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ABSTRACT the multipath signals are nulled by using soft constraiots t
A novel robust beamforming scheme for the processing oforce their magnitude responses to be less than a very small
coherent signals in a multipath environment is proposedegvel. In this way, signal cancellation caused by coherigat s
where the worst-case performance optimization and the sofftals can be prevented and robustness against DOA estimation
response constraint are combined together to suppress tagor can be achieved.
multipath signals as well as the uncorrelated interference  The rest of this paper is organized as follows. In Section
The proposed scheme is also robust against the direction-dt, the signal model for the multipath environment is intro-
arrival (DOA) estimation errors. Simulation results veits ~ duced and the robust beamforming method in [6] is briefly
effectiveness. reviewed. The proposed robust beamformer with a combi-

nation of both worst-case performance optimization antl sof
1. INTRODUCTION constraints is introduced in Section 3. Simulation resarits

| ltinath . ts. sianals t li | et performance comparisons are given in Section 4. Conclu-
n multipath environments, signals travelling along diéfet ;o< are drown in Section 5.

paths can be considered as coherent with the original source

signal if their relative delays are much smaller than th@rec

rocal of the signal bandwidth. Conventional adaptive beam- 2. BACKGROUND

forming methods, which assume uncorrelated signal source€onsider a narrowband beamformer with a uniform linear

suffer from signal cancellation in the presence of coheremrray withM omnidirectional sensors as shown in Fig.FL.

signals [1]. uncorrelated narrowband input signals, denotesh &3, im-
Recently some robust adaptive beamformers [2][3][4][5]pinge on the array from DOAB, (p=0, ..., P—1). As-

have been proposed to improve the robustness against stesmesy(t) is the SOI which ha€) multipath signals from

ing vector mismatch. In these methods it is assumed that thja‘rections,éq (Q=1, ..., Q). Each multipath signal is mod-

actual steering vector of the signal of interest (SOI) bgton eled as a scaled and phase shifted version of the SOI, i.e.,

to a sphere or ellipsoid uncertainty set while the steeretg v _

tors of the interferences do not belong to the same set. Then rq(t) = pge™ ' Fso(t) 1)

by forcing the magnitude responses of all the steering vecto . . )

in such an uncertainty set to exceed unity while minimizing¥hererq(t), pq, andg, denote thegth multipath signal, its

the output power, the gain of the SOI is kept at a certain levelagnitude attenuation factor and phase shift caused by mul-

while the interferences and noises are suppressed. Ims], ttirath delays, respectively.

worst-case performance optimization approach is extended The beamformeroutputis given by

to the scenario of a general multipath environment, where a H

steering vector set is constructed to include all the ptessib y(t) = wrx(t) (2)

steering vectors of the SOI and its multipath signals. Th?/vherew is anM x 1 complex weight vector}H stands for

magnitude responses toward all the steering vectors withi o ; ;
this set are forced to be greater than unity when minimizing{ltig%wgﬁnbgansmse’ andt) is the observed array signal
er

the output power of the beamformer. Since the beamform

has a relatively fixed response to each of the multipath sig- Q P-1

nals, the SOI will not be cancelled completely. x(t) = a(Bo)so(t) + 3 a(bg)rq(t) + H a(6p)sp(t) +n(t)
Soft response constraint is another approach for robust =1 p=1

beamforming. Based on the idea of minimizing the mean- 3)

squared error between the desired response and the actwdleren(t) is the spatially white noise vector uncorrelated
response in the signal direction area, the width of the maimvith the SOI and interferences, aa®) is the steering vec-
beam can be specified and better interference cancellatidar for the signal from DOAG.
can be obtained [7][8]. We assume the DOAs of the SOI and its multipath sig-
In this paper, we propose a novel robust beamformer fonals are estimated in advance [9, 10, 11]. The pre-estimated
the multipath environment by combining the worst-case perDOAs are denoted a8 (i=0, 1, ---, Q). The DOA es-
formance optimization and the method of soft constraimts. | timation errors are assumed to be less tp&n Therefore,
this approach, a spherical uncertainty set is construotadt the actual DOAs of the SOI and its multipath signals can be
clude all the possible steering vectors in the main SOI direcmodeled as belonging to a group of clusters, i.e., DOA re-
tion, and the magnitude response at the worst-case witisin thgions, centred a with a radiusu®. A brief geometry of 3
set is constrained to be no less than unity. On the other handlusters is shown in Fig. 2.
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Figure 1: Beamformer with alMl-sensor linear array.
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In the method in [6], the actual steering vectors of the
SOl and its multipath signals are assumed to belong to the
following steering vector set

Figure 2: Geometry of the clusters.

L — - — With b defined as above and by applying the triangle and
o ={ala=a(0)+ele] <€g6€[b,0]} (4 Ccauchy-Schwarzinequalities, we have

wherea’is the actual steering vecta,is a complex vector |WHb| = \WH [a(eo) +eH

that describes the effect of steering vector distortjpj de- > lwHalga)| — [wH 8

notes the Euclidean norm operation anid the bound ot. - ‘WHa(B_O)‘ ‘W e‘ ®)
The formulation of the robust beamformer is written as > \W 3(90)\ —&llw| .

the following constrained minimization problem The worst-case constraint in (7) is equal to

minwHRw subjectto |w'a|>1,vacw (5) |wHa(6o)| —ellw| > 1. (9)

_ _ S The nonconvex problem (9) can be transformed into a convex
whereR is the sample covariance matrixofwhich is given  form by forcing the imaginary componentef?a(6) to be

by zero [2],
N H —
R=g 3 xix[i ©) ellwl| < wa(6o) - 1 10)
& Im{w"a(8p)} =0

In this approach, the magnitude response of the SOI and
its multipath signals is constrained to be greater tharyunit 3.2 Soft Constraintson the Multipath Signal Clusters
As a result, the response of the beamformer to all of thes? . . . .
; : ; ; - “The actual steering vector of the multipath signal in dgtte
coherent signals, i.e. the SOI and its multipath signall, wi (=1, ..., Q) cluster is denoted as, and it belongs to the

be relatively fixed and it is very unlikely that they will caglc @teering vector set of. We use soft constraints to keep the

each other completely at the output. In this way, when th .
- SRS ; magnitude of the array response tgrto be smaller than a
beamformer output variance is minimized, the mterferenceBredefined very small valus,

will be suppressed, and the SOI will be preserved to som
degree. |wHeq| <6, Veq € 6y

= (11)
= = A —_ ° < A < °

3. THE PROPOSED ROBUST BEAMFORMER Ga={calcg=a(bg+8), ~p"<b<p’}

whereA is the DOA estimation error. By choosing a small

In this section, we propose a new robust be""mformi”?&nough value od, the multipath signals can almost be nulled

scheme for the multipath environment. In the main SOyt completely, and their cancellation to the SOI is present
cluster, the worst-case performance optimization is ueed t  The constraint in (11) is a semi-infinite constraint, which

keep the SOl undistorted; in the rema_ining c_Iusters, soft Co -an be approximated in a straight forward way by sampling
straints are employed to null the multipath signals. the DOAs in the clusters. We choose a seKofiniformly

spaced anglefy, - , 6] in the gth cluster. The prob-

3.1 Worst-Case Constraint on the Main SOI Cluster lem (11) is then replaced by a set of ordinary inequality con-
We denote the actual steering vector of the SOI in the maiftraints,
cluster ash, which belongs to a spherical sét. Then we ‘WHa(é k)‘ <5
force the magnitude of the array response for this particula LoVl =
steering vectob that corresponds to the smallest value of a(Og) € 6q (12)
|wHb|, i.e., the worst-case, to be greater than one, q=1,...,Q
k=1, ..., K.
min [w"b| > 1 _ o _ _
bezs (7 WhgnK is sufficiently large, (12) provides a good approxi-
#={blb=a(bp)+e, |e| <e}. mation to (11).
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3.3 The Robust Beamfor mer

Our robust beamformer is constructed by minimizing the ot
put power under the worst-cast constraint (7) and the s
constraint (11), which is expressed as

minw"Rw subject to

wW

min|w"b| > 1
be#A (13)
|WHCq| < 6, VCq S %q.

Output SINR (dB)

In (13), the worst-case constraint guarantees the distorti
less response for the SOI with steering vector mismatch
On the other hand, the multipath signals with DOA mit
matches are well suppressed by the soft constraints. A
result, signal cancellation caused by correlation is praa
and robustness against DOA estimation errors is achievec

By substituting (10) and (12), the problem in (13) is the
converted into the following formulation,

minw"Rw subjectto ¢||w| <w"a(6p)—1

w

Im{w"a(6o)} =0
(14)

0

a(bek) € %q
q:]‘?"')Q e
k=1,...,K -20

which can be solved efficiently using the second-order ca
programming (SOCP) based approach [12, 13].

Gain (dB)
A
o

|
a
=)

4. SIMULATIONS

In our simulations, a uniform linear array with 20 senso

spaced half a wavelength apart is used. We assume the _, |

has two multipath signals, and there are four uncorrelated
terferences with interference-to-noise ratio (INR) of 3 d
The noise signals are spatially white Gaussian. The act
DOA of the SOl falls in the cluster with a pre-estimated cen-
tre 6o = 10°, and the estimated cluster centres for the two
multipath signals aré, = —15° and 6, = 40° respectively.

In all examples, the cluster radiugtis= 2° except for the ex-
ample of Fig. 5 where its value varies. For the soft constrain
in the multipath clusters, 10 samples per degree are used and
the value ofd is 0.01. In each simulation run, the actue 2
DOA of the SOI and the multipath signals are randomly ge

-80

erated in their clusters; the multipath attenuation faptgis 155

randomly generated in the regifdl, 1] and the phase shift
@, in the region[0, 2r1]. DOAs of the interferences are ran
domly generated in the regigr-90°,90°] with at least 10 &
degrees apart from each other and the pre-estimated clug
centres, except for the example of Fig. 4 where the DOAs a“g’
specified. 1000 training snapshots are used for the recei 3
data. The SeDuMi [14] and YALMIP [15] MATLAB tool- 0
boxes are used to compute the weight vector of our rob
beamformer. The simulation results are obtained by aver. -5
ing 500 independent runs.

In the first example we compare the output signal-t
interference-plus-noise ratio (SINR) of the proposed meéth
and the method in [6] with respect to the steering vector dis-
tortion bound coefficient. The input signal-to-noise ratio
(SNR) of the SOl is 10 dB for both methods. It is shown in
Fig. 3 that for all the values of the proposed method has
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Figure 4: Beampatterns.
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