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Motivation: beyond graphs

In [1] CNNs have been extended to convolutional neural networks on graphs
(GNNs).

CNN GNN
Input: Pixels on a grid Input: Signal on graph’s nodes

Convolutional kernels Graph Laplacian

Graphs are intrinsically limited to modeling pairwise relationships. We extend
GNNs from graphs to simplicial complexes, mathematical objects that can encode
k-fold interactions.

Basic building blocks of a space: simplices

0-simplex 1-simplex 2-simplex 3-simplex

We construct simplicial complexes by gluing together simplices of various dimen-
sions. Graphs are simplicial complexes constructed only with 0- and 1-simplices.

From collaborations to simplicial complexes

Simplicial complexes allow us to better represent collaborative networks where the
interaction between 𝑘 individuals can be described by a (𝑘 − 1)-simplex.

From collaborations to simplices

𝑘 individuals collaborating (𝑘 − 1)-simplex

Collaborative Simplicial Complex

Collaborative network Collaboration values
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Missing collaboration values
A common problem in machine learning is assigning values to missing collabo-
rations in a network. We frame this problem as simplicial-based semi-supervised
learning, where values are predicted using a convolutional neural network whose
filters smooth out the signal over the simplices.

Simplicial Neural Networks

Graph Laplacian
Given a graph 𝐺 with vertices {𝑣1, … , 𝑣𝑛} its Laplacian ℒ0 is the matrix whose
elements are given by

ℒ 𝑖,𝑗
0 =

⎧{{{
⎨{{{⎩

deg(𝑣𝑖) if 𝑖 = 𝑗
−1 if 𝑖 ≠ 𝑗 and 𝑣𝑖 is adjacent to 𝑣𝑗

0 otherwise

Intuitively, the Laplacian smoothly diffuses values on the vertices to their neighbors.

Laplacians for simplicial complexes
The graph Laplacian can be extended to Laplacians,ℒ𝑘, for simplices of any dimen-
sion 𝑘 [2]. The 𝑘-Laplacian can be seen as a function propagating the values, 𝑦𝑘, on
the 𝑘-simplices.

ℒ0: Graph Laplacian
𝑦0 = ℒ0𝑥0

ℒ1: 1-Laplacian
𝑦1 = ℒ1𝑥1

ℒ2: 2-Laplacian
𝑦2 = ℒ2𝑥2

Simplicial neural networks
In simplicial neural networks the convolutional filters are low-degree polynomials
in the Laplacian with learnable coefficients. They can be interpreted as functions
propagating the collaboration values at a distance not greater than their degree.

As in the graph case, one of the advantages of using such convolutional filters is
that the 𝑑-th power of the 𝑘-Laplacian is 𝑑-localizing. Therefore, the entire filtering
operation costs 𝒪(𝑑|Ε|) ≪ 𝒪(𝑛2) operations.

Learning the values of the collaborations

We consider the problem of assigning values to collaborations, where values are
available for only a small subset of the simplices.

Data
From the the Semantic Scholar Dataset we build a collaborative complex, based on
co-authorships, with 352 0-simplices, 1474 1-simplices and 3285 2-simplices. The
collaboration values on the simplices are given by the total number of citations of
the collaboration it represents.

First Results

Conclusions and future work
Simplicial neural networks (SNN) are a promising tool for learning values on 𝑘-fold
interactions. In our future work we will use SNN on vector field data and compare
our method with other existing techniques.
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