations Team wants to increase the efficiency of the Operations de-
partment (advisors, mid-office, COO); their focus is the automation of advice
and mid-office tasks and the improvement of the company’s partnerships and
commercial offerings.

4

– SQL Team – where SQL stands for Sales-Qualified Team – aims to increase
the number of warm leads, which are the ones that will end up buying
a house and, hence, closing a mortgage with the company; their focus is
the communication area, from the landing pages that depict the company’s
services to the blog posts that explain different stages of the mortgage process
and requirements.

– Execution-Only Team works to create the best execution-only customer
journey, which differs from the advice-based customer journey by avoiding
a direct conversation with advisors and could aim to narrowing the gap
between customer and moneylenders; their focus is to enhance the customer
journey by requiring only necessary information, to improve the underlying
business logic, and to refine the document handling process using the national
mortgage data exchange standard.

– Analytics Team focuses on analyzing the performance of the company,
under every aspect – sales, website visitors, advices successfully closed, by
extracting and processing useful data from Customer Module, Google Ana-
lytics, CRM, and other company-related resources.

Each team works autonomously and organizes itself in the agile Scrum fashion.
Each of them has a Scrum Master that ensures that the Scrum principles are
correctly applied and helps the team members to get over obstacles in that
way. Each team has also its own Product Owner, depicted with a dark green
box in Figure 3, who is responsible for defining the team direction by deciding
what is the scope of each sprint, in order to achieve the defined goal. Given the
reduced number of development resources, it might be possible that some of the
development members can be assigned to tasks belonging to different teams.

Sprints last for two weeks and at the beginning of these two weeks a planning
meeting is held to decide on which tasks need to be accomplished in the sprint
and to assign the tasks to responsible developers. Every morning during the
sprint, the team has a stand-up meeting. The sprint ends with a retrospective
meeting to reflect on how the sprint went and find things that can be improved
with the process.

Furthermore, at each sprint iteration, the Team Product Owners gather to
coordinate the overall direction and to analyze which steps should taken further
in the roadmap, by identifying high business value issues.

Existing Traceability Practices Before introducing traceability in the com-
pany, we analyzed existing traceability practices that were already in place. This
is to ensure that we can leverage the existing links and understand how these
links can be integrated in to the new solution.

Currently traceability is done on JIRA tickets. Bigger features are defined as
epics in JIRA and within an epic, smaller tasks are defined. When the business
analyst/product owner defines tasks tickets on JIRA, links to requirements, copy,
wire frames, art designs, constants, code, other affected products and tests (not
always) are created. These links can be made in the epic or if they are specific
enough they can be added to the specific task. The aim is to make sure that the

5

Current Practice Process Goal

Requirements Engineering: The POs
and the BA are responsible for the re-
quirements engineering tasks which are to
elicit requirements from the different value
teams, document these requirements and
make sure they are translated into action-
able tasks. The requirements are written
in Google Drive spreadsheets so that they
can be easily shared. When requirements
come from external entities, e.g., regulation
boards, they are in PDF format.

Process Goal 1: Elicit all requirements
from the product owner/BA’s point of view.
Process Goal 2: Allow breakdown of all
requirements into actionable tasks from a
product owner/BA’s point of view.
Process Goal 3: Improve the identifica-
tion of related requirements from the prod-
uct owner/BA’s point of view.

Software Design: At the beginning of
projects, the developers design a high-level
overview either on the white board (stored
as pictures) or in a UML modelling tool
(stored in the corresponding format).

Process Goal 4: Improve the understand-
ing of the software requirements from a de-
veloper’s point of view.
Process Goal 5: Allow creation of a high-
level design based on the requirements from
a developer’s point of view.

Development: The developers work on
the tickets assigned to them and produce
code. The code is written manually in PHP
and stored in git repositories.

Process Goal 6: Allow implementing new
features from a developer’s point of view.
Process Goal 7: Allow implementing
changes of existing features from a devel-
oper’s point of view.
Process Goal 8: Improve the identifica-
tion of artifacts that need to change from a
developer’s point of view.
Process Goal 9: Improve the understand-
ing of the relationship between code and
requirements from a developer’s point of
view.
Process Goal 10: Improve the planning
process for future changes from a devel-
oper’s point of view.

Quality Assurance: The developed fea-
ture is tested against its requirements to
verify that it works correctly. The company
has dedicated testers who write tests for im-
plemented features. The tests are stored in
git repositories together with the code they
test.

Process Goal 11: Improve the under-
standing of requirements from a tester’s
point of view.
Process Goal 12: Allow verifying features
from a tester’s point of view.
Process Goal 13: Improve the under-
standing of which artifacts need to be tested
after a change is made from a tester’s point
of view.

Project Management: This activity is
associated with planning development and
following up on the progress of development
to make sure that features being developed
align with the goals of the company.

Process Goal 14: Improve the under-
standing of software requirements from a
PO/BA’s point of view.
Process Goal 15: Improve effort estima-
tion of requirements from a PO/BA’s point
of view.
Process Goal 16: Allow prioritizing re-
quirements from a PO/BA’s point of view.
Process Goal 17: Improve requirements’
progress monitoring from a PO/BA’s point
of view.

Table 1: The table shows the different activities in the development process and
the process goals

6

Organization

Business Analyst

Agile Coach

Digitalization
Program Manager

Backend Developer

CRM Developer

QA Engineer

Operations Teamlead

Process Manager

Business Analyst

Content Marketer

Webdesigner

Backend Developer

FrontEnd Developer

QA Engineer

Digitalization

Program Manager

UX/UI Designer

Content Marketer

Content Marketer

Content Marketer

VIdeo Marketer

FrontEnd Developer

UI/UX Designer

Marketing

Product Owner

Web Analyst

Customer Intelligence
Analyst

Data Analyst

Analytics

Product Owner

Operations team Executiononly team SQL team Analytics team

Exported from Pencil Sun May 07 2017 16:52:30 GMT+0200 (CEST) Page 1 of 1

Fig. 3. Organization Structure

developer has enough information to carry out the task given. However, these
links are transient as they are only valid for the current ticket/epic and for each
task/epic that is defined the product owner/developer has to figure out which
links should be established. The business analyst first identifies what needs to be
changed, records this information in an excel file, creates tickets in JIRA from the
excel file and add links to the tickets. If two tickets are related, a link is created
between them by adding the ticket number of one ticket in the description of
the other ticket.

To improve this current practice there is a need to have connections between
requirements and other development artifacts e.g., models, implementation and
code, and these connections should be reusable every time a change is requested.

2.2 Step 2: Identify traceability goals

We used the data collected in Step 1 to derive traceability goals for the company.
Again we used thematic coding for the data analysis to identify these traceability
goals. When all the goals were identified, we showed them to the BA for member
checking. This led to updating of some of the goals. Our final results consists of
seven traceability goals, which we formulated using GQM [4].

For each goals we derived questions and metrics that will be used to answer
these questions. This was done in a workshop with the two researchers. After the
initial list of metrics was complete, we had another workshop where the BA was
available on Skype to discuss if the metrics makes sense and if the data for the
metrics will be available from the company. We also decided when the metrics
will be taken and that the BA will be responsible for taking the metrics. For each
goal we also defined scenarios that we used later on to assess if the goals will be
fulfilled. We present the goals, metrics and scenarios in Table 2 to Table 7.

7

The data sources to which access is required are listed in Table 8.

Table 2: Goal/Question/Metric to identify traceability goals and
metrics

Goal 1: Increase the awareness of stakeholders about product changes
from the business analyst point of view.

Rationale: Different stakeholders are involved in the development of new
features. Ideally, these stakeholders are able to shape the require-
ment as well as the implementation according to their needs.
They also need to be aware of the schedule for the development of
new features and give input for their prioritisation. Traceability
can help to identify all the stakeholders concerned with a change
early in the process by identifying which artifacts are connected
to a change and from the artifacts identify which stakeholders
(people who develop or use the artifact) should be involved.

Question 1: How easy is it for relevant stakeholders to influence the changes?
Metrics: – Number of comments on JIRA tickets from non-developers

(analysis of JIRA tickets)
– Number of suggested changes to JIRA tickets by developers

(analysis of JIRA tickets)

Question 2: To what degree are relevant stakeholders aware of the changes?
Metrics: – Likert Scale awareness:

1 – not aware at all;
5 – very aware
per task
(Questionnaire with BA)

Question 3: How timely are announced changes deployed?
Metrics: – Difference between time of announcement and time of de-

ployment (analysis of JIRA tickets)

Scenario: Given a requirement, it should be possible to identify corre-
sponding development artifacts (design models, implementation,
customer content, tests, copies, art designs and wire frames) and
other artifacts such as change sets, by following trace links. By
identifying the artifacts, one can also identify the stakeholders
that use these artifacts.

Table 3: Goal/Question/Metric to identify traceability goals and
metrics

Goal 2: Improve the visibility of the decision rationale from the devel-
opment team’s perspective

8

Rationale: The rationale behind a requirement is important information for
the development team since it can help make decisions during
design, implementation, and test. As such, the rationale should
be visible and understandable to the team. If the team under-
stood the task clearly, it should require less discussion and less
rework. Traceability links can support this purpose by connect-
ing the relevant artifacts describing the rationale of decisions to
the requirement description. NOTE: For a few delicate projects
(e.g., the ones that have to follow certain standards) rationales
are recorded in a separate document

Question 1: How understandable is the decision rationale?
Metrics: – Likert scale understandability:

1 – not understandable at all
5 – very understandable
per task
(Questionnaire with developers)

– Numbers of traceability links per task (analysis of traceabil-
ity model and JIRA tasks)

– Correlation between number of traceability links and the
understandability of the rationale (derived)

– Number of re-opened tickets (analysis of JIRA tickets)
– Number of rejected tickets (analysis of JIRA tickets)
– Number of comments per task (analysis of JIRA tickets)
– Correlation between number of comments and understand-

ability rating (derived)

Question 2: To what degree is the decision rationale visible to the team?
Metrics: – Likert scale visibility

1 – not visible at all
5 – very visible
per task
(Questionnaire with developers)

Scenario: Given a ticket, it should be possible to create trace links from the
ticket to the requirement(s) that is associated with the ticket.
This is because developers can identify which requirement is re-
lated to the ticket and understand the rationale of the ticket.

Table 4: Goal/Question/Metric to identify traceability goals and
metrics

Goal 3: Improve the accuracy of effort estimations for tasks from the
Lead Developer’s point of view.

9

Rationale: One of the main tasks for the lead developer is to estimate the
effort a certain implementation task is going to have. This has a
major influence on the sprint and on the schedule for the devel-
opers since it essentially determines how many tasks the team
will tackle during a sprint and how much time they can devote
to each task. Increasing the accuracy of the effort estimation
is therefore a goal. Traceability links can support this goal by
providing insight into dependencies between artifacts and re-
quirements, and by helping to identify which parts of the code
have to be touched for a change. Since an estimation can never
be 100% accurate, an additional dimension is how confident the
lead developer feels with his estimations. If traceability links do
in fact support the estimation, the lead developer should become
more confident in estimating over time and the high confidence
estimation should become more accurate at the same time.

Question 1: How much does the estimated effort differ from the actual effort?
Metrics: – Average number of tasks per sprint (analysis of Product

Backlog/JIRA tickets)
– Average number of deviating tasks per spring (analysis of

Product Backlog/JIRA tickets)
– Percentage of deviating tasks per sprint (derived)
– Initial estimation for each task in story points (analysis of

Product Backlog/JIRA tickets)
– Updated estimation for each task in story points (analysis

of Product Backlog/JIRA tickets)
– Average increase/decrease in effort per task (derived)
– Number of JIRA comments about effort per task (analysis

of JIRA tickets)

Question 2: How confident is the lead developer in the estimation of tasks?
Metrics: – Likert scale confidence

1 – not confident at all
5 – very confident
per task
(Questionnaire with lead developer)

– Number of low confidence tasks that required a change (anal-
ysis of Product Backlog/JIRA tickets)

– Number of high confidence tasks that required a change
(analysis of Product Backlog/JIRA tickets)

Scenario: Given a ticket, it should be possible to create links to require-
ments, model elements, implementation and tests that are asso-
ciated with the ticket. By identifying all artifacts that need to
change using trace links, the LD can make better estimations of
the tickets.

10

Table 5: Goal/Question/Metric to identify traceability goals and
metrics

Goal 4: Increase the efficiency of identifying artifacts relevant to a change
from the developers’ point of view.

Goal 5: Increase the efficiency of identifying artifacts relevant to a change
from the business analyst’s point of view.

Rationale: These two goals are closely related and only differ in the view-
point. Therefore, they are treated together and the questions
and the metrics are valid for both.
At the moment, it is a significant effort to identify all artifacts
that are affected by a change. The business analyst creates an ini-
tial change impact analysis, but that does not contain the code.
The developers thus need to identify the relevant code parts
themselves. Therefore, there is effort for both roles. If traceabil-
ity links are established between all relevant artifacts, this effort
should be significantly reduced and the information recorded for
use in the future.

Question 1: How well are the different artifacts connected to the code?
Metrics: – Number of identified code sections per task (Analysis of

traceability model and JIRA tickets)
– Number of tasks (analysis of JIRA tickets)
– Average number of identified code sections per task (derived)
– Number of missed sections (analysis of commits)

Question 2: How easy is it to identify artifacts connected to a change for a
given task?

Metrics: – Likert scale difficulty of identifying artifacts connected to a
task
1 – very difficult
5 – very easy
per task
(Questionnaire with developers), (Questionnaire with busi-
ness analyst)

– Number of artifacts added after initial change impact anal-
ysis (analysis of traceability model and JIRA tickets)

Question 3: How efficient is the creation of the change impact analysis?
Metrics: – Initial estimation for each task in story points (analysis of

Product Backlog/JIRA tickets)
– Updated estimation for each task in story points (analysis

of Product Backlog/JIRA tickets)
– Average increase/decrease in effort per task (derived)
– Duration of creating a CIA (time sheet of BA)
– Effort of changing an existing CIA (time sheet of BA)

Scenario 1: Given a ticket, the BA should be able to create trace links to all
artifacts associated with the ticket, including the code.

11

Scenario 2: Given a ticket, the developer should be able to identify all arti-
facts associated with the ticket using trace links created by the
BA.

Table 6: Goal/Question/Metric to identify traceability goals and
metrics

Goal 6: Improve the visibility of the dependencies of the process steps
from the lead developer’s point of view

Rationale: Hidden dependencies are a major source of added effort. If de-
pendencies are not detected during the planning process, they
can become evident when code is checked in (in the form of
merge conflicts), when it is compiled (in the form of failed tests
or builds), or during design. Traceability links can help identify
dependencies and thus, a system with a high number of trace-
ability links should be less susceptible to this kind of mistake.

Question 1: How often do dependency conflicts manifest in development?
Metrics: – Likert scale ease of dependency identification

1 – very difficult
5 – very easy
per task
(Questionnaire with lead developer)

– Number of merge conflicts (analysis of commit history, con-
tinuous integration server)

– Number of backed-out patches (analysis of commit history)
– Number of JIRA comments about dependency issues (anal-

ysis of JIRA tickets)
– Number of failed builds (build history on continuous inte-

gration server)
– Number of failed tests (build history on continuous integra-

tion server)

Scenario: Given the trace links related to a requirement, it should be pos-
sible to identify which processes are still needed for the require-
ment to be completed. For example, if a requirement that re-
quires copy and is not yet linked to copy, it means the copy does
not exist and needs to be created.

Table 7: Goal/Question/Metric to identify traceability goals and
metrics

Goal 7: Improve the visibility of progress from the Product Owner’s
point of view

12

Rationale: One of the stated goals, in particular of the lead developer, was
to use traceability information to get an insight into the current
progress of the development. The business analyst also empha-
sised the importance of having insight into the “entire lifecycle
of a feature” and to get insights at all stages of the process. This
kind of progress tracking is connected to traceability since trace-
ability links allow, e.g., to identify if all relevant code segments
have already been touched or to see if the relevant artifacts have
already been updated.

Question 1: How easy is it to gauge the progress of a task?
Metrics: – Likert scale visibility of progress

1 – very opaque
5 – very visible
per task
(Questionnaire with Product Owner)

– Number of traceability links per task (analysis of traceability
model and JIRA tickets)

– Correlation of visibility and number of links (derived)

Scenario: Given a ticket, the PO should be able to identify all the artifacts
that need to be changed for the ticket to be completed through
trace links. The PO should then be able to investigate if these
artifacts have already been changed to get an idea of the progress
of the ticket before the sprint ends.

2.3 Step 3: Derive Traceability Information Model

Based on a definition of the traceability goals and the process goal, we defined
a traceability information model (TIM) to describe the links needed and the
semantics of the traceability links. First the two researchers went through the
traceability goals, to identify all links types that are needed and went through
the development process to identify which traceable artifacts correspond to the
needed traceability links. We created a model of these links using Xcore [], which
is a textual language for specifying EMF models. Xcore also allows to have
the graphical representation of the model. As suggested by TracIMo, having
a graphical representation of the TIM, makes it easy to discuss with involved
stakeholders. It also makes it easy to detect missing links and duplicate links.
We iterated over the design of the TIM several times through emails and Skype
calls with the BA. The TIM designed is represented in Figure 4.

13

Source Comment

JIRA tickets The JIRA tickets represent the epics and tasks and con-
tain all relevant information about the implementation of
a change. In particular, they contain traceability links to,
e.g., commits and requirement documents and will contain
the traceability visualisations done in Eclipse Capra 1. The
comments are a particularly valuable source of information
and will be used to identify what the developers discussed
while working on the task.

Product backlog If a product backlog that is separate from the JIRA tickets
exists, this can provide information about the estimation
and prioritisation of tasks.

Commit history Commit messages usually contain a link to the task they
were intended for. They will allow us to see which code
was changed to address which task.

Questionnaires Qualitative data about the satisfaction of the different
stakeholders is going to be collected with questionnaires.

Build history on
continuous integration
server

The build history gives insight into failed builds that can
be caused by compile errors, failed tests, or dependency
issues.

Time Sheets All activities where effort is recorded will need to be ac-
companied by a time sheet. Since we can not expect de-
velopers to record all times accurately, this data collection
tool will be limited to the BA.

Table 8: Data sources for metrics

Change	Set

Requirement Tasks

Roadmap

Customer	
Content System	Tests Structural	Modal	

Element
Behavioral	

Model	Element Wireframes

Copy Art	DesignsImplementation

Unit	Tests Wiki

Fig. 4. Proposed Traceability Information Model.

14

2.4 Step 4: Assess the process goals against traceability goals

In this step, we used the traceability process goals defined in Step 1 and the
traceability goals defined in Step 2 to analyze if all the defined process goals that
require traceability to be fulfilled, have at least one corresponding traceability
goal associated with them. The two researchers went through a list of all the
process goals and identified traceability related goals. Then investigated the list
of traceability goals that matched the process goals. The result of this step is
shown in below.

2.5 Step 5: Assess traceability goals against TIM

In this section, the traceability information model defined in Step 3 will be
evaluated in terms of the traceability goals that have been defined in Section 2.2.
Whether these goals can be achieved or not depends on the expressiveness of
the meta-model as well as the traceability practices that are put into place. In
this section, we will only consider an evaluation of the meta-model, whereas
the evaluation of the practices will be left to the empirical validation in the
evaluation step (Step 8). Since we focus on the TIM, the object of the analysis
are the artifacts that are connected via traceability links and the semantics of
these links. In this step, we also used the scenarios defined in Step 2 in the
assessment. The analysis here relates to the meta-model shown in Figure 4.

All links are undirected and establish 1:1 relationships between the artifacts.
No additional meta-information is captured in the links.

Support of goals The following list contains the goals and how the final version
of the traceability information model helps to achieve them:

Traceability Goal 1: Increase the awareness of stakeholders about product
changes from the business analyst point of view.
The traceability links and in particular the change impact analysis that is
enabled through their existence allows the business analyst to communicate
product changes to the stakeholders and to give an indication which impact
they have. By including the CIA in the tickets, all stakeholders that have
access to those get an immediate impression of the elements that are affected
by the change.

Traceability Goal 2: Improve the visibility of the decision rationale from the
development team’s perspective.
Links between requirements and tickets as well as between the roadmap and
tickets indicate the rationale behind them.

Traceability Goal 3: Improve the accuracy of effort estimations for tasks from
the Lead Developer’s point of view.
Links between the requirements and the model elements allow identifying
all aspects of the system that are affected by a change. The transitive links
to the implementation indicate the code elements that need to be changed.
This change impact analysis improves the overview and should support the
Product Owner in estimating the task.

15

Traceability Goal 4: Increase the efficiency of identifying artifacts relevant to
a change from the developers’ point of view.
This goal can be achieved due to the same reasoning as for Goal 3.

Traceability Goal 5: Increase the efficiency of identifying artifacts relevant to
a change from the business analyst’s point of view.
This goal can be achieved due to the same reasoning as for Goal 3.

Traceability Goal 6: Improve the visibility of the dependencies of the process
steps from the lead developer’s point of view.
The process steps correspond to different activities that need to be performed
by different stakeholders. For instance, copy needs to be provided before the
web page can be programmed. The existence of a traceability link between
a requirement and copy thus indicates that the step has been done.

Traceability Goal 7: Improve the visibility of progress from the Product Owner’s
point of view.
The traceability information model makes it easier to track progress since
it clearly identifies the affected elements of the system that are affected by
a change. When comparing with which elements have already been changed
(e.g., tests, customer content, models) to which have to be changed, a no-
tion of completeness can be derived. Notably, however, traceability does not
help establishing to which degree the different elements have already been
completed, just if they have been touched at all.

Changes to the model due to evaluation The first revision of the analysis re-
vealed that the concepts related to requirements were not clearly delineated.
Since product changes impact the requirements and must be broken down to
be recorded in JIRA tickets (Goal 1), it is essential that these are traced cor-
rectly. The first version of the model contained the concept of a “task”, however.
This was ambiguous, since a task could be a user story or something more fine-
grained. It was also ambiguous since the terms “ticket” and “task” were used
interchangeably. For the purposes of traceability, however, the concept “ticket”
is most suitable, since requirements (in the Excel document) will be linked to
tickets in JIRA, no matter what level of abstraction they are.

This line of thought also revealed that traceability links that are maintained
by Eclipse Capra need to be distinguished from those maintained in JIRA. For
instance, wireframes, copy, and art designs are going to be added to the JIRA
ticket as images or text, respectively. Therefore, the traceability link is going
to be handled through the containment relationship in JIRA. Likewise, links
between tickets (e.g., from an epic to user stories) are handled by JIRA. This
has been made visible in the conceptual model.

Other than that, no obvious missing connections have been identified. It is
not entirely clear if the links between tickets and implementation are necessary.
Since the requirements are transitively linked to the implementation, it might
not be helpful to have an additional link originating in the ticket. However, if
commit messages are augmented with ticket numbers, this connection becomes
relevant again and should be included. It can be helpful to determine progress
(Goal 7).

16

The end result of this step is the TIM depicted in Figure 5.

Requirement Tickets

Roadmap

Customer	
Content System	Tests Structural	Modal	

Element
Behavioral	

Model	Element Wireframes Copy Art	
Designs

Implementation

Unit	Tests Wiki

Change	Set

Fig. 5. Updated Traceability Information Model. Links in red not supported by Eclipse
Capra but through JIRA. Tasks have been renamed to Tickets.

2.6 Step 6 : Derive a traceability process

In this step, we defined how trace links were going to be created, maintained and
used. The inputs we considered for this step were the process model the company,
the traceability goals, metrics, scenarios and the defined TIM. Since the BA was
already responsible for conducting the manual impact analysis, we decided that
he should also create the trace link because he knows the system well and was
already creating links implicitly in the existing development process. The BA is
also responsible for updating the links when artifacts evolve.

The end users of the trace links will be the development team, the lead
developer, the product owner as well as the BA. Due to the fact that there were
no existing links and the systems developed at the company already had a large
number of artifacts, the links will be created in a retrospective manner. To reduce
the load for the BA, the links will also be created incrementally. For each sprint,
the BA will create links to tickets planned for the sprint and make these links
available to the developers. This is a lightweight approach for creating links as the
BA can focus the effort on the links that yield immediate benefits. Furthermore,
links between development artifacts are also created incrementally, e.g., links
between model elements and implementation and between implementation and
tests. These links can be reused the next time a change involves an artifact that
already has trace links.

We used the metrics and measurement plan defined in Step 2 to define a data
collection strategy that should be included in the traceability process. The data
from JIRA, e.g., average number of tickets per sprint did not need extra effort
in collecting as they can be automatically obtained from the JIRA system. For
the data that needed the Likert scale, it was agreed that the BA will collect this
data from the rest of the involved stakeholders.

17

2.7 Step 7: Select and customize tool

From the defined traceability process in Step 7, we searched for a traceability
tool that would support the process. We investigated the existing traceable arti-
facts and identified which tools used. The traceability management tool therefore
needs to be able to support linking to and from artifacts in the specific formats
provided by the different tools. We used the traceability tool characteristics
defined in [3] as suggested by TracIMo and selected Eclipse Capra2 as our trace-
ability tool. While other alternatives e.g., Yakindu traceability3 where available,
the company had no budget for a new tool and we therefore had to select an
open source tool that we could customize. Additionally, we had to select a stand
alone tool, or a tool that could easily integrate into the existing development
process without disrupting the existing process. This meant that complete life
cycle management tools such as Rational DOORS 4 were out of the question.
The disadvantage of selecting Eclipse Capra is that links had to be created out
of JIRA, the main system that the developers use. However, it was possible to
extract traceability graph and embed them in the JIRA tickets. While this was
an extra task for the BA, it meant that the developers did not need to learn any
new tool.

The existing Eclipse Capra implementation did not support links to and from
PHP code or spreadsheets. But since Eclipse Capra is extendable, we customized
it to add this functionality. We also customized the visualization to show direc-
tions in links and added filtering mechanisms to select which elements should
be shown in the traceability graph. Lastly, we implemented the TIM defined in
Figure 5, so that the company can create their custom trace links.

2.8 Step 8: Deploy process and tool

To deploy the designed process and tool, we first created a schedule together
with the BA for when the deployment would take place. This schedule was
communicated to the team before the arrival of the researchers. The detailed
schedule for the one week the researchers were present at the company is given
in Table 9. Part of the original schedule was updated on-site, to accommodate
arising issues. On the first day, one researcher installed the tool on the BA’s
machine, explained how links were going to be created and the BA started to
create links using one project that was selected. During the week, the researchers
attended the daily stand-up meetings of the developers to understand more how
the team works. In the stand-up meetings, the BA showed the created links to
the team for feedback. The feedback from the team was taken into account by
the researchers, and the tool and process was updated as required. One of the
major update that we did was to change the TIM, so that links are created from
tickets to model elements, instead of to requirements. This is because developers
mostly interact with the tickets and not the requirements. The resulting TIM

2 https://eclipse.org/capra
3 https://www.itemis.com/en/yakindu/traceability/
4 https://www.doorsng.com

18

is shown in Figure 6. Additionally, we changed the granularity of the links from
tickets to model elements. At first the BA created links to specific methods and
properties in the UML classes, but the developers thought that this was too
detailed and made the traceability graph complex to understand. To solve this
the links were created to the specific classes only.

Fig. 6. Updated traceability information model. Links in red not supported by Eclipse
Capra but through JIRA. Note that all development artifacts are now linked via the
Ticket. The roadmap has been removed.

Table 9: Time line for the study at the company

Activity Day Schedule Persons

Stand-up meeting with Dev team 1 9.45 to 10:00 BA, SM
Update metamodel and fix issues 1 10.15 to 11.15 BA, BD, SM
Finalize tool environment 1 11.15 to 12.00 SM
Install Eclipse Capra for the business
analyst and backend developer

1 13.00 to 13.30 BA, BD, SM

Configure and test Eclipse Capra (e.g.,
connection to Git, JIRA, Google Drive)

1 13.30 to 14.30 BA, BD, SM

Demo the tool for the business analyst
and backend developer

1 14.30 to 15.00 BA, BD, SM

Create traceability links for a specific
project

1 15.00 to 17.00 BA, BD, SM

Prepare presentation for QA Engineer,
the Frontend Developer, and Product
Owner

1 17.00 to 18.00 SM

Discuss and reflect on the day 1 21.00 SM, JS

19

Stand-up meeting with Dev team. Show
the Dev team what the links will look
like in the JIRA ticket (use this as a
focus group to get feedback)

2 9.45 to 10:00 BA, SM

Meeting the the BD and BA to discuss
the links created on day 1

2 10.15 to 11.00 FD, PO, QA,
SM

Interview with the PO about his expe-
rience with mainly task planning

2 11.00 to 12.00 BA, SM, PO

Update second researcher on current
status and ongoing process

2 13.00 to 14.00 SM, JS

Revise traceability links and approach
based on feedback and common action
plan

2 14.00 to 15.00 BA, BD, SM

Discuss granularity and traceability
goals with BA

2 15.00 to 16.00 SM, JS, BA

Create a UML model of the current im-
plementation

2 16.00 to 18.00 JS

Business analyst continue creating
traceability links and augmenting JIRA
tickets

2 & 3 ongoing BA, BD, (SM,
JS)

Let the QA Engineer, the Frontend De-
veloper, and the Product Owner use the
links

2, 3 & 5 ongoing FD, PO, QA,
(SM, JS)

Discuss UML model of current PHP
code

3 9.30 to 9.45 JS, BA

Stand-up meeting with Dev team 3 9.45 to 10:00 BA, JS, SM
Discuss feedback from focus group with
business analyst and formulate action
plan

3 10.00 to 10.30 JS, SM, BD,
BA

Update the meta-model and package
Eclipse Capra

3 10.30 to 11.00 SM

Write bug reports for new Eclipse
Capra features

3 10.30 to 11.00 JS

Revise traceability links and approach
based on feedback and common action
plan

3 11.00 to 12.00 SM, JS

Get feedback from the Backend and
Frontend Developer

3 13.00 to 13.30 FD, BD, SM,
JS

Install updated Eclipse Capra on the
BA’s and the lead developer’s machines

3 13.30 to 14.00 FD, BD, SM

Collect data to establish baseline for
metrics

3 14.00 to 16.30 SM, JS

20

Discuss the new traceability informa-
tion model with BA and ensure that
graphs are added to tickets

3 16.30 to 18.00 SM, JS, BA

Stand-up meeting with Dev team 5 9.45 to 10:00 BA, JS, SM
Resolve any open issues 5 10.00 to 12.00 BA, BD, SM,

JS
Agree on next steps and schedule
follow-ups

5 13.00 to 14.00 BA, BD, SM,
JS

Interview the Business Analyst and
Backend Developer about their experi-
ence with the tool

5 14.00 to 15.00 BA, BD, SM,
JS

Collect data to establish baseline for
metrics

5 15.00 to 16.30 SM

21

2.9 Step 9: Evaluate tool and process

The evaluation of the deployed tool and process started on the second day at the
company. We collected feedback from the stand up meetings, when the developers
were shown the links. In the week we spent at the company, we also conducted
one focus group meeting with the BA, LD, and two back-end developers to
get their feedback on the deployed process and tool. We also interviewed the
PO. We used the post-deployment interview guide provided in the supplemental
material [1]. The interview with the PO was recorded and transcribed, while in
the focus group meeting, the researchers took notes. Additionally, the researchers
took field notes that are included as appendix to this report (c.f. Appendix A –
C).

After two weeks, when the first sprint where the developer used the links
was over, we conducted another interview by Skype with the BA to understand
how the links are used, their benefits and the challenges associated with the new
traceability strategy.

We conducted two interviews again after five months. One with the BA and
one with a back-end developer to understand the long term benefits of using
the current traceability process and tool. At this point we also collected mea-
surements from JIRA to understand how the current process has impacted the
development. Some of the metrics we collected can be found in appendix D.

A Appendix: Field Notes

A.1 Assorted Notes Day 1:

– Introduction to members of the team
– Participated in standup meetings for 3 teams
– The meetings were short and clear. Members discussed what they will do

that day, no reference to past tasks because it was the beginning of the
sprint.

– Sat down with the BA to look at the metamodel and the following were
suggested:
• Change of task to tickets
• Adding arrows to the diagram
• Adding Class and Method distinction for PHP resources
• Made links one to many instead of one to one

– Implemented the change
– Installed the tool to the BA’s machine
– Connected to Jira, spent time importing tickets to Eclipse
– Connect to Google drive – Discovered a bug (see below)

Immediate enhancements in Eclipse Capra:

– Google drive should show all Excel sheets
– Google Drive first column missing
– Task ID instead of name in Jira

22

– Naming of links to many targets as From “source”

Future Enhancement for Eclipse Capra:

– Show connections from Selection view
– Many to many links
– Better editing of links (https://bugs.eclipse.org/bugs/show_bug.cgi?

id=506899)

Creating links

– Discussion on what should and should not be linked.
– Long discussion on what the mapping Excel sheet means. The conclusion

was that there are several systems that need to exchange data. The mapping
sheet shows how the data fields in the different systems are related to each
other. This can be supported by Eclipse Capra later on as a separate model
containing links between two systems. The resulting graph can be added to
the ticket as a mapping diagram (instead of the Excel sheet)

– First set of links to one requirement took around 30 mins, for about (7 links
(not all one to one links)):

– Observations:
• Locating what needs to be traced takes time
• Deciding if something should be linked or not also takes time
• Links were created in a perspective of what will need to change, if I

change X. This leaves a question of if these links would have been the
same if the tasks were different but involving similar elements. E.g, if
the task was delete instead of modify – (We can test this in an ex-
periment where we give two sets of instructions on how to create links
(requirements-based Vs Task-based) and see if the links we get are dif-
ferent.)

– Planned for next day
– Got access to Jira account

A.2 Assorted Notes Day 2:

Daily stand up meeting with Dev team

– Showed the metamodel and links created on day 1
– Their concern was on the granularity of the links and they though that it

was too detailed
– One person asked if they will get more complex graphs in the end — This

seemed interesting to him
– One developer asked if they could be able to see the graph of the entire sys-

tem. This is currently not possible, only links from and to selected elements
are shown

Meeting with the lead developer and BA

23

– How he can install the tool – zip and export did not work
– Needs to download and install Eclipse and all required plugins
– Discussion on which model to link to the requirements. There is a model

from HDN (an external client dealing with compliance to money lenders),
this contains the data fields that the company needs to have in order to
comply with money lenders. However, this model is not a true reflection of
the code base, the model contains come dutch words and some English words.
The dutch fields are translated to English in the code. The code also contains
additional fields that are not in the HDN model. So the agreement is to find
a way to get a model that reflects the code instead of using the HDN code,
however, I think that we can introduce a link type called model to model
that will map the fields from HDN to the fields in the actual code base, this
will make it easier for the BA to make the connection when creating the
task, and (may be for the developers?)

Meeting with Product Owner

– Introduced him to what we are trying to achieve with the tool
– Asked about his role as a product owner
– Asked about his opinion on traceability, even though this was very hard

because he does not deal with the code directly and also has only two weeks
as a product owner

– He thinks having traceability will mainly help developers and give him an
overview of how artifacts are connected, because this is currently hard

– Has some concerns on the amount of time it takes to create trace links

– Investigating what is wrong with Google Drive filtering the files shown to
only recent files

– Investigating why task IDs do not show

Granularity

– Different levels will be needed
– This will also require having different visualizations to accommodate the

different granularity levels

A.3 Meeting with BA, FD (2), BD, and JS, SM, Day 3, 13.00

Deployment whenever the feature lands, not necessarily when the sprint ends.
BA goes through changes that were decided yesterday:

– Granularity: different cases in which tracing went through properties instead
of via classes. Granularity level will be decided by BA.

– Feedback BD: better maintainability with coarser granularity, detail was
better in more fine-grained version; when building traceability diagram, it is
difficult to be complete, so tests will still need to be run; therefore the effort
of having something complete is thus not necessary.

24

– Question: how will you communicate about missing links or wrong links?
Not clear yet, should be done in process with feedback to BA or BD. Could
be via notes in the ticket.

– FD: Not all issues are covered by diagrams in the beginning. BA: focus on
tasks in the backlog in the beginning

– Goal is to involve Kalkuli and Frontend part, new project will change the
customer journey and affect the calculation engine, this will co-exist with
the new advice flow; traceability will be helpful

– Changed metamodel to ensure more targeted view via the ticket to the de-
velopers. This seems to be positively received.

– Progress tracking: detailed the issues with it. BD refined goal to mean cost
of changes (effort involved, places that need to be changed). This was also
related to adding a weight to the elements in the graph. However, this can
be accomplished by the graph visualisation and the number of connected
elements. A form of highlighting would be interesting.

– Later on, seeing elements that are not linked will be helpful
– UI change to show parent
– BD: if it’s too late in the project lifecycle, adding unit tests or something

like that is too costly and it’s no longer useful. Project is four years old, so
the number of nodes is huge. BA: definition of scope is to address this issue,
will also be used for new project

– BD: JIRA ticket is description with links to Google Drive etc. Is it possible to
add the links to the artifact description so you can click the link and browser
will open? BA: Graph will be in the ticket, requirement will be seen; SM:
mapping for different systems is necessary, it is more static and does not
change that often; therefore, a separate trace model will be used and the
image can be added to the ticket.

– BD: How will the UML model be updated? BA: Current version will be
manually and continuously updated. First UML, then implementation. JS:
Who is going to update? BA: Me BD: Could also be the architect (himself)

– Name worksheets in Google documents to make the graph prettier.

A.4 Granularity and Progress Tracking

Feedback from developers was that the traceability links are too fine-grained.
One of the reasons for this level of granularity was Goal 7, since it is necessary
to have links on a very low level in order to be able to track which parts of
the implementation have already been added. (This is the only thing that could
be tracked since changes in an existing method would not be visible this way.)
However, the level of granularity means more work for the business analyst and
is not necessarily helpful in tracking progress since the graph only shows what
is already there and never what is missing (e.g., a class or method or unit test).
However, effort estimation might be easier with a more fine-grained view (Goal
3).

Progress that the PO wants to check is how far the development has come.
This can be checked via JIRA and the connection between the commit messages

25

and the ticket. However, even commits are not sufficient to do that since it is
unclear how many commits are needed to complete a task. Additional infor-
mation is coming through personal communication and the stand-up meetings.
Information from the traceability model would not be helpful.

Granularity: if you link to a property, you have no idea which class to look
in. Therefore, a higher granularity in the traceability model is useless to the
developer and thus not helpful in achieving Goal 4. If granularity is set to the
class level, some information is lost. Fix: include the parent in the display name
for all EMF model elements.

Trade-off between BA effort in creating links for different purposes. BA wants
to be able to model in both ways, either on the class level or on the prop-
erty/method level.

A.5 Semantics of the traceability information model

Semantics: ModelToImplementation is not really carrying any semantics about
the concrete relationship of the elements that are connected by it. Introducing
more fine-grained link types (implementedBy, usedBy, etc.) would make the
semantics more explicit but also introduce more work and more potential for
error.

The original version of the traceability information model (cf. Figure 4 used
the requirement as the starting point for connecting development artifacts. That
has the disadvantage, that, if a requirement is split over several tickets, the de-
velopers do not get the traceability information specific to the ticket, but infor-
mation for all tickets related to that requirement. This is potentially confusing.
Therefore, the relationships were changed so that the tickets link to the devel-
opment artifacts.

A.6 Working with UML Models of the Source Code

The class diagram is exported from PHPStorm and uses a non-standard format.
We have no way to open that format right now in Eclipse, so it is not possible to
create links directly to this. Also, the file format does not contain full information
about the classes, but rather links to source code. It is therefore not particularly
useful in any case.

Fix: reverse engineer the current source code and create a model (as well as
diagrams from that). Done by using BOUML to create an XMI file, then remov-
ing the XMI header from that file and importing it in Papyrus. New diagrams
can then be created there.

Since the models are re-engineered from the source code, the BA needs to
introduce new elements that are necessary to fulfill a requirement. This is neces-
sary to show the new elements in the traceability graphs, anyway. The company
will thus make the models the gold-standard and show new elements in the
model before it is implemented. A potential drawback of this approach is that
the model and the source code might get out of sync.

26

A.7 Tickets and Estimation

PO: Traceability can increase the understanding the PO has of the system.
The PO has only been working in this role for two weeks and his technical
understanding of the system is still limited. Therefore, the traceability graph is
supporting him in understanding how the system works and which elements are
connected.

The PO estimates tickets together with the BD and currently relies on the
technical expertise of the BD. Tickets are usually over-estimated.

Tickets are created when the backlog is filled. BA can thus create links for
the tickets in the backlog to help in the estimation.

A.8 Eclipse Capra Features

Showing the parent of a model element in graph would allow identifying where
it is located. If classes with identical names are located in different packages, it
would also be helpful to see the parent. (Should be configurable)

Links between child elements should be liftable to the parent level (link be-
tween property in model and method in implementation should imply a link
between the model and the implementation).

Support for several traceability models would enable traceability links be-
tween different types of models to be handled separately. There are models that
would benefit from traceability, but they are a bit detached from the day-to-
day development (HDN model in this case). Maintaining these links in the same
traceability model as the rest is not desirable. A quick fix could be to have
separate workspaces for these different purposes.

A.9 Lessons Learned

We need to make sure to differentiate the artifacts that are introduced only for
traceability and those that we introduce because they have practical advantages
in other areas.

There are remote developers that are relying on the BA’s analysis. We should
interview them about their view as well.

Due to time constraints, we are pushing the interviews for the immediate
benefits to the week after the introduction of the links to give everyone the
chance to work with the links for a little while.

Company has recently been acquired by another company. This was the driver
for the change of process and is now driving changes in the architecture as well.
The impact on the use of traceability is unclear.

A.10 Mapping of Enumerations in different data exchange
standards

There is a need to map constants in enumeration between different models.
There are data exchange formats that have enums that need to be mapped to

27

the ones used internally. Since there are several formats and each format has
its own nomenclature and a different set of entries, the mapping of the internal
models needs to be defined for each. At the moment, the mapping is done in a
spreadsheet that is linked in tasks where this is relevant.

The question whether Eclipse Capra can be used for this purpose was dis-
cussed. We agreed that this might not be the most prudent thing to do since
this information is relatively static and the visualisations Eclipse Capra offers
are not particularly suitable for this purpose and it is difficult to change these
links once they have been established.

A.11 Release Engineering

Once the developer is done with a ticket, they send a pull request. If this is
accepted, it goes to the testing system. The acceptance shows up in the ticket.
Once testing is complete, the feature is released via a separate pull request
(marked with “release”). This does not show up in the ticket, but the developer
can see it on Github.

A.12 Prioritisation of Traceability Goals

Based on the discussions at the company and the work with the traceability
information model, a priority of the goals has been established as follows.

Traceability Goal 4: Increase the efficiency of identifying artifacts relevant to
a change from the developers’ point of view.

Traceability Goal 5: Increase the efficiency of identifying artifacts relevant to
a change from the business analyst’s point of view.
Goals 4 and 5 are directly achievable by introducing traceability links and
generate the most benefit for the development team during the development.

Traceability Goal 3: Improve the accuracy of effort estimations for tasks from
the Lead Developer’s point of view.
Since the estimations so far were mostly relying on the expertise of the
developers, this goal is also

Traceability Goal 6: Improve the visibility of the dependencies of the process
steps from the lead developer’s point of view.
This goal is closely related to goals 3 to 5. Since process steps are signified
through different artifacts, making all relevant artifacts visible can be helpful.

Traceability Goal 2: Improve the visibility of the decision rationale from the
development team’s perspective.
As long as the decision rationale is captured in a linked artifact (e.g., as
a separate document, the requirement or the roadmap), the impact of in-
troducing Eclipse Capra is unclear since these artifacts were already linked
through the JIRA tickets. Traceability Graph could give information about
where to look in the file with the rationale. Also, Eclipse Capra can help in
checking if each requirement has a rationale.

28

Traceability Goal 1: Increase the awareness of stakeholders about product
changes from the business analyst point of view.
The original intent of the goal was to identify the stakeholders that need to be
involved in the change. This is partially achievable through traceability links
since different types of artifacts can be assigned to different stakeholders.
Thus, if all relevant artifacts are identified, then the stakeholders can be
identified as well. However, this was already done in the task breakdown
in JIRA. This requires, however, to find all relevant artifacts in the CIA.
Since all relevant stakeholders are now part of one team, all stakeholders are
involved in the estimation and the breakdown.

Traceability Goal 7: Improve the visibility of progress from the Product Owner’s
point of view.
This is tightly coupled to the discussion of granularity.

A.13 Feedback from Stand-up Meeting on Day 5

The fact that there is no test that is directly associated to a class does not mean
that the class (or method) is not tested. There’s a chance that there are indirect
tests (tests of another class that also test the method in question) or special
tests (e.g., for the Twig templates), that are stored elsewhere. The developers
use a code coverage report to identify whether the tests are complete.

However, it was agreed that a missing link to a test can be an indicator for
the developer to double check the presence of tests. It was unclear if links to
indirect tests should all be recorded since this might be redundant information
to the coverage report. This should be followed up in the interviews.

A.14 Feedback from Summary Session

Goal 3 is relevant for many stakeholders (PO, BA, Developer) since everybody
is affected by the estimation. Quality of estimation depends on the quality of
the traceability graph. Feedback from developers is necessary to keep the links
consistent and complete (e.g., if test is not in Class where it is expected).

Goal 6 is still relevant, copy for a feature could not be available or not final.
That means that the feature can not be merged. Linking the ticket to the copy
artifact will help in that. However, this should happen in JIRA. Copywriters
have own template that is linked to the ticket. Unfortunately, this process is not
yet optimal.

Estimation of a feature is about the complexity of the feature.
Since all tasks have already been planned and estimated, it does not make

sense to introduce traceability graphs right now. Therefore it would be better to
gauge this after the next sprint, where we also can gauge the impact on planning
and estimation. We will instead get feedback from the BA after the next planning
poker session.

Next time, we should go through all the traceability goals with the stake-
holders and verify them before the study.

29

B Appendix: Notes on follow-up meeting with the BA,
May 31

– Link creation going well

– All tickets have graph now

– Some additional links that are not related to current tasks are being created
now

– Helped in estimating one task already

• There was a task in which some of the logic had to be copied to another
entity across two files

• Specified with the links the correct version

• Links represented the change that needs to be done

• External developers saw what needed to be changed: it was clear enough
what the complexity was and understood clearly what needed to be
changed by following the links

• The task was easy/intuitive, though

• Diagram had a total of four links (AU-332.png)

• Developer asked if only following from highlighted task was sufficient

• Developer is a freelancer, so he will have to find some time

– Issue with new Eclipse Capra version, name of links seem to be different or
artifacts can not be resolved any longer

– Created links for tickets from this sprint and something for the new sprint

– Next sprint will be focused on some content tasks for EXO team, focus
groups and changes on the frontend and presentation side

– There is one backend tickets for HDN, but will most likely be scheduled for
the sprint after that

– Not sure if traceability links are helpful for the frontend, right now the BA
works mostly with backend issues. Sees potential for the presentation itself,
though, particularly for validation and flow logic because for that one can
refer to methods and classes

– For next sprint, there is a task to remove a controller function and some
components on the frontend side. However, it is only possible to link to a
template file, instead of a method or something more concrete.

– No plans to work on that yet, will rather be focused on HDN and calculation
engine; reason is that these changes to the business logic will be very difficult
and impact a lot of business decisions in the next two or three months; would
thus prefer to maintain the scope on that; there are also some non-negotiable
rules from the regulator, and Eclipse Capra will give a good hint of these
rules for the calculation are complied to. Adding frontend might add overload
in terms of tasks and things to manage;

– Compliance was not an original goal; has connection to frontend since certain
panels show certain calculations that are mandated by the regulator

– Eclipse Capra can give information about where the compliance is respected;
this is a form of requirement; having this information would be great

30

– Models in the presentation logics are unclear, where to point the links? Could
be fixed by extending the meta-model with a Ticket-to-Implementation link;
might be a bad idea since that would mean that some people will bypass
the model because that what they care about; that might impact the big
picture.

– So far, tasks were not so complex, but what they had to cope with worked.

C Appendix: Metrics

Before traceability After traceability

Sprint name Deviating
tickets

Sprint name Deviating
tickets

Jumbotroll 5 Sprint 1 4
Ocean’s 11 2 OPS: Never ending football 3
OPS: Stock syndrome 1 EXO: Intervention 3
OPS: Never ending football 1 EXO: Judgment day 3
Revenge of the sixth 2 Sprint 4 2
Alternative facts 3 EXO: Buzzy stuff 1
Alternative reality 2 EXO: Firewalls 1
King kong returns 4 OPS: Summer time 1
Fool’s day 2
Sprint 4 1
Paana cotta 5
Crazy bamboo 1

Table 10: Number of deviating tasks per sprint before and after the introduction
of traceability

Roles No. of comments before
traceability

No. of comments after
traceability

Jenkins 67 3
Developer 18 8
Non Developer 59 2

Total comments 144 13

Table 11: Number of comments before and after the introduction of traceability

31

Ticket ID Trace links

OPS-174 4
OPS-160 4
MYV-80 6
MA-2967 5
MA-2950 3
MA-2947 3
MA-2941 2
MA-2924 3
MA-2923 3
MA-2919 10
MA-2916 2
MA-2915 5
DH-346 6
DH-345 2
DH-343 2
DH-341 3
DH-330 3
CON-1021 3
CNV-149 3
CNV-65 4
AU-334 3
AU-332 5

Total trace links 84

Table 12: Number of trace links created for different tickets

32

References

1. Authors, A.: Supplemental Information for ”TracIMo: A Traceability Introduction
Methodology and its Evaluation in an Agile Development Team” (2020), https:
//doi.org/10.5281/zenodo.4160569

2. Seaman, C.B.: Qualitative methods in empirical studies of software engineering.
IEEE Transactions on software engineering 25(4), 557–572 (1999)

3. Steghöfer, J.P.: Software traceability tools: Overview and categorisation. In: Report
of the GI Working Group “Traceability/Evolution”, pp. 2–7. German Informatics
Society (GI) (October 2017), http://pi.informatik.uni-siegen.de/gi/stt/38_
1/01_Fachgruppenberichte/ARC_AKTE/ARC_AKTE_2017_p2_steghoefer.pdf

4. Van Solingen, R., Basili, V., Caldiera, G., Rombach, H.D.: Goal question metric
(gqm) approach. Encyclopedia of software engineering (2002)

