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Abstract: 

Nutri-informatics aims to computationally integrate and analyze nutrition study datasets 
in order to disentangle the interactions between an organism and its nutritional environment. 
Fueled by an interest in how food, nutrients, and nutrition sociology impact health, and a recent 
push towards “big data”, nutri-informatics is essential to incorporating nutrition into 
computational biomedical sciences.  

Nutrition is one of the most integral components to human life, and it impacts individuals 
far beyond just nutrient provisions. For example, nutrition plays a role in cultural practices, 
interpersonal relationships, and body image. Despite this, integrated computational 
investigations have been limited due to challenges within nutri-informatics and nutrition data.  

Nutri-informatics suffers from a lack of standardization with a wide array of groups 
working on similar projects with no community-wide development principles to ensure 
interoperability and cohesion between nutri-informatics and other biomedical resources. While a 
large number of resources for nutri-informatics are available, much of nutrition is 
underrepresented. This may be due to how expansive and heterogeneous nutrition is as a field, 
increasing the difficulty of data modeling. Approaches to formalize nutrition research language 
and connect standardized terminologies across biomedical fields have been initiated through 
the use of biomedical ontologies and computational nutrition data resources. While a variety of 
nutrition-related ontologies such as Food Ontology and the Ontology for Nutritional Studies have 
been initiated, they are still in development and require further attention from nutrition 
researchers and biomedical ontologists. 

Should nutrition data continue to be produced with no standardization of language, 
documentation specifications, or requirements for data reuse, nutri-informatics investigations will 
continue to struggle with incompatible data. In efforts to support nutri-informatics, the community 
must encourage standards for nutrition data production, reuse, and publication. Academic 
journals as well as members from nutrition research and biomedical ontology communities 
should promote standardization of language, data interoperability, and FAIR principles. 
 
Nutrition research encompasses a broad swath of human biology 

While nutrition and diet are arguably some of the most vital aspects of a healthy life, the 
study of nutrition as a science is relatively new. Modern day nutrition research began less than 
100 years ago with the first vitamin isolation in 1926[1], but has grown into a vast discipline. 
From a biological standpoint, nutrition is essential to most all living organisms. Life, functions, 
and reproduction of humans and other organisms are supported by essential nutrients such as 
water, macronutrients, vitamins, and minerals, obtained from food and drink. Thus, nutrition 
research has focused on understanding what nutrients are essential[2–4], what foods contain 
those nutrients[5,6], what biological functions a nutrient may participate in[7,8], how food 
processing impacts nutrient content[9–11], and evaluation of ideal nutrient needs for individuals 
with specific health conditions[12–14].  

Evidence-based nutrition research has informed clinical practice, such as using food 
additives to prevent developmental birth defects (e.g. adding folic acid to grain products to 



reduce the incidence of neural tube defects) or treating impaired metabolic function with 
nutritional therapy (e.g. consistent carbohydrate diets for glycemic control). Fine tuning 
individual and population recommendations has been a consistent focus throughout the 
development of the field of nutrition, for disease prevention and management, and health 
optimization[15,16]. However, recent advances in understanding nutrient-nutrient 
interactions[17,18], food- drug interactions[19], molecular processes, and the impact of the 
microbiome[20,21], make nutrition far more complex than initially thought.  

Beyond biochemical investigations, nutrition is distinct in its translation from research to 
practice as food is personally and culturally rich. While the first and foremost purpose of food for 
humans is to fulfill the biological need for energy and nutrients, the nature of food intake has 
biological and cultural cues. Food choices and preparation, number of meals per day, time of 
eating, and method of eating[22], religious observation, and personal food beliefs[23–25] are 
just a few examples of how a culture or custom may guide nutritional intake. Access and 
management of resources can also impact food selection and consumption, as individuals may 
have limited access to nutritious and/or preferred food items based on location and 
transportation needs[26]. Individuals with limited monetary resources are also forced to make 
decisions between food and other necessities such as housing, which can further impact health 
and safety[27]. The sociological implications of food greatly impact an individual or population’s 
nutritional intake and quality of life in ways that are not captured from a purely biochemical point 
of view. This complex nature of food and nutrition creates a highly variable notion as to what 
ideal nutrition is, while also showcasing how integral food and nutrition are to human daily life 
and biological function. Due to the deep complexity of nutrition, discussion of health outcomes 
involving nutrition are arguably incomplete without the inclusion of sociological information. The 
broad biological, behavioral, and resource driven scope of nutrition and nutrition research is 
illustrated in Figure 1, depicting how broad categories of nutrition are all interconnected by 
subcategories. Due to the interrelated nature of nutrition as a whole, nutrition data and research 
must also be managed in a unified fashion.  
 



 
Figure 1. The nutri-informatics landscape. Nutrition is complex and heterogeneous in nature, 
ranging from larger categories of ‘Food and Nutrients’ to ‘Government and Regulation’, yet 
within each broad category, many subcategories are shared.  
 

Because nutrition is interdisciplinary and heterogeneous, it is an emergent area for the 
application of informatics, particularly due to the recent increases in data production through 
various -omics based nutrition research. The term nutri-informatics describes approaches to 
understand the interactions between an organism and its nutritional environment via 
bioinformatics-based integration of nutrition study data sets[28]. The desire to utilize 
informatics approaches to interpret nutrition data can be guided by the successful use of 
integrated informatics approaches in other biomedical fields, such as genomics, transcriptomics, 
and metabolomics in combination with more traditional epidemiological and statistical 
approaches.  Currently, nutrition data ranges widely including for example survey data, clinical 
data, basic science mechanism data, observational data, and -omics data. 
 
Nutri-informatics progress towards improved disease management and precision health 
 

While nutri-informatics may appear to be a new trend, the application of nutri-informatics 
using advanced statistics has been pursued in nutrition research for some time within large 
scale investigations of dietary intake via surveys. Surveys such as What We Eat In America 
(WWEIA), a subset of the National Health and Nutrition Examination Survey (NHANES), are 
collected annually from Americans in efforts to depict nutritional intake and correlate it with 
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biological samples and clinical measures collected via NHANES[29]. Since the initiation of 
WWEIA in the 2003-2004 survey period, investigators have capitalized on access to these 
nutrition data sets for research. Projects using WWEIA and NHANES range widely, and offer 
insights such as the cost and energy intake associated with dairy replacement in individuals 
who do not consume dairy products[30], and the prevalence of probable undiagnosed celiac 
disease and potential reduction in femur bone mineral density[31].  The Nurses’ Health Study 
(NHS), now in its third iteration, similarly collects longitudinal dietary information within their 
large cohorts via semiquantitative food frequency questionnaires[32]. Since its initiation, NHS 
dietary information correlated with biological specimen and clinical outcomes in participants 
have been used to evaluate potential biomarkers for nutrition, such as being the first 
investigation to measure intake of selenium via toenail samples[32]. Furthermore, NHS has also 
informed dietary guidelines, such as the recommendation to reduce or eliminate trans fatty acids 
from the diet to reduce coronary heart disease[32] and highlighting the correlation between 
eating patterns such as Dietary Approaches to Stop Hypertension and prevention of colorectal 
cancer in men[33]. Nutrition surveys such as WWEIA and NHS have enabled epidemiological 
nutrition evaluations with advanced statistics and correlation to clinical and biospecimen data to 
support improved public health recommendations. While survey-based investigations continue 
to produce nutrition data to support epidemiological research, approaches to gathering related 
data have expanded to new data types and a requirement for new methods to incorporate data 
sources for analysis and inference.  

Nutri-informatics initiatives often fall into the category of clinical nutrition, with 
researchers utilizing informatics to integrate data from electronic health records (EHRs), patient 
surveys, wearable devices, mobile applications, and other tools to facilitate inference of optimal 
health recommendations. The Academy of Nutrition and Dietetics, the largest professional 
group of registered dietitian nutritionists (RDN) in the United States, is striving to participate in 
the development of standards and processes using nutri-informatics to facilitate optimal nutrition 
care[34]. This has included support for transitions to EHRs as well as standardization of the 
electronic Nutrition Care Process and Terminology (eNCPT), a systematic terminology that 
describes nutrition patient care through Assessment, Diagnosis, Intervention, Monitoring, and 
Evaluation[34,35]. eNCPT also integrates with the Systematized Nomenclature of Medicine – 
Clinical Terms (SNOMED CT) and Logical Observation Identifiers, Names and Codes (LOINC), 
two commonly used medical terminologies[34]. Implementation of eNCPT in care settings has 
documented improved efficiency and increased nutrition related diagnoses in hemodialysis 
patients compared to manual paper based systems, supporting greater effectiveness in patient 
outcomes[36].  Another approach includes malnutrition identification within a hospital 
setting[37]. Malnutrition is an extreme risk for hospitalized patients, exacerbating chronic and 
acute health conditions such as reduced immune function, impaired wound healing and 
potentially increasing morbidity and mortality rates[37]. Software-based screening tools that 
standardize malnutrition assessments have improved the consistency and efficiency with which 
malnutrition is diagnosed, expediting the nutrition care response for patients[37], and also 
supported the malnutrition knowledge, attitudes, and practices of staff[38].  

Nutri-informatics has also been applied in the context of personalized nutrition, i.e. an 
individual’s personal diet and how it translates to health and wellbeing[39]. As both health and 
disease are highly variable based on genetics, lifestyle, environmental exposures, and many 
other factors, researchers are focusing on inclusive approaches to develop data-driven 
predictive methods for anticipating an individual’s response to food[39]. An investigation into 
personalized nutrition for glycemic control by Zeevi et al. utilized machine learning techniques 
tracking anthropometrics, dietary intake, individual microbiome, and glycemic status to develop 
a predictive model for postprandial glucose response (PPGR)[13].  These findings displayed the 
extreme variability in PPGR seen across individual participants, denoting the importance of 



personalized nutrition approaches in comparison to broad population-based 
recommendations[13]. 

Understanding food intake is a critical part of evaluating both population and 
personalized nutrition, and informatics approaches have also been used to track food 
purchasing and food intake and correlate it with nutrition information. One investigation 
examined whether grocery store purchases could be associated with specific nutrition 
information from a U.S. Department of Agriculture (USDA) database. The study found that most 
food products could be accurately mapped to nutritional composition[40]. While this 
investigation faced barriers mapping inconsistencies across food categories that have highly 
variant nutritional content, 70% of food items were mappable to the USDA nutrient database 
and 100% of items were mappable to USDA standard food groups. The investigators described 
a feasible approach for interpreting nutritional intake of grocery store purchases and expressed 
that greater interoperability between nutrition information and food labeling and production 
systems as well as healthcare would support translation of this type of research[40].  
 Utilizing electronic food diaries and phone applications has become a popular approach 
to documenting and analyzing dietary intake. Generally, electronic food diaries offer a wide 
range of functionality and the ability to store and share data across users, with aggregation and 
summarization of food intake and inferences on health outcomes offering users the most 
benefit[41]. Some versions of electronic food diaries within mobile device applications may 
include users sharing pictures of food they have consumed. With these types of applications, 
approximately a quarter of them provide either professional or crowdsourced feedback from 
other users[42]. Notably, most photo based apps are conducted with little to no application of 
evidence based methods for self-regulation and behavior change, which may impact user health 
behaviors and outcomes[42]. Beyond crowdsourced and professional responses to photos, one 
group of researchers developed an image recognition algorithm to recognize and analyze 
nutrition content from a photo of food[43]. This dietary tracking system, DietLens, utilizes deep-
based food recognition technologies to classify the image and applies neural networks for 
image-level food categorization[43]. Thus far, this technology has been able to categorize food 
images from the research testing laboratory with between 75-99% accuracy, although difficulties 
were seen with mixed dishes that contain a large variation in ingredient composition[43]. When 
compared to other electronic food diary apps, DietLens displayed greater accuracy and required 
less time to log nutritional intake, indicating photo recognition based applications may be a 
useful tool for personal dietary intake tracking[43].  
 Overall, current progress in nutri-informatics research is promising and has given rise to 
novel findings and methodologies that can likely be utilized in future research endeavors. 
However, many barriers are still limiting the ability to bring nutri-informatics to the forefront of 
precision medicine and personalized health.  
 
Current Nutri-informatics Challenges 
 

Many clinical settings have focused on transitioning to electronic resources for nutritional 
data documentation and storage, allowing for widely accessible, albeit static clinical 
measurements. However, the multitude of methods for capturing nutritional information within 
EHRs and the lack of standardization across them limits their research use[39]. Furthermore, 
nutrition data is often sparse within EHRs, limiting the capacity to evaluate potential nutritional 
impacts on health outcomes[39]. As such, clinical nutri-informatics investigations more often 
focus on specific health outcomes such as specific disease states and clinical biomarkers as 
opposed to larger, more integrative studies that incorporate a wider array of data types and 
outcomes. A good example is the implementation of malnutrition screening assessments, which 
although they have been important for identifying and managing malnutrition, a validated 
Malnutrition Screening Tool (MST) asks only two questions, “Have you lost weight recently 



without trying? If yes, how much weight have you lost?” and “Have you been eating poorly 
because of a decreased appetite?”[44]. With just two questions asked via patient survey, no 
dietary intake or other information is acquired. This allows for the clinician to identify malnutrition 
at a gross level but provides little insight into any specific dietary factors. Very few attempts 
have been made to try and utilize nutrition and clinical survey data, -omics data, and other 
heterogeneous data types in coordination together in research.  

Furthermore, major challenges exist for personalized nutrition endeavors, including 
experimental designs being unable to track the complex physiological response to nutrient 
exposures (nutrients and potential contaminants, food additives, or toxins), incomplete 
understanding and establishment of metabolic biomarkers, and inconsistent documentation 
language or incorrect reporting of health exposures and outcomes[39]. Concerns with self-report 
survey approaches also occur, as participants may inaccurately depict their nutritional intake, 
challenging research findings. In one investigation, average 24-hour dietary recalls 
underestimated dietary sodium intake, when compared to estimated consumption calculated 
from 24-hour urine sodium content[45]. Concerns for racial disparities utilizing food frequency 
questionnaires (FFQ) also arise. One investigation identified significantly greater correlation 
between 24-hour dietary recall and FFQ for white women compared to Black women, 
challenging the ability to decipher eating habits and make dietary recommendations given the 
racial disparities not captured within nutrition surveys[46].  

Nutrition research generally faces challenges, with a variety of research methodologies 
available and each with tradeoffs of benefits and challenges. While single dietary element 
investigations are optimal for evaluating nutrition biomarkers, investigations that single out a 
particular dietary component can be challenging to complete in a controlled manner in humans 
and may also lead to broad interpretations regarding the systemic effects of the food or nutrient 
in health. On the opposing side, many investigations evaluate diet in its entirety, which limits the 
capacity for evaluation of specific cellular and molecular interactions or signaling[39]. For lack of 
a “perfect” methodological design, many nutrition investigations are conducted on similar 
concepts producing a wide range of data and data types that are not compatible enough for 
larger-scale insights, stunting opportunities for translational research and further hypothesis 
development. 

Biomedical data as a whole is represented using a wide array of terminologies for similar 
or identical concepts, leading to challenges for data aggregation and management even with 
smaller data sets[47]. The National Institute of Health (NIH) has initiated the usage of common 
data elements (CDEs), which are data elements frequently assessed within research such as 
demographics, labs, or biomarkers that have been standardized using human and machine-
readable definitions to facilitate research interoperability and consistency 
(https://cde.nlm.nih.gov/). CDEs are designed to support data collection and analysis in a 
consistent fashion[47] for a variety of data types such as from surveys, clinical data, and 
laboratory findings. CDEs are intended to be reused within and across projects, meaning two 
different assessments can ask the same question using the same CDE format and the data 
produced from the question will be compatible between surveys or studies. An example of a 
CDE used in the NHANES 1999-2000 questionnaire is depicted in Figure 2. 
(https://wwwn.cdc.gov/Nchs/Nhanes/1999-2000/ALQ.htm). 
 



 
 
Figure 2. Sample Common Data Element. This question is an example of a common data 
element (CDE) from the National Health and Nutrition Examination Survey (NHANES) 1999-
2000 questionnaire. In this instance, survey participants were inquired about alcohol 
consumption throughout the year and their responses were standardized using the 
corresponding code/value pair. Usage of this CDE in a separate survey, such as a future year of 
NHANES, will allow data from both surveys to be directly comparable. 
 

Utilizing CDEs, nutrition research and data could be approached with standardization 
and interoperability in mind, similarly to the structure CDEs have provided to projects within the 
fields of cancer research[47] and stroke clinical and epidemiological research[48]. CDEs and 
other scientific records like data sets can be managed via unique persistent identifiers (PIDs), 
which facilitate data sharing, reuse, and attribution[49]. While CDEs and PIDs for data reuse 
and sharing are commonly used in other areas of biomedical sciences, CDEs are not in 
widespread use in nutrition investigations. Furthermore, researchers have seldom discussed 
nutri-informatics research from the perspective of data reuse to maximize understanding and 
comparability of findings[50].  
 
Biomedical ontologies can support standardization and integration of nutrition data 
 

One approach to develop structure and standardization is the use of ontologies. 
Ontologies are classifications of terms focused on specific areas of knowledge or domains that 
include logically defined relationships between the terms[51]. Ontologies offer not only human 
readable definitions of terms, but also computer readable definitions in the form of logical 
definitions or axioms. This allows for reasoning across the data and increased computability[51–
54]. While ontologies are created specifically for a domain or subdomain, many ontologies are 
co-developed to be interoperable and compatible with one another making it easier to exhibit 
relationships between terms in different ontologies[51]. Ontologies have been applied 
extensively in areas such as genomics and phenomics, which has allowed for increased 
connections between patient genotypes and clinical phenotypes, facilitating individualized 
medicine and rare disease identification[53–55].  

Figure 2
Variable Name: ALQ100  Label: Had at least 12 alcoohol/drinks/1yr?
English Text: The next questions are about drinking alcoholic beverages. 
Included are liquor (such as whiskey or gin), beer, wine, wine coolers, and any 
other type of alcoholic beverage. In any one year, {have you/has SP} had at least 
12 drinks of any type of alcoholic beverage? By a drink, I mean a 12 oz. beer, a 
4 oz. glass of wine, or an ounce of liquor.

Code or Value    Value Description

1      Yes

2      No

7      Refused

9      Don’t Know

.      Missing



Prominent ontologies frequently used in biomedical research include the Gene Ontology 
(GO) describing gene functions and biological processes[56], and the Systematized 
Nomenclature of Medicine – Clinical Terms (SNOMED-CT) which is a clinical terminology for 
medical conditions and symptoms[57]. While there are a variety of analyses and applications for 
utilizing ontologies, two common approaches are similarity comparisons and enrichment 
analyses. An example of a semantic similarity comparison is the use of non-exact phenotype 
profile matching. Using patient profiles encoded with phenotype terms from the Human 
Phenotype Ontology, multiple profiles can be compared to identify similar and unique 
phenotypes between them. The application of semantic similarity algorithms over ontology 
encoded clinical phenotype data for “fuzzy” phenotype matching has supported diagnosis of 
rare disease patients[58,59].  

Enrichment analyses are also common approaches to utilizing ontologies. For example, 
an investigation looking to evaluate changes in vitamin D and serotonin gene expression for 
individuals with irritable bowel syndrome (IBS) assessed gene transcripts from tissue biopsy 
samples from IBS+ and IBS- populations[60]. After identifying genetic features of interest via 
differential expression, enrichment utilizing GO highlighted the associated pathways and 
functions of the differentially expressed genes[60]. In this instance, investigators identified the 
most prevalent enrichment within the serotonergic pathway, which paired with real-time 
polymerase chain reactions may indicate that IBS patient-derived RNA has lower tryptophan 
hydroxylase-1 expression, which is a rate limiting step in serotonin synthesis[60].  

While the use of ontologies in scientific research has grown over the past few decades, 
their use within the discipline of nutrition has lagged regardless of researchers exhibiting a need 
for nutrition data standardization through the application of ontologies[50]. Integration of nutrition 
into biomedical ontologies holds the potential to identify hundreds of nutrition-disease, nutrition-
phenotype, and nutrition-genotype relationships. 

The complexity and coverage differ greatly across nutrition subdisciplines, but many 
nutrition-related knowledge resources do exist including some which can be leveraged to better 
understand nutrition and human health in a computable manner. In Tables 1 and 2, a review of 
prominent existing resources is provided, including food and nutrition focused ontologies and 
related biomedical knowledge resources. 

 
Table 1. A listing of prominent nutri-informatics ontologies 
 
Chemical Entities of Biological Interest 
(ChEBI)[68] 
 
 
https://www.ebi.ac.uk/chebi/ 
 

Description: A dictionary of molecular entities 
focused on ‘small’ chemical compounds. 
Includes chemical dietary metabolites and 
nutrients. 
Example Term Name: L-ascorbic acid 
Example Term ID: 
http://purl.obolibrary.org/obo/CHEBI_29073 
Example Term Definition: The L-enantiomer 
of ascorbic acid and conjugate acid of L-
ascorbate. 
Example Term synonyms:  
(5R)-5-[(1S)-1,2-dihydroxyethyl]-3,4-
dihydroxyfuran-2(5H)-one 
L-threo-hex-2-enono-1,4-lactone 
 



Ontology of Nutritional Studies (ONS)[64] 
 
https://github.com/enpadasi/Ontology-for-
Nutritional-Studies 
 

Description: A systematic ontology framework 
for nutritional studies. Includes Nutrition study 
design and diets. 
Example Term Name: Intervention Diet 
Example Term ID: 
http://www.enpadasi.eu/ontology/release/v1/o
ns/ONS_0000081 
Example Term Definition: The diet 
administered during an intervention study. It 
usually comprises the adoption of a certain 
nutritional intervention, intended as the 
prescription of consuming or not consuming 
certain food, and follows a precise study 
design. Intervention studies usually compare 
at least two subgroups of a population, one 
control group receiving a null nutritional 
intervention, and one or more test groups 
receiving the intervention 

Gene Ontology (GO)[56] 
 
 
http://geneontology.org/ 

Description: A computational model of 
functions of genes including metabolism 
related biological processes.  
Example Term Name: diacylglycerol 
metabolic process 
Example Term ID: 
http://purl.obolibrary.org/obo/GO_0046339 
Example Term Definition: The chemical 
reactions and pathways involving 
diacylglycerol, a glyceride in which any two of 
the R groups (positions not specified) are acyl 
groups while the remaining R group can be 
either H or an alkyl group. 
Example Term synonyms: diacylglycerol 
metabolism diglyceride metabolism 

Food Biomarker Ontology (FOBI)[69] 
 
https://github.com/pcastellanoescuder/FoodB
iomarkerOntology 
 

Description: A joint ontology including Food 
Ontology and Biomarker Ontology including 
food intake biomarkers. 
Example Term Name: 3,4-
dihydroxyphenylacetic acid 
Example Term ID: 
http://purl.obolibrary.org/obo/FOBI_030377 

Medical Actions Ontology (MAxO) 
  
https://github.com/monarch-initiative/MAxO 
 

Description: A structured vocabulary for 
medical procedures, interventions, therapies, 
and treatment including medical nutrition 
therapy. 
Example Term Name: dietary intervention 
Example Term ID: 
http://purl.obolibrary.org/obo/MAXO_0000088 



Example Term Definition: Any alteration or 
treatment in an individual's diet with a 
planned goal, usually designed to improve the 
individual's overall health. 
Example Term synonyms:  
behavioral nutritional intervention 
diet 

Environmental Conditions, Treatments, and 
Exposures Ontology (ECTO)  
 
https://github.com/EnvironmentOntology/envi
ronmental-exposure-ontology 
 

Description: A structured vocabulary for 
environmental exposures and stimuli 
including food, nutrient, and diet exposures. 
Example Term Name: vitamin D exposure 
Example Term ID: 
http://purl.obolibrary.org/obo/ECTO_9000133 
Example Term Definition: An exposure to 
vitamin D. 
Example Term synonyms: exposure to 
vitamin D 
 

Human Phenotype Ontology (HPO)[70] 
 
 
https://hpo.jax.org/app/ 
 

Description: A standardized vocabulary of 
phenotypic abnormalities encountered in 
human disease including nutrition related 
phenotypes. 
Example Term Name: Abnormality of amino 
acid metabolism 
Example Term ID: 
http://purl.obolibrary.org/obo/HP_0004337 
Example Term Definition: Abnormality of an 
amino acid metabolic process. 
Example Term synonyms: amino acid levels 
abnormal 

Mondo Disease Ontology (Mondo)  
 
https://mondo.monarchinitiative.org/ 
 

Description: A harmonization of disease 
definitions including nutrition related 
diseases. 
Example Term Name: protein-energy 
malnutrition 
Example Term ID: 
http://purl.obolibrary.org/obo/MONDO_00013
71 
Example Term Definition: A nutritional deficit 
that is caused by inadequate protein or 
calorie intake. 
Example Term synonyms: protein energy 
malnutrition 

Food Ontology (FoodOn)[63] 
 
https://foodon.org/ 
 

Description: An ontology focused on 
categorization and processing of food 
including terminology for food, food 
components, and food management. 
Example Term Name: macaroni and cheese 



Example Term ID: 
http://purl.obolibrary.org/obo/FOODON_0000
2960 
Example Term Definition: Macaroni and 
cheese is a dish of English origin, consisting 
of cooked macaroni pasta and a cheese 
sauce, most commonly cheddar. It can also 
incorporate other ingredients, such as 
breadcrumbs, meat and vegetables. 
Example Term synonyms: mac n 
cheese macaroni cheese mac and cheese 

Neuro Behavioral Ontology (NBO)[71] 
 
https://github.com/obo-behavior/behavior-
ontology 
 

Description: An ontology of human and 
animal behaviors and behavioral phenotypes 
including motivation and behaviors regarding 
food and beverage consumption. 
Example Term Name: polyphagia 
Example Term ID: 
http://purl.obolibrary.org/obo/NBO_0000546 
Example Term Definition: A pathological 
eating behavior characterized by an 
abnormally large intake of food by mouth, 
usually due to excessive hunger that is 
relatively prolonged. 
Example Term synonyms: hyperphagia 

Systematized Nomenclature of Medicine -- 
Clinical Terms (SNOMED CT)[57] 
 
 
http://www.snomed.org/snomed-ct/why-
snomed-ct 
 

Description: Comprehensive clinical 
terminology including nutrition related clinical 
terminology. 
Example Term Name: Vitamin D overdose 
(disorder) 

Example Term ID: SCTID: 296953002 

Example Child classes:  
 Accidental vitamin D overdose (disorder) 
 Intentional vitamin D overdose (disorder) 
 Vitamin D overdose of undetermined intent 
(disorder) 

International Classifications of Disease (ICD)  
 
https://icd.who.int/en 
 

Description: The global standard for 
diagnostic health information including coding 
and billing terminology for nutrition 
diagnostics.  
Example Term: Wernicke’s encephalopathy 
Example ICD-10-CM Code E51.2 
Example Term Definition: Wernicke's 
encephalopathy (or Wernicke's disease) 
refers to the presence of neurological 
symptoms caused by biochemical lesions of 
the central nervous system after exhaustion 
of B-vitamin reserves, in particular thiamine 
(vitamin B1). The condition is part of a larger 



group of diseases related to thiamine 
insufficiency, including beriberi in all its forms, 
and Korsakoff syndrome. When Wernicke's 
encephalopathy occurs simultaneously with 
Korsakoff syndrome it is known as Wernicke–
Korsakoff syndrome.  
Example Specialty: Endocrinology 

Medical Subject Headings (MeSH)[72] 
 
https://www.nlm.nih.gov/mesh/meshhome.ht
ml 
 

Description: A vocabulary of biomedical and 
health-related information including nutrients 
and food components. 
Example Term Name: Niacin 
Example Term ID: D009525 
Example Term Definition: A water-soluble 
vitamin of the B complex occurring in various 
animal and plant tissues. It is required by the 
body for the formation of 
coenzymes NAD and NADP. It has 
PELLAGRA-curative, vasodilating, and 
antilipemic properties. 
Example Entry names:  
3-Pyridinecarboxylic Acid 
Niacin Aluminum Salt 
Niacin Ammonium Salt 
Niacin Calcium Salt 

 
Table 2. A listing of prominent nutri-informatics databases and resources 
 
Comparative Toxicogenomics Database[73] 
 
http://ctdbase.org/ 
 

Description: A publicly available dataset of 
environmental exposure impacts on human 
health including representation of food 
chemical and metabolite interactions and 
nutrition related disease, phenotype, and gene 
associations.   
Example Term Name: Folic Acid 
Example Term Definition: A member of the 
vitamin B family that stimulates the 
hematopoietic system. It is present in the liver 
and kidney and is found in mushrooms, 
spinach, yeast, green leaves, and grasses 
(POACEAE). Folic acid is used in the treatment 
and prevention of folate deficiencies and 
megaloblastic anemia. 
Example Top 3 Gene Interactions: SLC19A1, 
TNF, AGT 
Example Term Synonyms: B9, 
Vitamin | Folacin | Folate | Folic Acid, Calcium 
Salt (1:1) | Folic Acid, (D)-Isomer | Folic Acid, 
(DL)-Isomer | Folic Acid, Monopotassium 
Salt | Folic Acid, Monosodium Salt | Folic Acid, 
Potassium Salt | Folic Acid, Sodium 



Salt | Folvite | Pteroylglutamic Acid | Vitamin 
B9 | Vitamin M 

NutriGenomeDB[74] 
 
http://nutrigenomedb.org/ 

Description: A nutrigenomics exploratory and 
analytical platform including nutrigenomics 
gene expression data modules. 

Primary Features: 
Gene Expression Browser – Includes gene 
expression database search tools and 
expression heat map generation tool. 
 
Phenotype-Centered Analysis – Evaluates a list 
of differentially expressed genes and 
aggregates similar experiments based on gene 
expression profiles characterizing specific 
phenotypes.  

The Monarch Initiative[75] 
 
https://monarchinitiative.org/ 
 

Description: An integrative data and analytic 
platform connecting data across species 
including nutrition related phenotypes, 
genotypes, and diseases. 
Example Term Name: rickets (disease)  
Example Term ID: 
http://purl.obolibrary.org/obo/MONDO_0005520 
Example Term Definition: Bone softening and 
weakening usually caused by deficiency or 
impaired metabolism of vitamin D. Deficiency of 
calcium, magnesium, or phosphorus may also 
cause rickets. It predominantly affects children 
who suffer from severe malnutrition. It 
manifests with bone pain, fractures, muscle 
weakness, and skeletal deformities. 
Example Exact synonyms: vitamin D-
dependent rickets, rachitis, vitamin D 
hydroxylation-deficient rickets, rickets 
Example Related Synonyms: active rickets, 
vitamin-D deficiency rickets, hypovitaminosis D, 
nutritional rickets, vitamin D deficiency disease 
Example Related Phenotypes: short stature, 
tibial bowing, recurrent fractures 
Example Genes (causal):  PHEX, FGF23, 
SLC34A3 

USDA FoodData Central (FDC)  
 
https://fdc.nal.usda.gov/index.html 
 

Description: An integrated data system with 
nutrient profile data and links to related 
research including nutrient profiles for common 
foods and beverages. 
Example Term Name: Beans, black turtle, 
mature seeds, canned 
Example FDC ID: 175188 



Example Food Category: Legumes and 
Legume Products 
Available data includes: 
Macronutrient content 
Micronutrient content 
Average weight/volume  

USDA National Health and Nutrition 
Examination Survey (NHANES) and What 
We Eat in America (WWEIA)[29] data sets 
 
https://www.cdc.gov/nchs/nhanes/index.htm 
 

Description: Data sets of compiled health and 
nutrition status information for adults and 
children. 

NHANES available data: 
• Biological samples of serum, plasma, 

urine, and DNA 
• Demographic, Dietary, Examination, 

Laboratory, and Questionnaire health 
data 

 
WWEIA available data: 
24-hour dietary recalls (2) 

• Type and amount of food and beverage 
consumed 

• Time, location, and name of eating 
occasion 

• Water consumption type and source 
• Use of table salt 
• Special diets and usual daily intake 
• Calculated daily total intake of energy 

and 60+ nutrients/food components 
 

 
Nutri-informatics resources are largely focused on clinical nutrition, foods, and nutrients 

(Table 1). Terminological resources such as the Mondo Disease Ontology, the Human 
Phenotype Ontology (HPO), SNOMED-CT, and International Classification of Diseases (ICD) 
have nutrition related diseases and phenotypes. The Monarch Initiative and the Comparative 
Toxicogenomics Database (CTD) denote relationships between nutrients, disease, phenotypes, 
and genes. Because nutrition can impact diseases or phenotypes that do not have an 
exclusively nutrition-based etiology, it is imperative that such relationships are discovered and 
included in these resources. Gene pathways for metabolism are represented in GO and 
nutrient-gene expression analysis platforms such as NutriDB have been introduced. Also, initial 
modeling of nutrient exposures in the Environmental Conditions, Treatments, and Exposures 
Ontology (ECTO), dietary patterns and interventions in the Ontology for Nutritional Studies 
(ONS), and nutrient therapies in the Medical Action Ontology (MAxO) have been represented, 
alongside a few nutrition related behaviors in the Neuro Behavior Ontology (NBO). There is also 
a need for representation of public health nutrition investigations, and resources such as the 
Ontology for Nutritional Epidemiology (ONE)[61] are promising. Such knowledge representation 
is still emergent and will continue to grow in the years to come and require further nutrition 
representation.  

Foods and nutrients have strong representation in the Food Ontology (FoodOn) and US 
Department of Agriculture Food Data Central (USDA FDC), and food processing is included in 
FoodOn. Macro- and micronutrients are well represented in the Chemical Entities of Biological 
Interest (ChEBI), Medical Subject Headings (MeSH), and CTD. Food related biomarkers and 



metabolites that can be identified in biological samples are seen in ChEBI and the Food-
Biomarker Ontology (FOBI). However, the large multitude of foods and beverages available for 
consumption as well as the wide array of agricultural and processing techniques used with 
consumable products requires much more extensive representation. Furthermore, nutrition 
biomarkers are a developing field and these resources will require continual revision. 

Representation is still greatly lacking in areas such as nutrition sociology (e.g. food 
behaviors, beliefs, culture, norms, nutrition literacy), public health nutrition policy, and nutrition 
education. While nutrition and food representation in ontologies and databases will require 
substantial work from the ontology and data science and nutrition research communities to 
ensure adequate representation, there are still meaningful relationships represented in current 
resources. Figure 3 depicts meaningful relationships between food, agriculture, phenotypes, 
and disease that can currently be represented using biomedical ontologies. 
 

 
 
Figure 3. Representing nutrition using ontologies. Nutrition representation in current 
ontologies and databases is not yet sufficient to meet the needs of the nutri-informatics research 
community, yet some meaningful relationships can still be identified within the current 
landscape. 3A. Maple Syrup Urine Disease. This rare metabolic disease can be annotated 
with related phenotypes, genes, nutritional recommendations, and medical foods using 
interoperable biomedical ontology terms. 3B. Farm to Fork with a Tomato. The process of 
growing a tomato can also be annotated by its exposures and nutrient content. 

Patient

Maple Syrup Urine Disease
MONDO: 0009563

Elevated BCAA
HP: 0008344

Respiratory Insu!ciency
HP: 0002093

Muscular Hypotonia
HP:0001252

Dietary branched-chain 
amino acid intake avoidance 
MAXO:0010102

Low Branched Chain 
amino acid formula
FOODON: 00003450

Fertilizer exposure
ECTO:9000091

Agricultural Field
ENVO:00000114

Tomato Plant
FOODON:03411276

Tomato (whole,raw)
FOODOON: 03309927

Lycopene
CHEBI: 15948

Vitamin C
CHEBI: 21241

Potassium atom
CHEBI: 26216

Fertilizer
CHEBI: 33287
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Figure 3B



Opportunities for integrative nutri-informatics research 
 

As organizations such as the NIH establish priorities for investigating nutrition exposures 
and precision nutrition for human health[62], the field of nutrition is in a meaningful position to 
launch investigations and continue growing our understanding of clinical dietary solutions for 
individuals and populations via nutri-informatics. In order to continue the integration of nutrition 
data into existing knowledge graphs and ontologies, comprehensive, standardized 
representation of all categories of nutrition from basic science to public policy is needed. This 
requires progressive integration of the many essential categories of nutrition seen in Figure 1, 
including foods and nutrients, clinical disease management through nutrition as well as those 
currently underrepresented categories such as sociological impacts on nutrition. In order to 
achieve this representation, there are multiple hurdles and opportunities that need to be 
addressed by the biomedical ontology and nutrition research communities: 
 

1) Incomplete coverage of nutrition-related concepts in ontologies. Due to the 
widespread field of nutrition, representation for all subdisciplines of nutrition has yet to 
be achieved. Although efforts such as Food Ontology (FoodOn)[63] and Ontology of 
Nutritional Studies (ONS)[64] as well as others have made strides in representing foods 
and food components as well as nutrition intervention and epidemiological terminology, 
further areas such as nutrition sociology, nutrition policies, and nutrition education are 
still limited. 

2) Creation of new relationships and modeling of nutrition as a factor in disease and 
phenotype presentation, prevention, and management is needed. While existing 
knowledge bases such as The Monarch Initiative[65] may address nutrition concepts like 
disease states from nutrient deficiencies, the focus is on other biomedical fields such as 
genomics and the impact on disease and phenotypes. It is likely that nutrition-related 
diseases and nutrition impacts on disease are underrepresented currently. 

3) Limited compatibility across databases and knowledge resources containing 
nutrition related information due to a lack of community development standards. 
Community standards for ontology and knowledge base development are not 
established for many nutrition resources, limiting their compatibility with other nutrition- 
and biomedically-focused computable resources. Without a set of standards for data 
management and interaction between researchers across the community, nutrition data 
will not be fully integrable.   

4) Poor communication and accountability regarding the FAIR principles of scientific 
data management and stewardship amongst nutrition researchers, nutrition 
journals, and nutrition research funding agencies. Findability, Accessibility, 
Interoperability, and Reusability (FAIR) have been designated as the foundational 
principles to guide data production and publication to support data transparency and 
maximize data outcomes[66]. Due to the limited requirements or even recommendations 
for nutrition researchers to adhere to FAIR principles during their experimental process, 
scientific journals and research funding agencies limit the production and publication of 
optimal, computable data. This not only limits nutrition research findings, but also 
hampers knowledge gains in related biomedical fields. 

 
Given the lack of FAIR principles utilized and required for current nutrition research, and 

the need to integrate nutrition data and knowledge into existing knowledge bases, there is a 
need for standardized nutrition vocabulary, as well as best practices to encourage the curation 
of nutrition related phenotypes, nutrition exposures, nutrition sociology, and other nutrition 
subfields. This is especially true as investigations into environmental exposures, including 
nutrition, continue to be pursued in relation to the genome and gene expression[67]. 



 
A Call for Improved Nutrition Representation and Standards 
 

In order to further our understanding of how nutrition and food impacts health, human 
behavior, culture, and beyond, integrating nutrition terminology and relationships into ontologies 
and knowledge resources is essential. Increasing representation of nutrition in areas already 
being modeled in ontologies, such as foods, should be a focus, as well as areas yet to be 
explored in current resources. Areas including nutrition biomarkers, nutrition behavioral 
counseling, nutritional personal and cultural beliefs, and food processing can fall into this 
category.  

The resources in Tables 1 and 2 have started striving towards representing nutrition in 
some capacity, but due to the vast nature of the field of nutrition, this representation is still 
incomplete for many topics as they have yet to be developed. Furthermore, some nutrition 
resources are not developed with compatibility in mind, further limiting interpretation and 
alignment of terminology across resources. These challenges in nutrition representation and 
compatibility across resources will require substantial, consistent work from the nutrition and 
ontology communities. 
  Working towards this goal of nutrition representation, a working group including curators 
from MAxO, ECTO, FoodOn, ONS, FOBI, the US Department of Agriculture, and other 
representatives are meeting regularly to discuss nutrition in the current ontology landscape. 
Thus far, this group has focused on how to represent diet, how to model an organism’s 
biological capacity to consume certain foods, and the agricultural production related to foods.  
This working group functions via a GitHub page (https://github.com/FoodOntology/joint-food-
ontology-wg) and is open to individuals or groups interested in participating.  

Beyond working groups such as this, further steps towards nutrition representation in 
this landscape are needed from nutrition researchers, academic nutrition journals and 
publishers, and biomedical ontology developers and curators, which are described in Figure 4.  
 

 
 

Nutrition Journals

Establish and enforce community guidelines for data 
standardization, reuse, sharing, and repository storage 

Utilize and require persistent identifiers (PIDs) for all
data sets, publications, and scientific records 

Encourage usage of FAIR principles amongst peers, at 
institutions, with journal editors, and beyond 

Reuse interoperable nutrition and biomedical data to 
maximize power and inferences from research

Collaborate to improve nutrition representation and
language standardization in biomedical ontologies

Develop new nutrition ontologies to address current 
gaps in representation 

Figure 4. A Call to Action. 

Biomedical Ontologies Nutrition Researchers



Figure 4. A Call to Action. Nutri-informatics stakeholders such as nutrition researchers, 
biomedical ontology developers, and academic journal communities are needed to realize the 
connectivity and analyzability of nutrition data. Key tasks are described here, including actions 
to improve data interoperability, identifiability, and collaboration between communities. 
 

With greater understanding of the critical need for data standards in nutrition and the 
subsequent enforcement of those standards, nutrition researchers, journals, and ontology 
curators can maximize the research outcomes in nutri-informatics and related biomedical fields, 
supporting data interoperability and reuse in biomedical sciences. By representing nutrition 
semantics within biomedical ontologies, all currently represented biological fields can be 
correlated with nutrition and dietary exposures, including connections to diseases, phenotypes, 
and genes. Beyond the clinical realm, representation of cultural food, agronomical practices, 
personal beliefs regarding diet, public health nutrition policies, and the many other 
subdisciplines of nutrition all hold substantial potential for computable research in nutri-
informatics.  

With the utilization of biomedical ontologies and development of nutrition community 
standards for supporting FAIR principles, nutri-informatics research can progress to develop 
similar investigations to that of other fields. Nutrition data within ontologies may offer the ability 
to evaluate the impacts of dietary patterns, food combinations, pesticides and agricultural 
chemical exposures, cultural values, and individual behavioral impacts on human health. While 
these nutri-informatics investigations may not be achievable with the current nutrition ontology 
resources, further development in this field will undoubtedly offer novel understandings of how 
nutrition impacts human life.   
 
Conclusion 

Nutrition is a fundamental component to human and non-human animal life as an 
integral factor in the presentation of diseases, genes, or phenotypes, as well as an influencing 
factor on behavior and culture. While modern nutrition research may be a “younger” field of 
biology, it is far from insignificant and will require robust community standards in order to fully 
support FAIR practices, transparency, and maximal knowledge gains from research. By utilizing 
standardized language and biomedical ontologies, nutrition data could be integrated into the 
larger scheme of biomedical knowledge bases, supporting interoperability and reuse. This 
integration work is already beginning with the initiation of new nutrition focused ontologies and 
working groups. Through continued education and action from nutrition researchers and 
ontology developers to integrate nutrition research into biomedical ontologies, nutri-informatics 
investigations can grow to their full potential, supporting discovery from nutrition data beyond a 
single investigation and offering insights beyond the field of nutrition. 
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