
Theorems and Proofs

The following algorithm, from “Proof Theories and Algorithms for Abstract
Argumentation Frameworks”, by Sanjay Modgil and Martin Caminada, produces
the (unique) grounded extension of (A,R). It is known to be the intersection of
all complete extensions, so it should not be used to find complete extensions, of
which there can be many.

Initialize IN(L0)=OUT(L0)=UNDEC(L0) = {}
Repeat until no change {

IN(Li+1) = IN(Li) ∪ {x | x is not labelled in Li, and
for all y : if yRx then y ∈ OUT(Li) }

OUT(Li+1) = OUT(Li) ∪ {x | x is not labelled in Li, and
for some y : yRx and y ∈ IN(Li+1) }

}
UNDEC := Arg − IN − OUT

Theorem 1. Acyclic DAFs have a unique complete extension, which is grounded
(labeling everything with IN or OUT, but not UNDEC).

Proof. We use the grounded labeling algorithm, which starts with everything
not attacked being IN.

Proof induction on the number n of nodes A in (A,R).
Base case: n=1. Acyclicity implies R={}; so everything is labelled IN. QED
Indn step: n+1. Since R is acyclic and non-empty, it has at least one great-

est/top element z, which does not attack anything. So (A− {z}, R− {(∗, z)}) is
also acyclic and by induction hypothesis has unique extension S′ labeling nodes
IN′ , and OUT′=(A-{z})-S′ .
Now add back attacks {(b1,z),...,(bn,z)}
* if some bk was in S′ , then z -must- be labelled OUT, so IN remains unchanged,
and OUT=OUT′ ∪ {z}
* if every bi was OUT in S′ , then IN=IN′ ∪ {z}, and OUT=OUT′

* Because S′ labelled everything IN or OUT, there is no other choice in S
QED

Definition 1. An Extended RefTree/Forest (XRF) is obtained from an ordi-
nary RG that is a tree by eliminating some edges.

An XRF is a forest with goal, defect and refinement roots, where

– a goal node has 0 or more defect children, and 0 or 1 refinement parent;
– a defect node has 0 or more refinement children, and 0 or 1 goal parent it

attacks;
– a refinement node has 1 or more goal children, and 0 or 1 addressed defect

parent.

ASPIC+ translation:
goal g  argument g



+ defeasible assumption g
defect d  argument d

+ defeasible assumption d
+ contrary (d,g) if d targets g

refinement r  argument r
+ rule (g1 ∧ ... ∧ gn ⇒ r)
+ contrary (r,d) if r addresses d

/* in the earlier notation, {g,d,r} were {idg, idd, idr} */
As a result, in the translation of a XRF, for a defect d, either

* d is stand-alone,
* d -REBUTS- one (top-level) g, in InitR, or
* d -REBUTS- one (subgoal) g, and

-UNDERMINES- one refinement Rr (when g in subgoals(r) )
NOTATION: Rr refers to the proof tree with root r and children
g1,... , which becomes a DAF node when ASPIC+ is translated to DAF

In the DAF generated from the above ASPIC+ translation of an XRF:
* goal arg g does not attack anything; it is attacked by zero or more d;
* defect arg d attacks zero or one top level goal arg g -or- both

the goal g and refinement Rr (when g is in subgoals(r)). Since
goal g cannot be reused in multiple refinements, d attacks at most
one refinement Rr. (Note: A defect d can be attacked by more than
one refinement arg Rr)

* refinement arg Rr attacks at most one d;
it is (undermine) attacked by 0 or more defects d

Horn Theory HT translation:
goal g with defect children d1,... dn  

g :- hd1,... hdn; (the name hd is short for “handled d”)
(if n = 0, the rule is g :- true)

refinement r with subgoal children g1,...  
r :- g1,... gn;

refinement r addresses defect  
hd :- r;

NOTATION: DAF(RG) |= x:IN/x:OUT iff arg x is in/not in
the unique grounded extension of DAF(RG).

Lemma 1. i. DAF(RG) |=g:IN iff HT(RG) |=g
ii. DAF(RG) |=d:IN iff HT(RG) 6|=hd

(Equivalently, DAF(RG) |=d:OUT iff HT |=hd, because DAF is ground.)
iii. DAF(RG) |=Rr:IN iff HT(RG) |=r

Proof.
In an XRF, we call a “top contra edge (x,y)” one of the following:
[1] d0 contra InitR -root- goal g0 (g0 not subgoal of a refinement)



[2] d0 contra subgoal g0 of refinement -root- node r0
[3] r0 contra defect -root- node d0

Given a regular Refinement Graph T that is a forest with at least one contra
edge, let elim(T) be an XRF where a top contra edge in T is
removed. [If T has a contra edge then it must have a top contra edge,
because one can follow the path up from the non-top contra edge towards a
root.] (Use some ordering on edges to make this deterministic.) If T
has n contra edges, let Tn := T, Ti−1 := elim(Ti). Note that
InitR is defined wrt to T, not Ti.

We then re-introduce contra edges one by one, by induction on the
index n of Tn. /* Should probably be inside an induction on # of
nodes.*/

BASE CASE: n=0;
So the XRF T0 has as roots
- all goals g (un-targeted by any defects)
- all refinements r, with subgoal children g1,...
- all defects d

In HT, there are
- goal rules g :- true, for all g
- refinement rules r :- g1,...
- no hd :- r rules

So HT |= x iff x=g or x=r, and HT 6|= hd for all d.

In DAF, there are no Attacks, so everything is IN.

So
(i) DAF(T0) |= g:IN , HT(T0) |= g /* for all g */
(ii) DAF(T0) |= d:IN for all d , HT(T0) 6|= hd for any hd
(iii) DAF(T0) |= Rr for all Rr, since all args are IN

HT(T0) |= r for all r, because all g :- true rules fire,
and then all r :- rules fire

QED base case

INDN HYPOTHESIS: Assume lemma is true for XRF Tn (call it T′ ,
with Horn theory HT′, and Dung framework DAF′ generated from ASPIC+)

INDN STEP: RTP lemma for XRF Tn+1 (call it T, HT, and DAF respectively )
CASES for edge e removed from T:
[1] d0 contra InitR root goal g0 (not subgoal of a refinement)
[2] d0 contra subgoal g0 of refinement root node r0
[3] r0 contra defect root node d0



[[case 1]] d0 contra InitR root goal g0
and g0 does not appear as subgoal for any refinement.

HT = HT′ – {g0 :- restHd} ∪ {g0 :- hd0,restHd}
So Consequences(HT ) ⊆ Consequences(HT′) because change only
makes one rule harder to fire. The inequality holds iff
(ht1.1) HT′ |= g0; but HT6|= g0 because
(ht1.2) HT′ 6|= hd0
in which case Consequences(HT ) = Consequences(HT′) − {g0}
because g0 did not appear in other rules

DAF = DAF′ ∪ {d0 attacks g0}
so extension(DAF ) ⊆ extension(DAF′) because an attack may
affect g0, but g0 does not attack anything else (it is not a subgoal).
The inequality holds iff
(daf1.1) DAF′ |= g0:IN; but DAF |= g0:OUT because
(daf1.2) DAF′ |= d0:IN
in which case Extension(DAF ) = Extension(DAF′) − {g0}
because g0 is not a subgoal, so it does not attack anything else.

But
by induction hypothesis (i): (ht1.1) iff (daf1.1)
by induction hypothesis (ii): (ht1.2) iff (daf1.2)

QED [1]

[[case 2]] d0 contra subgoal g0 of refinement root node r0

HT = HT′ – { g0 :- restHd } + {g0 :- hd0,restHd }
so Consequences(HT ) ⊆ Consequences(HT ′) because change makes
one rule harder to fire. The inequality holds iff
(ht2.1) HT′ |= g0 (hence HT′ |= restHd) but HT 6|= g0,
(ht2.2) so HT′ 6|= hd0 since still HT′ |= restHd
in which case
Consequences(HT ) = Consequences(HT′) − {g0}

and *possibly*
− {r0} if
(ht2.3) HT′ |= r0, because now HT 6|= r0
[g0 appears in rhs of rule r0 :- g0,...

and there was no :- r0,... rule to propagate
this, as r0 is a root]

DAF = DAF′ ∪ {d0 attacks g0, d0 attacks Rr0}



so extension(DAF ) ⊆ extension(DAF′) because a new attack
may only affect g0 and Rr0 (these do not attack anything else, as
roots). The inequality holds iff
(daf2.1) DAF′ |= g0:IN and DAF |= g0:OUT) because
(daf2.2) DAF′ |= d0:IN

in which case
Extension(DAF ) = Extension(DAF′) − {g0}

and *possibly*
− {Rr0} if

(daf2.3) DAF′ |= Rr0:IN, bec. now DAF |= Rr0:OUT
But

by induction hypothesis (i): HT′ |= g0 iff DAF′ |= g0:IN
by induction hypothesis (ii): HT′ 6|= hd0 iff DAF′ |= d0:IN
by induction hypothesis (iii): HT′ |= r0 iff DAF′ |= Rr0:IN

QED [2]

[[case 3]] r0 contra defect root node d0

HT = HT′ ∪ {hd0 :- r0}
Consequences(HT′) ⊆ Consequences(HT ), since a rule is
added. The inequality holds iff
(ht3.1) HT′ |= r0, in which case HT |= hd0, but
(ht3.2) HT′ 6|= hd0 (there could have been other hd0 :- ri, but HT ′ 6|= ri)
in which case Consequences(HT ) = Consequences(HT′) ∪ {hd0}
because, as a root, hd0 does not appear in any rule :- hd0,...

DAF = DAF′ ∪ {Rr0 attacks d0}
so extension(DAF ) ⊆ extension(DAF′) because an attack may
affect d0, but d0, as a root, does not affect anything else.
The inequality holds iff
(daf3.1) DAF′ |= Rr0:IN, in which case DAF |= d0:OUT, but
(daf3.2) DAF′ |= d0:IN
in which case Extension(DAF ) = Extension(DAF′) − {d0}
since d0, as a root, does not attack anything else.

But by induction hypothesis (iii): (ht3.1) iff (daf3.1)
by induction hypothesis (ii): (ht3.2) iff (daf3.2)

QED [3]

The following theorem is a consequence of Lemma 1, item (i).

Theorem 2. Given a requirements graph RG that is a tree/forest, the set of
goals derivable from HT(RG) is identical to the set of goals appearing in the
unique complete and grounded extension of ASPICT(RG).


