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ABSTRACT

A new technique for object tracking based on the mean
shift method is presented. Instead of using a symmetric ker-
nel like in traditional mean shift tracking, the proposed track-
ing algorithm uses an asymmetric kernel which is retrieved
from an object mask. During the mean shift iterations not
only the new object position is located but also the kernel
scale is altered according to the object scale, providing an
initial adaption of the object shape. The final shape of the
kernel is then obtained by segmenting the area inside and
around the adapted kernel and distinguishing the object seg-
ments from the non-object segments. Thus, the object shape
is tracked very well even if the object is performing out-of-
plane rotations.

1. INTRODUCTION

Object tracking is an important and challenging task in mul-
timedia technologies. A lot of research has been performed
on this topic inducing numerous methods for object track-
ing. One of the most common and well-known tracking
techniques is the mean shift algorithm because of its ease
of implementation, computational speed, and robust track-
ing performance. Mean shift is a nonparametric statistical
method which iteratively shifts each data point to the average
of data points in its neighborhood [1]. It has been applied to
several computer vision tasks such as segmentation [2] and
object tracking [3, 4]. In spite of its advantages traditional
mean shift has two main drawbacks. The first problem is the
fixed scale of the kernel or the constant kernel bandwith. In
order to achieve a reliable tracking result of an object with
changing size an adaptive kernel scale is necessary. The sec-
ond drawback is the use of a radial symmetric kernel. Since
most objects are of anisotropic shapes a symmetric kernel
with its isotropic shape is not a good representation of the
object shape. In fact if not specially treated, the symmetric
kernel shape may lead to an inclusion of background infor-
mation into the target model, which can cause even tracking
failures.

An intuitive approach of solving the first problem is to
run the algorithm with three different kernel bandwiths, for-
mer bandwith and former bandwith +10%, and to choose the
kernel bandwith which maximizes the appearance similarity
(£10% method) [5]. A more sophisticated method using dif-
ference of Gaussian mean shift kernel in scale space has been
proposed in [6]. The method provides good tracking results,
but is computationally very expensive. And both methods are
not able to adapt to the orientation or the shape of the object.

Mean shift based methods which are not only adapting
the kernel scale but also the orientation of the kernel are pre-
sented in [4, 7, 8]. Scale and orientation of a kernel can be
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obtained by estimating the second order moments of the ob-
ject silhouette, but that is of high compuational costs. In [7]
mean shift is combined with adaptive filtering to obtain ker-
nel scale and orientation. The estimation of kernel scale and
orientation are good but since a symmetric kernel is used no
adaption to the actual object shape can be performed. There-
fore, in [8] asymmetric kernels are generated using implicit
level set functions. Since the search space is extended by
a scale and an orientation dimension the method simultane-
ous estimates the new object location, scale and orientation.
However the method can only estimate the objects orienta-
tion for in-plane rotations. In case of 3D or in-depth rota-
tions none of the mentioned algorithms is able to adapt to the
objects orientation and therewith to the object shape.

Therefore, we propose a mean shift based tracking
method which is able to adapt to the object’s shape. Our
method uses asymmetric kernels which are first obtained
from an object mask and are fitted to the object shape through
a scale adaption followed by a segmentation process. Thus,
a good fit of the object shape is retrieved even if the object is
performing a rotation in 3D space.

The rest of the paper is organized as followed. An
overview of the mean shift tracking is given in Section 2.
In Section 3 the proposed method is described explaining the
construction of the object shaped kernel, the execution of the
mean shift iterations in the spatial-scale-space, and the final
estimation of the kernel shape using a segmentation process.
The experiments of the tracking algorithm are then described
and results are shown in Section 4. Finally conclusions are
drawn in Section 5.

2. MEAN SHIFT TRACKING OVERVIEW

Mean shift tracking discriminates between a target model in
frame n and a candidate model in frame n+ 1. For track-
ing purposes the target model is defined as the color den-
sity distribution of the object. The target model is esti-
mated from the discrete density of the objects color his-
togram q(X) = {qu(X)},_, ,, (Whereas Y| g,(X) = 1).
The probability of a certain color belonging to the object
with the centroid X can be expressed as the probability of the
feature u = 1...m occuring in the target model. Which is

N %
g0 =CY k(| === 2)8lb(x)—u] ()
i=1

where § is the impulse function, 4 is the kernel bandwith, N
is the number of pixels of the target model and normalization
constant C is the reciprocal of the sum of values of the kernel
function k(z). The kernel K with kernel function k(z) makes
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the density estimation more reliable because it provides pix-
els farther away from the center of the ellipse with smaller
weight. Hence the least reliable outer pixels don’t influence
the density estimation to much.

The candidate model P(Xpew) = {Pu(Rnew)}tyet m
(whereas }'"_; p, = 1) in the followmg frame and the proba-
bility of a certain color appearing in the candidate model

Xnew

() czk( 36W&%w](m

are defined similarly.

The core of the mean shift method is the computation of
the offset from an old object position X to a new position
Rpew = X+ Ax by estimating the mean shift vector

Z,‘K(Xi - )Ac)a)(xi)(x. —X)

Ax = - : 3
LiK(x—%)o(x;)
where @(x;) is the weight of x; which is defined as
o qu(X)
=Y §[b(x,) —u]y | L= @)
u; bGe) =y [ o)

In detail, the problem of localizing the candidate model in
the next frame n + 1 is formulated as the derivation of the
estimate that maximizes the Bayes error between the ref-
erence distribution of the target model and the distribution
of the candidate model. For the similarity measure the dis-
crete formulation of the Bhattacharya coefficient is choosen
since we have discrete color distributions on the one hand and
the Bhattacharya coefficient is nearly optimal and imposes a
metric structure on the other hand. The Bhattacharya coeffi-
cient and the distance between the two color distributions of
target and candidate model are defined as follows

p[p(xnew 701 Z Xnew CIu( ) 5)

\/1 - Xnew 7q( )] (6)

The aim is to minimize the distance (6) as a function of X,,,,,
in the neighborhood of a given position X, by using the mean
shift algorithm. Starting with the Taylor expansion around
Pu(%X,) the Bhattacharya coefficient is approximated as

Xnew

a2
—— ) )

In equation (7) only the second term is dependent on Xy.y,.
Hence, for minimizing the distance it is sufficient to maxi-
mize the second term of (7). This term corresponds to the
density estimate computed with kernel profile £ at location
Kpew in frame n+ 1, whereas the data is weighted with o(x;).
The maximization can be achieved using the mean shift al-
gorithm. By running this algorithm the kernel is recursively
moved from X, to X, according to the mean shift vector.

3. SHAPE ADAPTIVE MEAN SHIFT TRACKING

3.1 Asymmetric kernel selection

Traditional mean shift tracking is working with a symmetric
kernel. But an object shape can not be described properly
by a symmetric kernel. Therefore, the use of isotropic or
symmetric kernels will always cause an influence of back-
ground information on the target model, which can even lead
to tracking errors. To overcome these difficulties we are us-
ing an asymmetric and anisotropic kernel.

As the mean shift tracker cannot initialize the ob-
ject by itself, it either requires some user input or
the result from a detection process which provides
an object mask like [9]. Based on such an object
mask our asymmetric kernel is constructed by esti-
mating for each pixel inside the mask x; = (x,y) its
normalized distance to the object boundary: K(x;) =
x;-distance_from_boundary/max_distance_from_boundary,
where the distance from boundary is estimated using mor-
phological operations. In Figure 1 an object, its mask and
the mask based asymmetric kernel are shown.

0.5

0

Figure 1: Object in image (top left), object mask (top right) and
asymmetric object kernel retrieved from object mask (bottom)

3.2 Definition of the Scale Dimension

To adapt the scale of the kernel using the mean shift iter-
ations, a scale dimension needs to be added to the search
space. Instead of running the algorithm only in the local
space the mean shift iterations are performed in the extended
search space Q = (x,y,0) consisting of the image coordi-
nates (x,y) and a scale dimension o. Thus, the object’s
changes in position and scale can be evaluated through the
mean shift iterations simultaneously.

Given that an object can be represented by a closed curve,
the image coordinates of an object pixel x; can be easily
transformed to the scale dimension

C8(x)  |Ix—%|
%= e) ~ @)

where 8(x;) is the distance between an object pixel x; and
the object centroid %, r(6;) the kernel bandwith at angle 6;
and o; the scale of the object pixel.

An important property when running the mean shift iter-
ation in the spatial-scale-space is the constancy of the scale
mean. This property means that the two sums of pixel scales
on both sides of the scale mean are equal:

®
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After integrating the equation 26 — 1 = 0 is obtained and
can be rearranged to determine the sample mean as 6 = %

Thus, the scale mean is a constant and therewith indepen-
dent from the objects shape. Using the mean shift itera-
tions a scale update is estimated and the new scale is set to
6 + Ao. To take advantage of the scale update a relation be-
tween the scale and the bandwith has to be considered. In
[8] this relation is defined over the bandwith update factor
d=1+ \/Z2)AG which is used to compute the new bandwith
Fnew(0) = dr(a). Given the new scale the bandwith update
factor d and therewith the new bandwith can be calculated.

3.3 Mean Shift Tracking in Spatial-Scale-Space

To run the mean shift iterations in the joint search space a 3D
kernel consisting of the product of the spatial object based
kernel from Section 3.1 and a kernel for the scale dimension

K(x7y76i) :K(x’y)K(G) (10)

is defined. The kernel for the scale dimension is a 1D
Epanechnikov kernel with the kernel profile k(z) = 1 — |z
if |z| < 1 and O otherwise, where z = (0, — 6)/hs. The mean
shift vector given in equation 3 can now be computed in the
joint space as

(11)

with AQ = (Ax,Ay,Ao).

Given the object mask for the initial frame the object cen-
troid % and the target model are computed. To make the tar-
get model more robust the histogram of a specified neighbor-
hood of the object is also estimated and bins of the neigh-
borhood histogram are set to zero in the target histogram to
eliminate the influence of colors which are contained in the
object as well as in the background. In case of an object
mask with a slightly different shape than the object shape too
many object colors might be supressed in the target model,
if the direct neighbored pixels are considered. Therefore, the
directly neighbored pixels are not included in the considered
neighborhood.

Taking the distribution {¢,(%X)},_, ,, of the target model
at location X in frame #n the algorithm iterates as follows:

1. Initialize the location of the candidate model in frame

n+1 with X, =% and setd, = 1.

2. Subsequently compute the distribution

p()’\(()) - {pu (&O)}uzl...m and p[p(&0)7q(5\()] =

’unzl v/ Pu (XO)QM()A()
3. Compute the weights w(x;) according to equation (4).
4. According to the mean shift vector (11) estimate

e the new position of the candidate model X, = X, +Ax

e the bandwith update factor d, = d(1++/(2)Ac)

{p“(fcl)uzl...m}

plp(X),a®)).

5. If ||%x, — %, < € stop, else X, « X,, d;, < d, and go to
step 2.

The algorithm uses the mean shift vector in step 4 to max-
imize the Bhattacharya coefficient. The termination thresh-
hold € in step 5 implies that the vectors X, and X, point at
the same pixel in image coordinates. Therefore, the algo-
rithm terminates for one thing if the same or a larger value
for the Bhattacharya coefficient is found and for the other
thing if the candidate model doesn’t change its position in
two subsequent iterations.

3.4 Final shape estimation

After the mean shift iterations have been converged the final
shape of the object is evaluated from the first estimate of the
scaled object shape. Therefore, the image is segmented. Seg-
mentation is done using the mean shift method according to
[2]. For each segment inside and in the close neighborhood
of the found object we have to decide if it still belongs to
the object shape or to the background. Segments which are
fully included in the mask are assigned as object segments.
For each segment being only partly included in the mask its
color histogram is compared to the target model. If at least
50% of the segments color are existing in the target model
the segment is assigned as an object segment, otherwise the
segment is considered to belong to the background.

These decisions work well for segments being either to-
tally included in the initial mask or containing object colors
which are not eliminated from the target model to make the
mean shift tracking more robust to similar background col-
ors. But possible object segments which are more than 50%
included in the initial mask and contain a lot of object color
information which has been eliminated from the target model
are neglected by these decisions.

In order to avoid a loss of these object segments a geo-
metric constraint is also considered. If more than 50% of a
segment area is included in the initial mask the segment is
assigned as an object segment as well. In Figure 2 (middle)
the three different types of object segments are shown: seg-
ments which are completely included in the initial mask are
shown in blue, segments which are partly included and are
containing color information of the target model are marked
in yellow and the green segments are the ones assigned as ob-
ject segments using the geometric constraint. Red segments
are background segments.

Figure 2: The initial object mask retrieved from the mean shift it-
erations in spatial-scale-space is shown above the segmented object
(left). The segments are classified either as one of the three possible
object segment types (blue, yellow and green segments) or as back-
ground segments (red segments). According to the object segments
the contour of the final object mask is estimated and displayed on
the object being tracked (right).

The next object based kernel can now be obtained from
the final shape and the next mean shift iterations can be ini-
tialized.

4. EXPERIMENTS

After the first object mask is determined by a motion de-
tection algorithm, the object centroid and the mask based
asymmetric kernel are computed. The masked based kernel
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Figure 3: Tracking results using the traditional mean shift tracker combined with the £10% method (red box) and the proposed method
(green contour) for the sequence parking_lot_1 shown from top left to bottom right.

is then used for computing the histogram in the RGB space
with 32x32x32 bins. For the scale dimension the Epanech-
nikov kernel with a bandwith of h; = 0.4 is used. For mean
shift segmentation a multivariate kernel defined according to
equation (35) in [2] as the product of two Epanechnikov ker-
nels, one for the spatial domain (pixel coordinates) and one
for the range domain (color), is used. The bandwith of the
Epanechnikov kernel in range domain was set to 4, = 4, and
the bandwith of the one in spatial domain to sy = 5. The
minimal segment size was set to 5 pixels.

--
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Figure 4: Object tracking using the proposed method (top) and the
scale and orientation adaptive method (bottom)

The proposed algorithm has been tested on several video
sequences. In Figure 4 the tracking results of the proposed
shape adaptive mean shift tracker (green contour) are com-
pared to the method which only adapts the scale and orienta-
tion of the initial object mask (red contour). At the beginning
of the tracking process only very little difference between
both methods is noticeable, but as soon as the car starts turn-
ing the shape adaptive tracking technique outperforms the
method which is only able to adapt to in-plane rotations.

In Figure 3 the proposed method is compared with the
traditional mean shift tracking using the +10% method. The
traditional method is only partly able to adapt to the chang-
ing size and position of the white van, while location and

contour of the van are well tracked by the scale and shape
adaptive mean shift tracker even when the van turns. Only a
small part of the front of the van is not included in the tracked
object shape due to some segmentation errors. The results of
tracking a racing car with the scale and shape adaptive mean
shift tracker are shown in the first two rows of Figure 5. Even
if the racing car is moving with high velocity which leads to
fast changes in size and shape of the object, the proposed
method is able to detect the position as well as the shape of
the racing car. In rows 3 and 4 of Figure 5 the results of
tracking the green car are shown.

To further evaluate the tracking performance frame-based
detection rate R}, and false alarm rate for the false positives
R;p and the false negatives R, were calculated, and then
averaged over image frames. R, Rpp and Ry, of sequence
parking _lot_2 are shown in Table 1. All rates were computed
by comparing the tracking result with the object area of a
manually labeled ground truth. R, is defined as the pixels
from the tracked moving object that fall into the true object
area. The false positives are defined as the number of pixels
that are wrongly tracked as moving object pixels while the
false negatives are the number of missing object pixels.

| frames | R;, (%) | Rpp (%) | Rpy (%) |
[ 9854 | 825 | 145 |

Table 1: Average detection rate R, average false positives rate Ry p
and average false negatives rate Ry .

| sequence
| parking_lot2 | 35

5. CONCLUSIONS

The proposed method extends the traditional mean shift al-
gorithm to track objects with changing size and shape. This
is achieved by using an object mask based kernel to track the
object in a three dimensional search space to update the lo-
cation of the object as well as its scale. To obtain the object
shape more precisly the mean shift iterations are followed by
a segmentation process. Thus, the object shape is obtained
very well even if the object is performing 3D rotations. In
the case of similar object and background colors the scale
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Figure 5: Tracking results using the proposed method. Rows 1-2: sequence formel_1. Rows 3-4: sequence parking_lot_2

and shape adaptive tracker has to deal with errors, since seg-
mentation errors can occur and to many object colors may be
deleted from the target model. In future we will work on this
problem as well as on an extension for multi-object tracking.
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