SIMPLICIAL NEURAL NETWORKS

Predicting Collaborations with Simplicial Complexes Stefania Ebli, Michaël Defferrard, Gard Spreemann

Laboratory for Topology and Neuroscience (Prof. Kathryn Hess)

Motivation: beyond graphs

In [1] CNNs have been extended to convolutional neural networks on graphs (GNNs).

Graphs are intrinsically limited to modeling pairwise relationships. We extend GNNs from graphs to **simplicial complexes**, mathematical objects that can encode k-fold interactions.

Basic building blocks of a space: simplices

We construct simplicial complexes by gluing together simplices of various dimensions. Graphs are simplicial complexes constructed only with 0- and 1-simplices.

From collaborations to simplicial complexes

Simplicial complexes allow us to better represent collaborative networks where the interaction between k individuals can be described by a (k-1)-simplex.

From collaborations to simplices

Collaborative Simplicial Complex

Missing collaboration values

A common problem in machine learning is assigning values to missing collaborations in a network. We frame this problem as simplicial-based semi-supervised learning, where values are predicted using a convolutional neural network whose filters smooth out the signal over the simplices.

Simplicial Neural Networks

Graph Laplacian

Given a graph G with vertices $\{v_1,\ldots,v_n\}$ its Laplacian \mathcal{L}_0 is the matrix whose elements are given by

$$\mathcal{L}_0^{i,j} = \begin{cases} \deg(v_i) & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } v_i \text{ is adjacent to } v_j \\ 0 & \text{otherwise} \end{cases}$$
e Laplacian smoothly diffuses values on the vertices

Intuitively, the Laplacian smoothly diffuses values on the vertices to their neighbors.

Laplacians for simplicial complexes

The graph Laplacian can be extended to Laplacians, \mathcal{L}_k , for simplices of any dimension k [2]. The k-Laplacian can be seen as a function propagating the values, y_k , on the k-simplices.

Simplicial neural networks

In simplicial neural networks the convolutional filters are low-degree polynomials in the Laplacian with learnable coefficients. They can be interpreted as functions propagating the collaboration values at a distance not greater than their degree.

As in the graph case, one of the advantages of using such convolutional filters is that the d-th power of the k-Laplacian is d-localizing. Therefore, the entire filtering operation costs $\mathcal{O}(d|E|) \ll \mathcal{O}(n^2)$ operations.

Learning the values of the collaborations

We consider the problem of assigning values to collaborations, where values are available for only a small subset of the simplices.

Data

From the Semantic Scholar Dataset we build a collaborative complex, based on co-authorships, with 352 0-simplices, 1474 1-simplices and 3285 2-simplices. The collaboration values on the simplices are given by the total number of citations of the collaboration it represents.

First Results

Conclusions and future work

Simplicial neural networks (SNN) are a promising tool for learning values on kfold interactions. In our future work we will use SNN on vector field data and
compare our method with other existing techniques.

References

- [1] M. Defferrard, X. Bresson, and P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, Adv. in NeurIPS, 2016.
- [2] D. Horak and J. Jost, *Spectra of combinatorial Laplace operators on simplicial complexes*, Adv. in Math. 2013.