Theorems and Proofs

The following algorithm, from "Proof Theories and Algorithms for Abstract Argumentation Frameworks", by Sanjay Modgil and Martin Caminada, produces the (unique) *grounded* extension of (A,R). It is known to be the *intersection* of all complete extensions, so it should not be used to find complete extensions, of which there can be many.

Theorem 1. Acyclic DAFs have a unique complete extension, which is grounded (labeling everything with IN or OUT, but not UNDEC).

Proof. We use the grounded labeling algorithm, which starts with everything not attacked being IN.

Proof induction on the number n of nodes A in (A,R).

Base case: n=1. Acyclicity implies R={}; so everything is labelled IN. QED Indn step: n+1. Since R is acyclic and non-empty, it has at least one greatest/top element z, which does not attack anything. So $(A - \{z\}, R - \{(*, z)\})$ is also acyclic and by induction hypothesis has unique extension S' labeling nodes IN', and OUT' =(A-{z})-S'.

Now add back attacks $\{(b_1,z),...,(b_n,z)\}$

* if some b_k was in S', then z -must- be labelled OUT, so IN remains unchanged, and OUT=OUT' $\cup \{z\}$

* if every b_i was OUT in S', then IN=IN' \cup {z}, and OUT=OUT'

* Because S' labelled everything IN or OUT, there is no other choice in S QED

Definition 1. An Extended RefTree/Forest (XRF) is obtained from an ordinary RG that is a tree by eliminating some edges.

An XRF is a forest with goal, defect and refinement roots, where

- a goal node has 0 or more defect children, and 0 or 1 refinement parent;
- a defect node has 0 or more refinement children, and 0 or 1 goal parent it attacks;
- a refinement node has 1 or more goal children, and 0 or 1 addressed defect parent.

ASPIC+ translation:

goal g \rightsquigarrow argument g

+ defeasible assumption g

defect d \rightsquigarrow argument d

+ defeasible assumption d

+ contrary (d,g) if d targets g

refinement r \rightsquigarrow argument r

+ rule $(g1 \land ... \land gn \Rightarrow r)$

+ contrary (r,d) if r addresses d

/* in the earlier notation, {g,d,r} were { id_g, id_d, id_r } */

As a result, in the translation of a XRF, for a defect d, either

* d is stand-alone,

- * d -REBUTS- one (top-level) g, in InitR, or
- * d -REBUTS- one (subgoal) g, and
 - -UNDERMINES- one refinement Rr (when g in subgoals(r))

NOTATION: **Rr** refers to the proof tree with root r and children g1,..., which becomes a DAF node when ASPIC+ is translated to DAF

In the DAF generated from the above ASPIC+ translation of an XRF:

* goal arg g does not attack anything; it is attacked by zero or more d;
* defect arg d attacks zero or one top level goal arg g -or- both the goal g and refinement Rr (when g is in subgoals(r)). Since goal g cannot be reused in multiple refinements, d attacks at most one refinement Rr. (Note: A defect d can be attacked by more than one refinement arg Rr)

* refinement arg Rr attacks at most one d; it is (undermine) attacked by 0 or more defects d

Horn Theory HT translation:

goal g with defect children $d_1,..., d_n \rightsquigarrow$ g :- h $d_1,...$ h d_n ; (the name hd is short for "handled d") (if n = 0, the rule is g :- true) refinement r with subgoal children g1,... \rightsquigarrow r :- g₁,... g_n; refinement r addresses defect \rightsquigarrow hd :- r; NOTATION: DAF(RG) \models x:IN/x:OUT iff arg x is in/not in

NOTATION: DAF(RG) \models x:IN/x:OUT iff arg x is in/not in the unique grounded extension of DAF(RG).

Lemma 1. *i.* $DAF(RG) \models g:IN \text{ iff } HT(RG) \models g$

ii. DAF(RG) ⊨d:IN iff HT(RG) ⊭hd (Equivalently, DAF(RG) ⊨d:OUT iff HT ⊨hd, because DAF is ground.)
iii. DAF(RG) ⊨Rr:IN iff HT(RG) ⊨r

Proof.

In an XRF, we call a *"top contra edge (x,y)"* one of the following: [1] d0 contra InitR -root- goal g0 (g0 not subgoal of a refinement) [2] d0 contra subgoal g0 of refinement -root- node r0

[3] r0 contra defect -root- node d0

Given a regular Refinement Graph T that is a forest with at least one contra edge, let $\operatorname{elim}(T)$ be an XRF where a top contra edge in T is removed. [If T has a contra edge then it must have a top contra edge, because one can follow the path up from the non-top contra edge towards a root.] (Use some ordering on edges to make this deterministic.) If T has n contra edges, let $T_n := T$, $T_{i-1} := \operatorname{elim}(T_i)$. Note that InitR is defined wrt to T, not T_i .

We then re-introduce contra edges one by one, by induction on the index n of T_n . /* Should probably be inside an induction on # of nodes.*/

BASE CASE: n=0;
So the XRF T0 has as roots

all goals g (un-targeted by any defects)
all refinements r, with subgoal children g1,...
all defects d

In HT, there are

goal rules g := true, for all g

- refinement rules r := g1,...- no hd :- r rules So HT \models x iff x=g or x=r, and HT \nvDash hd for all d.

In DAF, there are no Attacks, so everything is IN.

So

(i) DAF(T0) ⊨ g:IN , HT(T0) ⊨ g /* for all g */
(ii) DAF(T0) ⊨ d:IN for all d , HT(T0) ⊭ hd for any hd
(iii) DAF(T0) ⊨ Rr for all Rr, since all args are IN HT(T0) ⊨ r for all r, because all g :- true rules fire, and then all r :- ___ rules fire

QED base case

INDN HYPOTHESIS: Assume lemma is true for XRF T_n (call it T', with Horn theory HT', and Dung framework DAF' generated from ASPIC+)

INDN STEP: RTP lemma for XRF T_{n+1} (call it **T**, **HT**, and **DAF** respectively) CASES for edge e removed from T:

[1] d0 contra InitR root goal g0 (not subgoal of a refinement)

[2] d0 contra subgoal g0 of refinement root node r0

[3]r0 contra defect root node d0

[[case 1]] d0 contra InitR root goal g0 and g0 does not appear as subgoal for any refinement.

 $DAF = DAF' \cup \{d0 \text{ attacks } g0\}$ so $extension(DAF) \subseteq extension(DAF')$ because an attack may affect g0, but g0 does not attack anything else (it is not a subgoal). The inequality holds iff $(daf1.1) DAF' \models g0:IN;$ but $DAF \models g0:OUT$ because $(daf1.2) DAF' \models d0:IN$ in which case $Extension(DAF) = Extension(DAF') - \{g0\}$ because g0 is not a subgoal, so it does not attack anything else.

But

by induction hypothesis (i): (ht1.1) iff (daf1.1) by induction hypothesis (ii): (ht1.2) iff (daf1.2) QED [1]

 $\left[\left[{{\rm{case}}\ 2} \right] \right]$ d0 contra subgoal g0 of refinement root node r0

$$\begin{split} \mathrm{HT} &= \mathrm{HT}' - \{ \ \mathrm{g0} \ :- \ \mathrm{restHd} \ \} + \{ \mathrm{g0} \ :- \ \mathrm{hd0}, \mathrm{restHd} \ \} \\ &\text{so } Consequences(HT) \subseteq Consequences(HT') \ \mathrm{because \ change \ makes} \\ &\text{one \ rule \ harder \ to \ fire. \ The \ inequality \ holds \ iff} \\ &(\mathrm{ht2.1}) \ \mathrm{HT}' \models \mathrm{g0} \ (\mathrm{hence} \ \mathrm{HT}' \models \mathrm{restHd}) \ \mathrm{but} \ \mathrm{HT} \not\models \mathrm{g0}, \\ &(\mathrm{ht2.2}) \ \mathrm{so} \ \mathrm{HT}' \not\models \mathrm{hd0} \ \mathrm{since \ still} \ \mathrm{HT}' \models \ \mathrm{restHd} \\ &\text{in \ which \ case} \\ &Consequences(HT) \ = \ Consequences(\mathrm{HT}') \ - \ \{ g0 \} \\ &\text{and \ }^{*}\mathrm{possibly}^{*} \\ &- \ \{ r0 \} \ \mathrm{if} \\ &(\mathrm{ht2.3}) \ \mathrm{HT}' \models \mathrm{r0}, \ \mathrm{because \ now \ HT} \not\models \mathrm{r0} \\ &[\mathrm{g0 \ appears \ in \ rhs \ of \ rule \ r0} \ :- \ \mathrm{g0}, \ldots \\ &\text{and \ there \ was \ no \ _} :- \ \mathrm{r0}, \ldots \ \mathrm{rule \ to \ propagate} \\ &this, \ \mathrm{as \ r0 \ is \ a \ root}] \end{split}$$

 $DAF = DAF' \cup \{d0 \text{ attacks } g0, d0 \text{ attacks } Rr0\}$

so $extension(DAF) \subseteq extension(DAF')$ because a new attack may only affect g0 and Rr0 (these do not attack anything else, as roots). The inequality holds iff (daf2.1) DAF' \models g0:IN and DAF \models g0:OUT) because (daf2.2) DAF' \models d0:IN in which case $Extension(DAF) = Extension(DAF') - \{g0\}$ and *possibly* $- \{Rr0\}$ if (daf2.3) DAF' \models Rr0:IN, bec. now DAF \models Rr0:OUT But by induction hypothesis (i): HT' \models g0 iff DAF' \models g0:IN by induction hypothesis (ii): HT' \models hd0 iff DAF' \models d0:IN by induction hypothesis (iii): HT' \models r0 iff DAF' \models Rr0:IN QED [2]

[[case 3]] r0 contra defect root node d0

 $DAF = DAF' \cup \{Rr0 \text{ attacks } d0\}$ so $extension(DAF) \subseteq extension(DAF')$ because an attack may affect d0, but d0, as a root, does not affect anything else. The inequality holds iff (daf3.1) $DAF' \models Rr0:IN$, in which case $DAF \models d0:OUT$, but (daf3.2) $DAF' \models d0:IN$ in which case $Extension(DAF) = Extension(DAF') - \{d0\}$ since d0, as a root, does not attack anything else.

But by induction hypothesis (iii): (ht3.1) iff (daf3.1) by induction hypothesis (ii): (ht3.2) iff (daf3.2) QED [3]

The following theorem is a consequence of Lemma 1, item (i).

Theorem 2. Given a requirements graph RG that is a tree/forest, the set of goals derivable from HT(RG) is identical to the set of goals appearing in the unique complete and grounded extension of ASPICT(RG).