Nonlinear analysis to quantify human movement variability from time-series data

Miguel Xochicale, PhD (@_mxochicale O@mxochicale)

October 28, 2020; 17h30m BST

♥@neuromatch #nmc3

School of Biomedical Engineering and Imaging Sciences King's College London

This work is licensed under a Creative Commons "Attribution 4.0 International" license. Get source of this slides and see further references from https://github.com/mxochicale/nmc3. 1. Why Movement Variability?

2. Nonlinear Methods

3. Experiment

4. Results

5. Conclusions

Why Movement Variability?

Theoretical challenges

- Modelling human movement (tasks, environments, agent, perception, action)
- Modelling human variability (complexity vs predictability)

Choosing the right tools

- Time-based domain,
- Frequency-based domain
- Nonlinear dynamics
- ?

Technical challenges

- non-stationarity,
- non-linearity,
- data length,
- sensor source,
- noise,
- ?

• ?

Modeling Human Movement

(Bernstein 1967 in The co-ordination and regulation of movements; Newell and Vaillancourt 2001 in Hum Mov Sci; Davids et al. 2003 in Sport Medicine; Warren 2006 in Psychological Review) 3

Modelling Movement Variability

(Stergiou et al. 2006 in Neurologic Physical Therapy; Stergiou and Decker 2011 in Human Movement Science; Tononi et al. 1998 in Trends in Cognitive Sciences) 4

Nonlinear Methods

Experiment

Human-Humanoid Imitation Activities

20 participants with mean and standard deviation (SD) age of mean=19.8 (SD=1.39) years, being four females and sixteen males.

(A/C) Front-to-Front Human-Humanoid Imitation Activities of Horizontal/Vertical Movements, (B/D) NAO, humanoid robot, performing Horizontal/Vertical arm movements.

Results

From Raw to Smoothed Time Series

Time-series of horizontal movements for (A) normalised, (B) sgolay(p=5, n=25), and (C) sgolay(p=5, n=159).

From Raw to Smoothed Time Series

Time-series of vertical movements for (A) normalised, (B) sgolay(p=5,n=25), and (C) sgolay(p=5,n=159).

Minimum Embedding Parameters

(A) Minimum Embedding Dimension (B) First Minimum AMI

Reconstructed State Spaces

RSS for participant 01 computed with (m = 6, $\tau = 8$) for different activities, signals and source of time-series data.

Recurrence Plots

RP for participant 01 computed with (m=6, au=8, au=1) for different activities, signals and source of time-series data.

11/19

Recurrence Quantification Analysis

Box values of RQA computed with ($m=7, \tau=5, \epsilon=1$). These values are for 20 participants.

RQA ENTR for ϵ thresholds & smoothness

RQA ENTR values are for p03, sensor HS01, of a window size of 10-secs (500 samples).

RQA ENTR for sensors and activities

RQA ENTR values are for p03, sg0 and window size of 10-secs (500 samples).

Window size lengths

Participants

Participants differences of 3D surface plots of RQA.

Conclusions

Conclusions and future work

Take away messages

- Nonlinear analysis tools can quantify different data time-series.
- Shannon entropy with 3D plot surfaces of RQA appear to be robust for real-word data (i.e. different time series structures, window length size and levels of smoothness).
- Therefore, Shannon entropy would be a potential good tool to quantify complexity of movement.

Investigate

- other methodologies for state space reconstruction,
- \cdot the robustness of Entropy measurements with RQA, and
- variability in perception of velocity.

Applications of Nonlinear Dynamics

Quantification of skill learning

- * Surgical Skills Assessment
- * Robot-Assisted Surgery

Fetal behavioral development

- * General movements
- * Arm/Legs Movs
- * Hand/Face Contacts

Nonlinear Biomedical Signal Processing

- * EEG time series
- * Heart rate variability
- * Eye Movements

(Zia et al., 2017 in Computer Assisted Radiology and Surgery; Mori 2012 in Development and Learning and Epigenetic Robotics; Mitsukura et al., 2017 in Electroencephalography; Marwan et al. 2019 in http://recurrence-plot.tk/) 18

Xochicale Miguel

Nonlinear methods to quantify Movement Variability in Human-Humanoid Interaction Activities

Submission in progress to Scientific Reports https://arxiv.org/abs/1810.09249

Thanks!!! Questions?

Nonlinear analysis to quantify human movement variability from time-series data https://github.com/mxochicale/nmc3

Miguel Xochicale, PhD (@_mxochicale)

School of Biomedical Engineering and Imaging Sciences King's College London

This work is licensed under a Creative Commons "Attribution 4.0 International" license. Get source of this slides and see further references from https://github.com/mxochicale/nmc3.