

RESEARCH INFRASTRUCTURE FOR SCIENCE AND INNOVATION POLICY STUDIES

MODELLING STRATEGIES AND THEIR IMPLICATIONS

Lugano, 19th of October, 2020

Benedetto Lepori

This project is funded by the European Union under Horizon2020 Research and Innovation Programme Grant Agreement n° 824091

This presentation

- An example of the different results depending on the modelling strategies adopted for multilevel settings
 - Comparing simple regressions, dummy variables and multilevel models
- Generated data on a realistic setting in research policy
 - Understanding researchers' productivity
 - Allows comparing the true solution with model results

Researcher's productivity **RISIS**

- Determinants of the productivity of individuals
 - As a function of personal characteristics, i.e. past grant history and past mobility
- Typically individuals are nested within a university
 - You might assume that productivity also depends on some characteristics of the university
 - University reputation and funding
- How can we deal with these dependencies?

Dataset

- 425 individuals nested within 20 universities
- Individual-level variables
 - Past funding history (X_{ij} mean 10, stdvev 10)
 - Mobility (Y_{ij} 0 /1, mean 0.23)
 - Error term (ϵ_{ij} mean 0, stdev 2)
- University-level variables
 - Funding levels (Z_j mean 5, stdev 1)
 - Reputation (W_j mean 10, stdev 10)
 - Error term (µ_jmean 0, stdev 1)
- Productivity as predicted by these variables through a linear expression (the TRUE solution), including the error term

- Create the dataset
- Generate variables and error terms with a normal distribution generator

https://www.socscistatistics.com/utilities/normaldistribution/def ault.aspx

- Attribute variables to cases
 - With some 'sorting' to generate multilevel effects
- Compute productivity as: $P_{ij} = 5 + 0.3 * X_{ij} + 0.5 * Y_{ij} + 0.3 * Z_j + 0.3 * W_j + \mu_j + \epsilon_{ij}$
- All this can be done in excel
 - Importing in Stata for the analysis

Analyzing the dataset

- It is highly unbalanced
 - N per university ranges between 5 and 50
 - More than half of the sample in just 5 universities
- 95% of the variance at the university level
- Rather large error terms
 - Both at the individual and at the university level
- Strong sorting
 - Mobile individuals concentrated in selected universities
- A typical case for the use of multilevel models

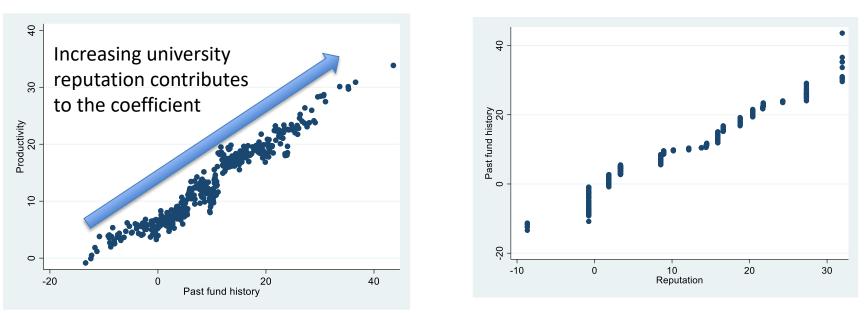
RISIS

Anaylzing sample

Universit Y	N(Funding~l)	mean(Fund~l)	mean(Past~y)	mean(Mobi~y)	mean(Repu~n)
1	5	5.71	21.942	0	21.71
2	5	6.19	10.454	1	13.79
3	5	3.98	23.794	0	24.28
4	5	5.27	11.512	1	14.47
5	5	3.45	-12.208	1	-8.67
6	10	6.68	9.717	1	10.17
7	10	7.7	33.648	0	31.96
8	10	4.94	22.977	0	21.77
9	10	4.42	10.816	1	14.39
10	10	5.58	10.179	1	12.16
11	20	5.56	9.1105	1	8.92
12	20	6.16	18.1765	.2	18.78
13	20	5.17	16.0595	0	16.6
14	20	4.67	26.3425	0	27.34
15	20	4.84	20.379	0	20.41
16	50	6.03	1.0958	0	1.85
17	50	5.41	7.1832	0	8.54
18	50	5.55	-4.7188	.66000003	75
19	50	4.8	4.1574	0	3.35
20	50	6.4	13.2786	0	15.9

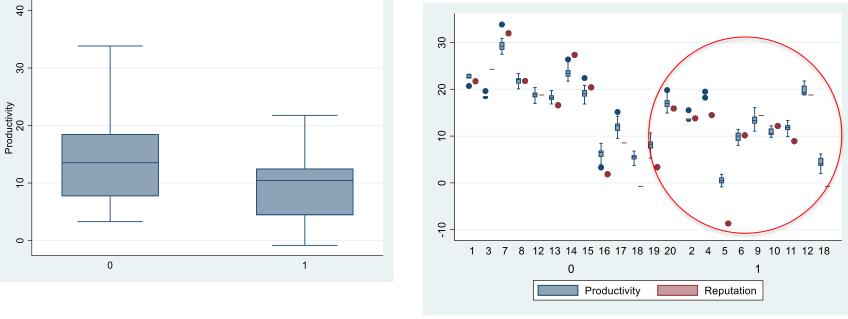
Analyzing variance

anova Productivity University


. anova Productivity University

	Number of obs = Root MSE =	425 1.11777	-	R-squared = Adj R-squared =			
Source	Partial SS	df	MS	F	Prob>F		
Model	17332.746	19	912.24981	730.14	0.0000		
University	17332.746	19	912.24981	730.14	0.0000		
Residual	506.01266	405	1.249414				
Total	17838.759	424	42.072545				

Linear fit



- Coef. 0.65, R2=0.93. Two times the 'real' coefficient!!
- Due to the fact that past funding history is systematically correlated with the reputation of the host university
- You might think there is a *direct* and an *indirect* effect of past grant history, all depends on what you want to look at.

Productivity Reputation Past mobility history has a negative effect on productivity!

- This is generated by the structure of data (ecological fallacy)
- Simply the mobile people are concentrated in the less reputed universities generating the effect

Mobility

Linear regression

. regress Productivity i.Mobility Pastfundhistory

Source	SS	df	2 8282.41107 422 3.01880785		Number of obs F(2, 422) Prob > F R-squared Adj R-squared Root MSE		425 2743.60	- 1	
Model Residual Total	16564.82 1273.936 17838.7	91 422					0.9286 0.9282 1.7375	True coeffi cients	
Productivit	су С	oef. Std.	Err.	t P> t	[95%	Conf.	Interval]		
1.Mobilit Pastfundhistor _cor	.652		261 70	.59 0.55 .43 0.00 .40 0.00	.634	7382 0895 0435	.5323038 .6704966 6.975917	0.5 0.3	

Despite high R2 results are clearly way out from the true coefficient. Disregarding contextual information leads to problematic results when individual observations are not sorted randomly into groups.

Fixed effects model

- We introduce a dummy for each university
 - To take out the university effects

$$P_{ij} = \alpha + \beta * X_{ij} + \sum Z_m * D_m + \epsilon_{ij}$$

Where $D_m = 1$ if j=m, 0 otherwise

- Puts all individuals on the same 'footing'
- Similar to FE in panel regressions
 - Useful if we focus only on the effect of individual characteristics irrespectively of where individuals are located
 - Or if we don't have information on university characteristics

Fixed effects

. xtreg Productivity Mobility Pastfundhistory, fe

Fixed-effects (wi Group variable: U	-	sion		Number of a		425 20			
R-sq:	0004		C	Obs per group:					
within $= 0$.					min =	5	coeffi		
between = 0 overall = 0.					avg = max =	21.3 50	cients		
			E	(2,403)	=	57.64			
<pre>corr(u_i, Xb) =</pre>	0.8595			Prob > F	=	0.0000			
Productivity	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]			
Mobility	.6549561	.2883325	2.27	0.024	.0881324	1.22178	0.5		
Pastfundhistory	.3959866	.037897	10.45	0.000	.3214862	.4704871	0.3		
_ ^{cons}	8.984082	.3946009	22.77	0.000	8.208349	9.759816			
sigma u	3.3438491								
sigma_e	.98808599								
rho	.91969545	(fraction	of varia	nce due to	o u_i)				
E toot that all y									

F test that all $u_i=0$: F(19, 403) = 47.47

Prob > F = 0.0000

Results are more precise, but we have no idea of university effects and how large they are.

Problems

- When universities explain most of the differences between individuals
 - Our results are simply uninformative and might be also not very robust as we eliminate most of the variance
 - Look to the intra-class correlation coefficient!
- When university-level effects are of substantive interest
 - For example for decisions on concentrating resources in few universities
- When there are *interactions* between individual-level and university level effects
 - For example past mobility might be less determinant for productivity in top-quality universities

University-level covariates RISIS

 We introduce university covariates to model university effects

$$P_{ij} = \alpha + \beta * X_{ij} + \gamma * Z_j + \epsilon_{ij}$$

Where Z_j is a vector of characteristics of the university to which the individual belongs to.

 Allows modelling directly university effects based on known characteristics

Linear regression

. regress Productivity Fundinglevel Reputation i. Mobility Pastfundhistory

Source		SS	df		MS	Number o: F(4, 420)		=	425 1970.50	
Model Residual		.6936.2912 002.467823	4420	2.1	4.07281 4873291	Prob > F R-squared Adj R-squ	d	_ _ _	0 0000 0 9494 0.9489	True coeffi
Total		17838.759	424	42.	0725449	Root MSE		=	1.4659	cients
Productivit	су	Coef.	Std. E	err.	t	P> t	[95%	Conf.	Interval]	
Fundingleve	el	.2550451	.09922	281	2.57	0.011	.059	9996	.4500907	0.3
Reputatio	on	.4948967	.03980)51	12.43	0.000	.416	6547	.5731388	0.3
1.Mobilit	су	659835	.18649	66	-3.54	0.000	-1.02	6418	293252	0.5
Pastfundhistor	ry	.1907594	.03766	537	5.06	0.000	.116	7266	.2647923	0.3
	ns	4.558756	.54990	800	8.29	0.000	3.47	7856	5.639657	

Despite high R2 results are incorrect and, for mobility, even the sign of the mobility coefficient is wrong (but significant!).

The model does not account correctly for the fact that observations are nested and errors are correlated. 16 27 October 2020

Multilevel model

• We replace the university dummies (uninformative)

$$P_{ij} = \alpha + \beta * X_{ij} + \sum Z_m * D_m + \epsilon_{ij}$$

 With a fixed part + a random university-level intercept

$$P_{ij} = \alpha + \beta * X_{ij} + \gamma * Z_j + \mu_j + \epsilon_{ij}$$

So we decompose the university effect into an observable part and an error.

- The simplest possible multilevel model
 - See later in this course for more complex models

Multilevel-model

. xtreg Productivity Mobility Pastfundhistory Fundinglevel Reputation , re

Random-effects GI Group variable: U	-			umber of umber of		425 20		
R-sq:			0	Obs per group:				
within $= 0$.	2223				min =	5		
between $= 0$.	9358				avg =	21.3	True	
overall = 0 .	9428				max =	50	True	
							coeffic	
			W	ald chi2(4) =	363.36	ents	
corr(u i, X) =	0 (assumed)		P	rob > chi	2 =	0.0000		
Productivity	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]		
Mobility	.5653821	.2790793	2.03	0.043	.0183967	1.112368	0.3	
Pastfundhistory	.3895176	.037611	10.36	0.000	.3158013	.4632339	0.3	
Fundinglevel	.2155802	.4712858	0.46	0.647	7081229	1.139283	0.5	
Reputation	.2822516	.059943	4.71	0.000	.1647655	.3997377	0.3	
_cons	4.722307	2.500941	1.89	0.059	1794477	9.624062		
sigma u	1.8872415							
sigma e	.98808599							
rho	.78485784	(fraction	of varia	nce due t	o u i)		Universidella	

What you get more

- The model provides reasonable estimates of the individual-level effects
 - Similar to the FE model
 - But at the same time allows also estimating the effects of the university-level variables
- However: more complex models, not necessarily better results
 - Estimates are more complex and may become very time-consuming
 - Linear regression as the simplest estimator

Discussion

- Multi-level/nested structures are highly frequent in research policy / higher education studies
 - Individuals within universities
 - Universities within countries
 - Individuals within universities within countries
- Two basic ways to deal with them
 - Dummy variables (fe): when the interest is only at the micro-level and interactions do not matter
 - Multi-level models: when the interest is at both levels and there are lots of interactions
- The best approach depends
 - On your substantive interest
 - On the structure of the data

27 October 2020

RESEARCH INFRASTRUCTURE FOR SCIENCE AND INNOVATION POLICY STUDIES

THANK YOU !

