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1 | INTRODUCTION

Kai Whiting?® | Helmut Haberl® | TaniaSousa’

Abstract

Energy and material flows and material stocks are key requirements for the supply
of goods and services, which in turn support societal development. However, most
resource accounting methods restrict the analysis to resource flows, which fails to
acknowledge the increasing role of in-use stocks in service provision. Using the UK
transport sector as a case study, we undertook a material flow analysis through the
lens of the stock-flow-service (SFS) nexus. We used the latter to identify how steel
consumption and accumulation in vehicles contributed to passenger mobility between
1960 and 2015. Our results show that the efficiency of the steel stock contained in cars
and motorcycles decreased from 37.5 to 28.0 passenger-km (pkm)/kg-year. The steel
service for buses decreased from 63.6 to 32.1 pkm/kg-year, while that of the national
railway increased from 23.8 to 70.3 pkm/kg-year steel. London Underground steel
stock-service efficiency improved from 31.5 to 57.0 pkm/kg-year steel. The annual
fraction of flows that maintained the steel stock varied according to vehicle category
and was between 3.4% and 8.2%. In terms of the stock expansion rate, the greatest
change (on average, an annual increase of 3%) was that of “cars and motorcycles.” This
reflects the demographic transitions and the growing consumer demand for car-based
mobility. We discussed how the SFS nexus contributes to a more comprehensive form
of resource accounting and reflect upon some of its limitations and how they might be

addressed.

KEYWORDS
industrial ecology, mobility as a service, resource efficiency, resource nexus, sustainable materials,
UK transport

Sustainable development depends on the societal provision of energy and material flows and material stocks within planetary boundaries (O’Neill,
Fanning, Lamb, & Steinberger, 2018; Steffen et al., 2015). Material flow analysis (MFA) is a methodological framework that accounts for resource use
from extraction to disposal (Haberl et al., 2019). It has reached a level of maturity and is accepted by policymakers involved in sustainable resource
use (Fischer-Kowalski et al., 2011; Krausmann, Schandl, Eisenmenger, Giljum, & Jackson, 2017a; Schandl et al., 2017). The European Union, for
example, requires that its Member States provide official MFA data, as mandated by the EU Regulation No 691/2011 (European Parliament, 2011).
Various standardized economy-wide material flow accounting principles and methodological guidelines are used at the national, regional, and global
level (including Eurostat, 2018, OECD, 2008a, UNEP, 2018a, 2018b).

MFA considers all material flows (except air and water) that support societal activity, measured in physical units (e.g., kg/yr) (Mayer, Haas, &

Wiedenhofer, 2017; Schaffartzik et al., 2014). However, most practitioners neglect stock or only include it as “net additions to stocks” so as to
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balance system inputs and outputs. This means that long-term material accumulation is not captured and that the significance of material assets
in socioeconomic development is often overlooked. This is problematic as more than 50% of annual global resource consumption is constituted
by stock-building materials such as aggregates, metals, and plastics (Krausmann et al., 2017b; Wiedmann et al., 2015). In this regard, sustainability
policies are incomplete if they do not consider societal dependency on stocks as well as flows (Weisz, Suh, & Graedel, 2015). Correspondingly, the
quantification of material stocks has become an increasingly integral part of MFA research (Pauliuk & Miiller, 2014; Wiedenhofer, Fishman, Lauk,
Haas, & Krausmann, 2019). One particular MFA approach, which captures the relationship between stocks, flows, and the services they provide,
is the stock-flow-service (SFS) nexus proposed by Haberl, Wiedenhofer, Erb, Gérg, and Krausmann (2017). In the latter paper, it was argued
that a nexus-based analysis would result in a more complete picture of social metabolism and resource efficiency. Here, we expand upon Haberl
et al.’s (2017) proof of concept and operationalize it using the UK transport sector as a case study. Specifically, we model the steel stocks and flows
required to support UK passenger mobility between 1960 and 2015. Based upon our results, steel appears to be a good proxy for total vehicle
stock efficiency (see Section 4.3). Steel is selected because it is the world’s most consumed metal and 200 kg of liquid steel per capita are produced
annually (Allwood, 2016). In addition, it accounts for 7-9% of energy-related carbon emissions and is a key component of the many structures
involved in almost all services, including transport (Allwood, 2016; Allwood, Cullen, & Milford, 2010; Pauliuk, Milford, Miller, & Allwood, 2013a).
It is thus a key material to consider when it comes to framing sustainability and supporting the circular economy. The United Kingdom is used as an
example because of its good quality and easily accessible data, including that sourced from the literature review (e.g., Serrenho & Allwood, 2016;
Krausmann, Schandl, & Sieferle, 2008; Streeck, Wiedenhofer, Krausmann, & Haberl, 2020).

This paper’s nexus interactions are quantified using five indicators, which we refer to as “stock efficiency,
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stock degradation efficiency,” “stock
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maintenance rate,” “stock expansion rate,” and “specific embodied impact.” These metrics are derived from pre-existing analysis that has been
undertaken within the field of Industrial Ecology. For example, our “stock maintenance rate” captures and formalizes Wiedenhofer, Steinberger,
Eisenmenger, and Haas' (2015) and Nguyen, Fishman, Miatto, and Tanikawa’s (2019) respective measurement of the amount of material used for
stock maintenance purposes relative to the total amount of in-use stock. Strictly speaking, none of the five indicators are new per se but, to our
knowledge, they have not been used in an integrated manner to assess resource consumption and accumulation from a service perspective, nor
have they been applied to a nexus framework.

Therefore, the aims of this present paper are: (a) to measure the connection between stocks and flows and the services they provide via the nexus
proposed by Haberl et al. (2017); and (b) to identify the benefits and potential shortcomings of the SFS nexus when integrated into sustainability
initiatives. The authors do not pretend that this paper is a complete analysis of the UK transport sector. For instance, marine and non-motorized
forms of transportation are not included nor are the materials required to construct and maintain transport infrastructure (e.g., roads, rails, and
airports). Likewise, non-material inputs such as finance and human resources, which are evidently required for transport systems to function, are

beyond the scope of this paper.

2 | STOCK-FLOW-SERVICE NEXUS: KEY CONCEPTS
2.1 | Material flow and stock accounting

MFA is a quantitative tool used to investigate the throughput of materials from extraction to manufacture, use, recycling, and disposal. The method
involves the quantification of all material and energy inputs, stocks, and outputs required for the functioning of a socioeconomic system (Baccini &
Brunner, 2012; Bringezu & Moriguchi, 2018; Fischer-Kowalski et al., 2011). A practitioner can use it to model, understand, and optimize resource
management with the exact choice of method dependent on the study’s scope and aim (Miller, Hilty, Widmer, Schluep, & Faulstich, 2014; Schwab
& Rechberger, 2018). For example, a dynamic MFA approach explicitly considers the evolution of material stocks and flows through time (e.g., Chen
& Graedel, 2012). It can be used to assess cross-sectoral interactions, historical consumption patterns, trade, and the build-up of material stocks. It
can also facilitate future resource demand projections and identify which materials are critical for the achievement of international, national, and
regional policy targets (Cao, Liu, Zhong, Dai, & Pauliuk, 2018; Turner & Poldy, 2001).

Two methods can be applied to model stocks in a dynamic MFA (Gerst & Graedel, 2008). The first is the inflow-driven approach, whereby material
stocks are calculated by summing the annual difference between inflows (consumption) and outflows (e.g., waste) (Wiedenhofer et al., 2019). The
latter can be calculated via a lifetime distribution function (probability density function) from an economic (e.g., Béhringer & Rutherford, 2008;
Lennox, Turner, Hoffman, & Mclnnis, 2004) or a biophysical (e.g., Elshkaki, Graedel, Ciacci, & Reck, 2016) perspective. The second method is the
stock-driven approach, which obtains stock values by adding together the quantities of materials in a given stock, at a given time, based on the data
describing the stock. For example, the mass of a particular building stock can be estimated using appropriate factors linked to floor area (as is the
case in Pauliuk & Miiller, 2014).

Stock modeling has predominantly focused on metals (Chen & Graedel, 2012), although there are an increasing number of studies that cover
other materials including asphalt, concrete, sand, and gravel (e.g., Miatto, Schandl|, Wiedenhofer, Krausmann, & Tanikawa, 2017; Nguyen et al.,
2019; Wiedenhofer et al., 2015). Hatayama, Daigo, Matsuno, and Adachi (2010) modelled the steel accumulated in buildings, infrastructure, and
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vehicles on a global scale, while Miiller, Wang, and Duval (2010) accounted for the national steel stock in eight developed countries for construction,
transport, appliances, and machinery. Pauliuk, Wang, and Miiller (2013c) expanded the aforementioned paper by analyzing 200 countries. Serrenho
and Allwood (2016) measured the stock demographics of the UK car industry from 2002 to 2012. All such models have been helpful in identifying
how stocks evolve over time and within different system boundaries, including at the global, national, and sector level.

2.2 | Material services

The material services concept developed by Carmona, Whiting, Carrasco, Sousa, and Domingos (2019) and Whiting, Carmona, Brand-Correa, and
Simpson (2020) is one way of getting closer to the actual purpose behind material flows and stocks. It builds on the concept of energy services,
which recognizes that consumers do not demand energy for its own sake, but rather use it as means to achieve certain end states or benefits that
have the potential to contribute to their well-being (Cullen & Allwood, 2010; Fell, 2017; Haefele, 1977; Kalt, Wiedenhofer, Gorg, & Haberl, 2019;
Lovins, 1976; Naki¢enovic et al., 1993). Whiting et al. (2020) define material services as:

“Those functions that materials contribute to personal or societal activity with the purpose of obtaining or facilitating desired end goals or

states, regardless of whether or not a material flow or stock is supplied by the market.”

In other words, material services are delivered by specific stock-flow combinations, but not all stocks or flows are transformed into material
services, such as “shelter,” “illumination,” and “thermal comfort.” A specific combination of stocks and flows results in a service when it fulfils a
defined purpose desired by an end-user. Not all material services contribute to gross domestic product (GDP) because the creation of income is
not indicative of service provision. This means that it is possible to distinguish economic activity from the material services offered to individuals or
society at large. This opens up the concept’s application to traditional or alternative forms of community and trade, including those which existed in
historic or prehistoric settlements (Whiting, Konstantakos, Carrasco, & Carmona, 2018). Evidently, ancient people did require material services but
did not have what we would recognize today as a market mechanism for their provision (see Whiting et al., 2020).

To the extent that material services can be expressed in physical units, the efficiency of specific processes can be calculated as the ratio between
the service metric and the corresponding stocks and flows. This ratio then gives an indication of how the average user experiences the SFS inter-
action. For example, fuels (flows), vehicles, and road infrastructure (stocks) are required to move a person or a commodity from Point A to Point B
(mobility as a service).

There are various units that could be employed to measure a material service. However, it is particularly appropriate to select ones which are
already commonly used, and well understood, by those working in the sectors that a given service covers. For example, if one aims to measure
“illumination,” as a material service, it makes sense to use lux, lumen-hour, or candela per square meter, as they are frequently used to gauge light
intensity or quantity. The added value of the material service approach is that it takes those lighting outputs and frames them in a way that highlights
the efficiency of resource consumption (flows) and accumulation (stock) relative to service output. For “mobility” it makes sense to use passenger-
kilometers (pkm) to measure the carrying capacity of, and distance travelled by, a vehicle, as this already is standard practice for transport authorities
who wish to compare public transport efficiency before and after a policy change.

In many cases, material service units are proxies, which do not capture all relevant aspects of service provision. For example, a high number of
pkm is not necessarily indicative of good service quality. On the one hand, it could mean that the transport network is large, which allows a person
to travel further to pursue their aims. On the other hand, it might also signify that the transport system is so overcrowded that a person cannot
enter a carriage when a train stops at their station. In this respect, bigger is not always better. In fact, one could argue that a transport service of
the highest quality enables a person to travel fewer kilometers and still achieve their end goal. In other words, service units are value neutral and
it is for policymakers and end-users to decide together whether a high pkm is desirable or not. It may be that a transport authority proposes policy
measures that would decrease carrying capacity because the public demands increased safety. Therefore, practitioners need to be careful when
interpreting service units and recommending a course of action. One way to avoid erroneous conclusions would be to conduct a comprehensive

literature review and contextual analysis prior to reporting on material service results (see Sections 4.3.1-4.3.3).

2.3 | The stock-flow-service nexus

The term “nexus” is commonly applied by academics and policymakers to identify the complex interconnections that exist between different types
of resources (Font Vivanco, Wang, Deetman, & Hertwich, 2019; Williams, Bouzarovski, & Swyngedouw, 2014). It is typically used to explore the
effect of the socioeconomic system on natural processes and vice versa, in order to improve resource management (Bleischwitz & Miedzinski,
2018). The nexus concept enables researchers to pinpoint synergies or trade-offs and anticipate potential threats and critical thresholds (Bizikova,
Roy, Swanson, Venema, & McCandless, 2013; Cohen, Wolff, & Nelson, 2004; Howells et al., 2013). These advantages have resulted in the promotion

and application of the nexus idea by several governments and international organizations interested in sustainable development (Nexus, 2016;
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N Interaction Description
Material 1 Service Mobilisation of the stock and flows that maintain and
(& Energy) delivery enhance societal function
Services
Stock . .
2 Transformation of flow(s) to keep stock at a certain level

maintenance

Stock

3 . Transformation of flow(s) that enlarge stock
expansion
4 Stock or flow Transformation of stock and/or flows into waste due to
degradation service delivery or deterioration over time

Material
(& Energy)
Flows

Material

Stocks Stock or flow | Resource consumption (or pollution generated) due to the

5 embodied production of new flows or the maintenance and expansion
impact of stocks

FIGURE 1 Adevelopment of the SFS nexus based on Haberl et al. (2017)
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UN-Water, 2016). Common nexus examples include “water-energy,” “water-energy-food,” and “water-energy-land-food” (e.g., Biggs et al., 2015;
Ringler, Bhaduri, & Lawford, 2013; Siddigi & Anadon, 2011). There are also nexus approaches that incorporate materials. These include the “urban
nexus,” which considers the interplays between energy, water, food, and waste flows (Lehmann, 2018), and a pentagonal nexus, referred to as the
“resource nexus,” which takes into consideration energy, food, land, water, and materials (Bleischwitz & Miedzinski, 2018; Font Vivanco, Wang,
& Hertwich, 2018). None of the aforementioned concepts consider material stocks or the services that resource flows and stocks provide. The
problem with limiting the scope to flows is that this does not allow policymakers to ascertain the role of stock accumulation nor inform them as to
what the resources are actually used for.

The SFS nexus captures the interconnections between flows, in-use stocks, and material services (Haberl et al., 2017). As Figure 1 shows, these
interactions are not necessarily linear or commeasurable. For example, car-based mobility requires fuel, a vehicle, and road infrastructure (arrows
labeled 1in Figure 1). These relationships can be expressed as efficiencies, such as, for example, the number of pkm provided by a given car.

In the case of transport, fuels have two primary uses: (a) provision of the energy required for the mechanical drive that supports vehicle mobility
and, (b) the energy input for vehicle manufacture and road construction. Fuels do not have any further interaction within the nexus, unless society
deems them pollution and chooses to clean them up (arrows labeled 5 in Figure 1). Stocks have a greater influence on the SFS nexus because of
their longer lifecycle, which is supported by the maintenance/upgrade and expansion of those flows necessary for the continuation or enlargement
of vehicle stock or road infrastructure (arrows labeled 2 and 3). The material aspects of maintenance and expansion include lubricants, spare parts,
new road surface, and new vehicles. The bigger the stock, or degree of its depreciation, the more flows are required to maintain or increase it. This, in
turn, has animpact on how the average user experiences (or perceives) mobility as a service. That said, looking at stocks and flows in isolation can be
misleading, especially during policy or technological transitions (e.g., changing from buses to trams), which may effectively reduce stock levels and
increase waste flows whilst improving overall service provision. This is why a nexus perspective is helpful when designing and enacting wholescale
changes.

Table 1 identifies various indicators that have been proposed by researchers to assess resource use in other contexts (e.g., environmental foot-
print measurements) and which could be used to evaluate the SFS nexus interactions. It is important, when considering resources from a nexus
perspective, that all interactions are measured by at least one indicator and that its selection is explained and supported. The table does not offer

an exhaustive list of potential indicators, but rather highlights examples that we judge to be worthy of consideration.

3 | METHODS
3.1 | Quantifying flows and stocks

We created an inflow-driven dynamic material stock model, similar to that proposed by Miuiller et al. (2014), to calculate the steel employed in
vehicles used in the UK transport sector from 1900 to 2015 (Equation 1).

N N
MStock[N] = MStock[O] + Z Mlnflow[n] - 2 Mlnflow[n] . f[n] . (1)
n=1

N e’ n=1
Initial stock

Inflow Outflow (End of life,  Mouflown])
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In this formula, Msiockin] is the in-use stock at time N, Msocio] is the in-use stock at time 0, and M)pg0w(n] represents the measured or calculated
steel inflows into UK newly registered vehicles in year n. The outflows (Mgoytfiow(n]) are calculated via a residence time model using a convolution
integral (see Miller et al., 2014) and are derived from M,0w(n] and the probability density of a lifetime distribution function assigned to each vehicle
category (ffy))- The latter follows a Weibull distribution.

»u »u »u »a »a

The model contains seven transport sub-categories: “cars and motorcycles,” “trucks,” “buses,” “national trains,” “London Underground,” “aircraft,”
and “ships.” Although beyond of the scope of the paper, which is focused on domestic passenger mobility, trucks and ships were included in this model
to ensure a complete tracing of steel inflows. Category inflows constitute the quantity of annual steel production diverted into vehicles destined for
UK ownership. It does not include the steel contained in infrastructure (e.g., reinforced concrete). The UK steel consumption data were gathered
from Dahlstrém, Ekins, He, Davis, and Clift (2004), Pauliuk and Hasan (2017), and the World Steel Association (2014, 2018).

In the case of the steel used to operate “national trains,” 20% was allocated to rolling stock (vehicles) for passenger mobility, 20% to freight
and 60% to rail track. For “London Underground” allocation was split equally between tracks and carriages. These percentages were based on
the information available for 2015 (DfT, 2018a). Steel stock allocation was also required for aviation. This was done based on the proportion of
pkm relative to tonne-kilometers, after the latter was converted into its pkm equivalent. The Civil Aviation Authority standard of 80 kg equals one
passenger was used as the conversion factor.

For validation purposes, we calculated the in-use stock of steel for each year (Msiq[q)) via a dynamic stock-driven model for all categories except
“national trains” and “London Underground.” The values were derived from the total number of vehicles registered and the average steel compo-
sition for each category which, with the exception of “aircraft,” was between 60% and 80%. Where the annual difference between the respective
results obtained via the two models was more than +/—20% for the same category, we adjusted the outflow of the previous year so that the inflow-
driven model’s values matched those of the validation.

Following Equation (2), we accounted for the energy embodied in stocks, where e|ngqoun] represents the energy intensity required to produce
the primary or secondary steel that is diverted into newly registered UK vehicles (Miqfiowin])- The value of ejqiow(n] is calculated using the relative

proportion of primary and secondary steel production for a specified year. All other variables are identical to those expressed in Equation (1).

N N
Estocking = Estockio] + Z Minfiow[n] * €inflown) — 2 Minfiown] * fin] * €Inflown] - (2)
N—_———

n=1 n=1
Initial embodied impact

Embodied impact of inflow Embodied impact of outflow(End of Life)

We assumed that the energy required to manufacture the steel used by the UK transport sector was identical to the energy demands required
for British steel production, even though we are aware that not all steel contained in UK registered vehicles was domestically produced. However,
this assumption enabled practical calculations to demonstrate the approach. More information about model data sources, parameters, validation,
and adjustments are presented in Sections S1-S4 in Supporting Information S1.

3.2 | Quantifying the transport service

We used the pkm data reported by the Department for Transport (DfT) to account for road travel by UK registered vehicles within national borders
(DfT, 2018b). In the case of aviation, we used data from the Civil Aviation Authority to account for the passenger mobility provided by UK registered
aircraft (CAA, 2018). The pkm associated with sea journeys (including ferry crossings) were not calculated.

To better understand the nature and significance of the results, we undertake a contextual analysis. This involves a desk study into the major
political, social, and technological transitions that directly or indirectly affected the UK’s transport service during the period studied. Key examples

include privatization of public transport, changes to national transport legislation, and the increased integration of women into the workforce.

3.3 | Stock-flow-service efficiency indicators

Of the 22 potential indicators identified in Table 1, we selected 5 to measure the SFS nexus interactions (Table 2). The stock efficiency indicator
(taken from Whiting et al., 2020) shows the relationship between passenger mobility and the amount of steel contained in vehicle stock. The stock
degradation efficiency depicts the coupling between the physical depreciation of that steel (waste) and service delivery. It is adapted from the emis-
sion efficiency indicator proposed by Huysman et al. (2015). The only difference between their metric and ours is that we restrict waste outflows
to those linked to stocks. The stock maintenance rate (taken from Wiedenhofer et al., 2015 and Nguyen et al., 2019) identifies the minimum frac-
tion of steel inflow required by a service provider to maintain vehicle stock. Steel stock fluctuation over the duration of the case study is cap-
tured by the stock expansion/contraction rate, which is likewise taken from Wiedenhofer et al. (2015) and Nguyen et al. (2019). The specific embodied
impact (taken from Cheah, Heywood, & Kirchain, 2009) calculates the amount of energy inputs associated with the steel inflows or steel stocks that
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provide aservice. It is key to identifying the most efficient production route for goods manufacture. We calculated the stock specific embodied impact
and compared it to the flow specific embodied impact evaluated by Carmona, Whiting, Carrasco, and Sousa (2019).

In all cases, the indicators in Table 2 were selected because: (a) they measure service units (e.g., pkm) rather than economic performance (e.g.,
GDP) or well-being (e.g., human development index) and (b) they measure total stock (e.g., tonnes) rather than their equivalent in flow terms (e.g.,
tonnes/year). These criteria rule out the division of stocks by expected lifetimes, which is a common practice in life cycle assessment (LCA) and an
integral component of the MIPS indicator; see, for example, Spielmann, Bauer, Dones, and Tuchschmid (2007) and Saari, Lettenmeier, Pusenius, and
Hakkarainen (2007).

3.4 | Sankey representation and sensitivity analysis

Sankey diagrams are a useful tool for the visualization of the amount and proportion of material and energy flows within a system. They allow prac-
titioners to identify resource efficiencies, transformations, and allocations (Lupton & Allwood, 2017). We depict the steel stocks and flows required
by the UK transport sector in 2008. This year was selected because we had more data regarding the material efficiency of steel production, manu-
facturing, and recycling, which resulted in a more comprehensive diagram. We used a Sankey diagram to show how inflows are directed into stock
for its maintenance, upgrade, or expansion. For completeness, we also include energy and the associated carbon dioxide flows required to produce
steel inflows. The scope for the embodied impact flows corresponds to the following processes: coke production, sintering, furnace operation (blast,
basic oxygen, and electric arc), refining, and electricity generation (all values taken from Carmona et al., 2019).

A comparison of our results relative to other studies is presented in Section Sé in Supporting Information S1. We also perform a sensitivity anal-
ysis by arbitrarily increasing or decreasing the year on year steel inflow, material efficiency of product manufacture, and vehicle lifetime expectancy
within a range of +/—10% (Section S7 in Supporting Information).

4 | RESULTS AND ANALYSIS
4.1 | Stock-flow-service Sankey diagram

The Sankey diagram, presented in Figure 2, highlights the relationship between the flows (lines), stocks (rectangles), and services (circles) sup-
ported by steel for the UK’s passenger transport in 2008. The flows and stocks contained within the red dashed area do not follow the criteria
of a conventional Sankey diagram; there are two reasons for this. First, flow inputs are not equal to their outputs. This is because for non-fuels,
as opposed to fuels (which are not depicted here), inputs are likely to accrue as stocks and may leave the system many years after their expected
lifetime. Second, flows and services do not share the same units. For example, the modeling of stock efficiency for the national railway involves an
inflow and two outflows (colored green and orange). The inflow constitutes the steel used for the maintenance, upgrade, or expansion of rolling
stock. The green outflow is the end of life steel that is either diverted into landfill or recycled. The orange outflow is the amount of pkm of passenger
transport.

The means of transport that consumed the most steel, as represented by the thickness of the green lines, were “cars and motorcycles” followed by
“buses.” Therefore, in 2008, when it comes to transport, the United Kingdom preferred to divert its steel into cars. However, in terms of conversion

»u

from stocks into services, “national railway,” “London Underground,” and “aircraft” (domestic flights) are much more efficient, as represented by the
size of the orange circle relative to the thickness of the green block. This efficiency is also represented by the stock efficiency indicator (grey tap
symbol).

In 2008, 55% of the iron and steelmaking sector’s non-fuel material inputs (the principals being iron ore, limestone, and scrap steel) were con-
verted into crude steel, of which 75% was transformed into vehicle components (e.g., galvanized cold rolled coil). In addition, 75% of refined steel
was embodied in vehicles (USGS, 2011; World Auto Steel, 2020). The remaining non-fuel inputs were converted into waste or by-products such as
slag, dust, and sludge, which were then diverted into other industries (ochre colored line). Most end of life steel was recycled. The scrap was reused

either in the steel sector or elsewhere.

4.2 | Steel stock and service evolution

From 1960 to 2015, passenger mobility increased from 270 to 784 billion pkm. Figure 3a shows the pkm breakdown according to transport cate-
gory. In 1960, public transport constituted 44% of pkm. By 2015 this had dropped to 15%. The “cars and motorbikes” category appears to reach a
maturation point in 2005, where upon service provision stabilizes. The UK’s steel stock employed in transport increased between approximately
6.8 and 25.9 Mt (Figure 3b). “Cars and motorbikes” steel stock represented 59% in 1960 and 91% in 2015. Overall, the total steel contained in “car
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FIGURE 2 Sankey diagram representing the steel flows-stocks-service in the UK’s passenger transport sector for 2008. Note: Aircraft refers
to domestic flights only
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FIGURE 3 Steel stock and service evolution UK’s passenger transport (1960-2015). (a) Annual passenger-kilometer as proxy of service
delivery. Source: (CAA, 2018; DfT, 2018b). Notes: (*) The “car/motorbikes” category is plotted on the left axis whilst the others are plotted on the
right axis. (b) Steel stocks for the UK'’s passenger transport; (**) “Aircraft” refers to domestic flights only. The underlying data used to create this
figure can be found in Supporting Information S2
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FIGURE 4 SFS nexus efficiency of the UK’s passenger transport (1960-2015). (a) Steel stock service efficiency. (b) Steel stock degradation
efficiency. Please note efficiencies linked to aircraft (domestic flights) are shown on the secondary axis. The underlying data used to create this
figure can be found in Supporting Information S2

and motorcycles” increased from 4 Mt in 1960 to 26 Mt in 2015. As previously noticed by MacKenzie, Zoepf, and Heywood (2014) and Serrenho
and Allwood (2016), the observed increase in steel stocks was solely due to an increase in the number of cars on the road and not related to changes
in vehicle weight. The proportion of motorcycles relative to cars fell substantially over the period. In 1960, for every three cars on the road there
was one motorcycle, whereas the ratio was 23:1in 2015.

The steel contained within trains was 1.5 Mt in 1960 but had reduced to 1.0 Mt by 2015. In fact, for 48 years of the 56-year period analyzed, the
steel contained in stock declined. The sharpest decline can be directly linked to the Beeching Reports (Beeching, 1963, 1965), which advocated for the
closure of less frequently used routes. The service reductions for national rail continued until 2010, which was another factor that contributed to
the better performance captured by the stock efficiency indicator (although this does not mean that the quality of the service improved). The amount
of steel contained in bus fleets was 1.2 Mt in 1960. In 1980, the steel stock quantity peaked at 1.8 Mt but declined back to 1.2 Mt in 2015. The
amount of steel contained in domestic flights-related stocks was 3 kt in 1960. This figure had stabilized by 2015. That said, steel is not a significant
material for this sub-category, as it accounts for approximately 12% of a plane’s constituents (Mezei & Boros, 2016). The service and stock data for

each transport category is included in Supporting Information S2.

4.3 | Stock-service and flow-service interactions

Figures 4a and 4b capture different efficiencies relative to the service delivery. Figure 4a presents the service provided by steel for passenger
mobility relative to stock levels. Figure 4b shows the efficiency of service provision relative to annual end of life flows. Figure 4b follows a very
similar pattern to that presented in Figure 4a. Any differences are linked to policy implementation or improvements in vehicle life expectancy. The
steel stock efficiency in “cars and motorcycles” decreased from 37.5 to 28.0 pkm/kg-year. This change was not linear given that the peak of 43 pkm/kg-
year was reached in 1989. In addition, between 1960 and 2015 the steel stock efficiency of “buses” went down from 63.6 to 32.1 pkm/kg-year. From
1994 onward, bus stock efficiency was stable whilst the “national railway” and “London Underground” became more efficient. National rail efficiency
increased from 23.8 to 70.3 pkm/kg-year. The efficiency of “London Underground” went from 31.5 to 57.0 pkm/kg-year. Aviation (domestic flights)
presented the highest efficiency in terms of service relative to steel stock. This category went from 365 to 3520 pkm/kg-year. A comparison of the
resource requirement per one passenger kilometer supported by steel is shown in Table S4 in Supporting Information S1.

Table 3 shows overall vehicle stock efficiency for 2015 once the material analyzed is expanded to include aluminum, plastics, and other compo-
nents (e.g., rubber and glass), in addition to steel. In all cases, the efficiency indicator value of total stock is (by definition) lower than that of steel
alone. However, in terms of category ranking, “cars and motorcycles” remain the least efficient and “aviation” (domestic flights) the most efficient.
This suggests that steel is currently a good proxy material for vehicle stock efficiency.

4.3.1 | Cars and motorbikes

In 1960, the steel contained in cars facilitated 56% of the road transport pkm. By 2015 this had increased to 84%, which reflected societal pref-
erences and changes in infrastructure and transport policies. In 1990, there was an inflection point in pkm per kilogram of steel, which we think is

linked to lower occupancies in cars. In other words, the increase in car ownership led to a decrease in the average number of people travelling in any
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TABLE 3 Overall stock efficiency in 2015 upon the expansion of material scope

Material (kt) Servi Stock efficiency
ervice
Transport mode Steel Aluminum Plastic Others Total (107 pkm) Steel(pkm/kg-year) All materials(pkm/kg-year)
Cars and motorcycles 23,589 2,950 3,020 9,012 38,571 660 28 17
Bus 1,226 204 150 463 2,043 39 32 19
National Railway 920 383 153 77 1534 65 70 42
London Underground 201 84 34 17 335 11 57 34
Aviation (domestic flights) 2 12 4 1 19 9 3,520 450

given car. Arguably, much of this change was due to more progressive attitudes toward women working, especially following childbirth, along with
women’s increased expectations regarding career trajectory. The Institute for Fiscal Studies reports, for example, that female full-time employment,
went from 29% in 1985 to 44% in 2017 (Roantree & Vira, 2018). This demographic change is also reflected in the gender split of driving license
holders. In 1975, while 69% of males held a driving license, only 29% of females did so. By 2010, 80% of males and 66% of females held a license
(Department for Transport, 2011). Family size also affects these numbers. In 1971, 35% of UK households contained dependents, but by 2008 this
had reduced to 28% (Office for National Statistics, 2009). This means that it is very likely that fewer children are car passengers. In addition, while
seat belt fittings had been legally enforced since 1968 (for the front seat passengers) it was not until 1991, due to The Motor Vehicles (Wearing of
Seat Belts in Rear Seats by Adults) Regulations, that all car passengers were obliged to wear a seat belt and that the number of passengers was strictly
monitored. This led to a reduction in the number of persons transported in any given car, especially with respect to the 1960s.

Occupancy rate declines as disposable income increases because consumers prefer convenience over monetary savings. In other words, stock
efficiency decreases because people who would have previously shared a car no longer choose to do so (Clark, 2012). Occupancy rate went from
an average of 2.1 passenger/vehicle to 1.6 passenger/vehicle between 1960 to 2015. This preference is also reflected in the increased number of
cars owned by a single family. The reduction in car prices relative to salary, especially once the second-hand market becomes fully established, plays
an integral role in encouraging car ownership. This is because it offers access to people who would otherwise not buy a car and does not cause a
high percentage of people who prefer to buy new cars to switch to pre-owned vehicles (Thomas, 2003). Since 1991, the price of the UK average
car has dropped significantly relative to inflation. In 2001, prices were 20% lower compared to 1991 (at constant prices). A decrease in real prices
from 1991 to 2009 was also observed (Cambridge Econometrics, 2015). During the same period, petrol prices rose but this was compensated by
increases in bus and rail fares (Dargay & Hanly, 2007). Improved fuel efficiency may have also offset car price rises. The highest stock efficiency
was achieved in 1989 because of an increase in distance travelled per vehicle (17,200 km/year/vehicle). By 2015, this distance had reduced to levels
lower than those registered in 1960, dropping from 14,000 to 13,300 km/year/vehicle. Road infrastructure can also play a part in changing behavior
and reducing steel stock efficiency. For example, in 1986 the London ring road, the M25, rapidly decreased travel time and incentivized car rather
than public transport trips. Time is a major component of variable costs in car travel, so increasing access to, and the quality of, roads will induce
more private vehicle ownership and greater trip frequency (Noland, 2001; Noland & Lem, 2002).

With specific regard to the stock degradation efficiency for “cars and motorcycles,” the improvement registered from 2010 onward, reflects
a reduced vehicle replacement rate, as evidenced by the average in-use car age of 8.0 years in 2015, compared to the 6.6 years obtained in
2003 (NimbleFins, 2020). Similarly, vehicles were, on average, sent for scrap upon reaching 13 years of use in 2003 and 14 years of use in
2015. The extended lifespan of those vehicles registered in this category is derived from multiple factors. Technological innovation has enhanced
longevity, as has the reduced average distance travelled per vehicle. However, it also likely that the reduced propensity to spend money on
material goods, following the 2008 global recession, played a role. This assumption is supported by Wu et al. (2019) who found that the eco-
nomic recession that started in 2008 reduced national consumption by 1%. The problem with achieving sustainability targets in this way is that
it does not reflect a permanent behavioral or operational change and, thus, as soon as the economy starts to grow again these declines are
reversed.

The patternuncovered in the transitional periods between 1975 and 1989 is due to the fact that only 3-4% of the total number of registered “cars
and motorcycles” were annually replaced (or scrapped). Between 1990 and 2010, this value had doubled to 6-7% (Leibling, 2008). The reduction in
outflow registered in 2010 onward may have been caused by better quality car design and parts.

4.3.2 | Buses and rail

The main reason for the decrease in the stock efficiency of buses was the reduction in the occupancy rate from 20 to 9 passengers/vehicle over the
studied period. The prominent growth in both stock efficiency and stock degradation efficiency for national trains, after 1995, was due to the privati-

zation of the British rail industry. Higher quality rail services have also been achieved with the support of government subsidies (Full Fact, 2018).
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FIGURE 5 Stock-flow interaction. (a) Annual steel stock maintenance rate. (b) Annual steel stock expansion (or contraction) rate. The
underlying data used to create this figure can be found in Supporting Information S2

Therefore, higher railway stock efficiency may reflect consumer preferences for improved rail services relative to the slower and less comfortable
road-based public transport options. The lowest recorded stock efficiency (Figure 4a) for bus and London Underground occurred in the 1980s due to
various policy changes. For example, following a decline of bus passenger numbers in the 1960s, the UK government restructured bus operations
with the Transport Act 1968. The service was streamlined again in 1986, following an amended Transport Act, which privatized all bus services except
those of London and Northern Ireland - pkm subsequently increased, as is reflected in the rise of stock efficiency. Similarly, railway privatization in
1994 increased rail stock efficiency.

An example of how policy can influence the stock degradation efficiency can be seen in the mid-1960s through the increase in bus stock degradation

efficiency. This occurs because the UK government took the decision to export London’s Leyland buses to Hong Kong rather than scrap them.

4.3.3 | Domestic aviation

Aviation passenger transport represents approximately 85% of the total pkms offered by aircraft, with the remainder allocated to freight. Although
not a significant factor for steel stocks, aviation does interplay with other forms of transport and how individuals choose to travel, as the following
example indicates. In 1992, as a direct result of the European Commission initiative Open Skies, there was surge in UK air travel. Open Skies created
a single European Market for both air passenger and freight transport. All UK aircraft carriers were, from then on, considered EU aircraft carriers,
opening the door to increased frequency and routes, including connecting domestic flights (Christidis, 2016). This policy also allowed for the pro-
liferation of low-cost airlines and fares. Given that stock efficiency increased, this suggests that these developments led to higher occupancy rates.

These air policies may have also taken some pkm away from cars and buses but did not seem to affect trains (Figure 4a).

4.4 | Stock-flow indicators

Figure 5 presents the stock maintenance rate (Figure 5a) and the stock expansion (or contraction) rate (Figure 5b). The fraction of flows linked to mainte-
nance varies according to category and is between 3.4% and 8.1%. The steel stock maintenance rate for “cars and motorbikes” was 7.1% on average,
whilst the steel stock expansion rate was 3%. However, in 2009 and 2010, the category experienced a steel stock contraction of 0.7% and 0.2%,
respectively, due to the global economic crisis. In terms of stock degradation efficiency and stock maintenance rate, there was a relative stabilisation
for both indicators between 1960 and 1974. This was followed by a stock degradation efficiency increase and stock maintenance decrease from 1975
until 1989. There was then a stock degradation efficiency decrease and stock maintenance rate increase from 1990 until 2010, followed by a simulta-
neous increase in stock degradation efficiency and decrease in the stock maintenance rate in the final years of the analysis. It appears that “average age"
and “vehicle replacement rates” are the two input variables that impact the most upon these tendencies.

The steel stock maintenance rate for UK national rolling stock was 4.5%. The average steel stock contraction rate was 0.7%. London Underground
had an average steel stock maintenance rate of 6% and a stock expansion of 1.3%. The steel stock maintenance rate for buses was 8% whilst the steel
expansion rate was 1.1%. Steel stock maintenance for aviation was 3.4%, whilst steel stock expansion was 1.7%. In general, stock maintenance rates
stabilized after 1995 and although the stock for some modes of transport experienced big contractions, there was a continuous demand for steel
throughout this period. Table S3 in Supporting Information S1 summarizes the evolution of stock efficiency compared to stock maintenance and stock

expansion rates for all studied transport modes between 1960 and 2015.
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FIGURE 6 Specificembodied energy for passenger transport steel stock. Energy intensity data from Carmona et al. (2019). The underlying
data used to create this figure can be found in Supporting Information S2

The annual changes to stock specific embodied impact relative to the energy intensity of UK steel production are presented in Figure 6. The
improved performance in the steel sector becomes apparent upon comparing the growth in steel stock for passenger transport relative to the
increase in the embodied energy for that same steel. The former grew by 3.8 times between 1960 and 2015 (from 6.9 to 26 Mt), whilst the latter
increased by 2.8 times (from 256 to 660 PJ).

5 | DISCUSSION

Our empirical operationalization of the SFS nexus concept proposed by Haberl et al. (2017) supports the notion that restricting resource accounting
to energy flows overlooks the role of stock accumulation and its contribution to the socioeconomic system. The nexus framing of efficiency adds
important dimensions to resource consumption and accumulation analysis, thereby creating a much richer picture compared to conventional eco-
efficiency measures such as Joule/GDP or tonnes CO,/GDP (Haberl et al., 2020). For example, 33.5 kg of steel stock was required in 2010 to deliver
1 pkm of mobility when travelling by car. The same pkm required a maintenance flow of 2.3 kg of steel and 58 MJ of energy (at the production stage)
to ensure the car functioned properly. The case study also shows that “car and motorcycle” stock efficiency and stock degradation efficiency decreased
between 1994 and 2015 by 35% and 27%, respectively. This result suggests that Ventura's (2020) finding that the fuel efficiency of vehicles
categorized under “car and motorcycles” increased 12% over the same period (from 0.59 to 0.66 pkm/MJ) must be juxtaposed with stock indicators
to give a more comprehensive overview of the transport sector. By only considering energy in isolation, one could obtain the false impression that
the car industry is becoming more sustainable. However, when reframed according to a nexus perspective it becomes apparent that efficiency
improvements are, at least in part, made possible through a greater dependency on materials (as measured in pkm/kg). This result (along with other
preliminary findings in Carmona, Whiting, Carrasco, & Simpson, 2020 and Whiting et al., 2020) makes a strong case as to the need to distinguish
flows and stocks in the MFA and LCA methodologies. Researchers still tend to conflate energy and mass flows, as stocks are usually converted into
their flow equivalents, which is the only way to add two incommensurable properties. Distinguishing between these two dimensions of resource
use would give policymakers and industry leaders the tools they need to take a more nuanced approach to resource management, including
efficiency.

When we calculate the service component of the stock efficiency of “cars and motorcycles,” we recognise that fuel savings were counteracted
by a 5% increase of steel per unit vehicle and a reduction in service provision by 25%. This leads us to believe that business policies and strategies
that drive changes in fuel savings, via alterations to a vehicle’s mass, do not result in a commensurate quantitative increase in passenger mobility,
when measured in terms of distance travelled. However, such initiatives may improve service quality by satisfying other parameters such as safety,
comfort, and fuel costs. In this respect, the operationalization of the nexus, and the use of the material service concept, more generally, highlights
and quantifies the trade-off between energy and materials that is overlooked when outputs are solely measured in terms of GDP or the Human
Development Index.

By prompting a researcher to consider the nature of multiple aspects of resource use, the nexus perspective prevents the oversimplification
of the complex interactions that occur within socioeconomic metabolism. For example, if one only follows the trend of stock efficiency without also
considering the stock maintenance and stock expansion (contraction) rates, one might be led to believe that the service is improving due to the shortage
of stock, when, in fact, it is not. Likewise, if one does not consider specific embodied impact intensity, particularly when measuring energy consumption
and carbon emissions, environmental issues may be overlooked. This is especially the case when one is estimating the sustainability of different

production routes (e.g., electric arc furnace vs. direct reduction iron).
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It is important to point out that a higher service efficiency does not necessarily mean that the service provided to the average end-user is “good”
or “suitable.” This is because efficiency does not capture all aspects of mobility. For example, people do not tend to own cars because they are
efficient but because they provide a greater flexibility of destination, scheduling, security, and privacy. Likewise, a transport authority interested in
meeting national sustainability targets will emphasise metrics that go beyond mere efficiency, such as equity/fairness, road safety, space comfort,
average duration of trip, urban aesthetics, and air pollution issues.

The inherent complexities emerging from the service perspective imply that any given material service should be assessed using more than
one set of units. Selecting units that represent the primary function of a particular service, and which are already commonly used, is useful when
attempting to improve specific aspects of a service, as long as one recognizes that a high number of units does not necessarily translate into high
level of service. Arguably, the most efficient way to provide mobility is to design and operate routes that enable a person to achieve their end goal
whilst travelling the least number of kilometers in the shortest time possible and making use of the lowest possible amount of resources. This is, in
short, why a contextual analysis is essential to the interpretation of nexus results.

Another strategy that may achieve a more comprehensive resource use evaluation involves the combination of nexus indicators with methods
from the social sciences to ascertain user perception and preferences. Suitable ones include those explored by Litman (2007), Shove (2007), and
Mattioli, Anable, and Vrotsou (2016). Questionnaires, in particular, can assess qualitative experiences associated with transport use. In the context
of the case study, “London Underground” registered a 120% rise in pkm but only a 22% increase in rolling stock. This led to a higher stock efficiency,
which would seem to signal, from a sustainability perspective, an improvement in service provision. However, as it was achieved by “train crowding,”
the quality of the end-user experience deteriorated, a reality confirmed by the lower levels of satisfaction recorded in the TfL London Underground
Customer Satisfaction Survey 2010/11 (TfL, 2011).

6 | CONCLUSIONS

Our findings suggest that the SFS nexus does indeed offer rich insights into the complex interactions that emerge from specific combinations of
stocks and flows and the way in which they provide services. The operationalization of the nexus highlights the need to consider stocks in their own
right because if one automatically converts stocks into flows, the potential trade-offs between energy flows, material flows, and material stocks can
be masked. A service perspective offers an evaluation of societal functions that does not require an economic lens. The latter emphasises wealth
creation and public budgets but can lead to services falling short of end-user requirements.

It seems that steel is a good proxy for a transport sector’s resource use calculations, upon extending the analysis into aluminum, plastics, glass,
and rubber. However, this needs to be explored in more detail. There is also scope for an expansion of the case study to include air, road, and rail
infrastructure.
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