
Reactive Sorting Networks (Supplementary Material)
Bjarno Oeyen

bjarno.oeyen@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

Sam Van den Vonder
sam.van.den.vonder@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

Wolfgang De Meuter
wolfgang.de.meuter@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

1 Introduction
The following two pages serve as supplementary material
for the paper titled “Reactive Sorting Networks” [3].

A Bitonic Sorting Network in REScala
Listing 11 contains an implementation of a REScala [4] pro-
gram that constructs bitonic sorting networks. Both sequences
of signals (with type Seq[Signal[T]]) and arrays of signals
(with type Array[Signal[T]]) are used, as some kinds of
rewiring mechanisms are easier to express with (immutable)
lists (e.g., splitting a list in two halves) and others with (mut-
able) arrays (e.g., adding new comparators to an existing
network).
1 type CMP[T] = (Signal[T], Signal[T]) =>
2 (Signal[T], Signal[T])

3
4 def flip[T](cmp: CMP[T]): CMP[T] =
5 (line1: Signal[T], line2: Signal[T]) =>
6 cmp(line1 , line2).swap

7
8 def bitonic[T](arr: Seq[Signal[T]],

9 cmp: CMP[T]): Seq[Signal[T]] = {

10 arr match {

11 case List(a, b) =>
12 val (out1 , out2) = cmp(a, b)

13 List(out1 , out2)

14 case _ =>
15 val n = arr.length

16 val bottom = bitonic(arr.take(n / 2), flip(cmp))

17 val top = bitonic(arr.drop(n / 2), cmp)

18 merge(bottom ++ top , cmp)

19 }

20 }

21
22 def merge[T](arr: Seq[Signal[T]],

23 cmp: CMP[T]): Seq[Signal[T]] = {

24 val woven = weave(arr , cmp)

25 if (woven.length == 2) {

26 woven

27 } else {

28 val (a, b) = woven.splitAt(woven.length / 2)

29 merge(a, cmp) ++ merge(b, cmp)

30 }

31 }

32
33 def weave[T](arr: Seq[Signal[T]],

34 cmp: CMP[T]): Seq[Signal[T]] = {

35 val n = arr.length

36 val total: Array[Signal[T]] = arr.toArray

37 for (i <- 0 until n / 2) {

38 val (newA , newB) = cmp(total(i), total(n / 2 + i))

39 total(i) = newA; total(n / 2 + i) = newB

40 }

41 total.toSeq

42 }

Listing 11. A REScala implementation of Bitonic Sort.

B Insertion Sorting Network

Insertion sorting network of size 6

Insertion sorting network of size 5

Figure 5. Insertion sorting network of size 6. Although the
network is constructed differently, the sorting network itself
is equivalent to a bubble sorting network of the same size.
This property holds for all sizes.

1 (defr (insert-one n cmp)

2 (if (= n 2)

3 cmp

4 (let
5 (def p (parallel (insert-one (- n 1) cmp) cmp))

6 (snake-on p n (- n 1)))))

7
8 (defr (insertion n cmp)

9 (def stack (insert-one n cmp))

10 (if (= n 2)

11 stack

12 (let
13 (def small-network (insertion (- n 1) cmp))

14 (ror (parallel small-network identity)

15 stack))))

Listing 12. Implementation of insertion: which generates
an insertion sorting network reactor of a given size.

Listing 12 contains an implementation of an insertion
sorting network [2, Section 5.3.4] written in Haai [3]. The
sorting networks generated by insertion are identical, at
least structurally with respect to the positions of the com-
parators in the network, to those generated by bubble in
Listing 7 of the main paper, as shown in Figure 5.

C Batcher’s Odd-Even Mergesort
1 (defr (batcher n cmp)

2 (if (= n 2)

3 cmp

4 (let
5 (def batcher-half (batcher (/ n 2) cmp))

6 (ror (parallel batcher-half batcher-half)

7 (merge n cmp)))))

8

1



9 (defr (merge n cmp)

10 (ror (weave n cmp)

11 (merge2 1 (/ n 2) n cmp)))

12
13 (defr (merge2 i j n cmp)

14 (def k (/ (- n (* i j)) 2))

15 (def identities (parallel-n identity k))

16 (def parallel-weaves (parallel-n (weave j cmp) i))

17 (def r (parallel identities

18 (parallel parallel-weaves

19 identities)))

20 (if (= k 1)

21 r

22 (ror r (merge2 (+ (* 2 i) 1) (/ j 2) n cmp))))

23
24 (defr (weave n cmp)

25 (defr (loop r i)

26 (if (> i k)

27 r

28 (loop (post-weave r cmp i (+ i k)) (+ i 1))))

29 (def k (/ n 2))

30 (loop (parallel-n identity n) 1))

Listing 13. Implementation of batcher, which constructs a
Batcher’s odd-even sorting network of a given size.

Listing 13 contains an implementation of a Haai program
that generates sorting networks inspired by Batcher’s Odd-
Even Mergesort [1]. Just like bitonic sorting networks, each
(sub)network of size 𝑛 contains two recursively-generated
subnetworks (of size 𝑛/2) that each sort one half of the in-
puts of the larger network. However, unlike bitonic sorting
networks, the sorting order is not reversed by either of these
smaller sorting networks. As a consequence, a different mer-
ging strategy is used for this type of sorting networks.

Also note that the definition of weave differs from the one
used in the implementation of a bitonic sorter from the main
paper, where the do notation was used instead of a recursive
deployment of loop. Although the definition is different,
both reactors produce, given the same inputs, equivalent
reactors.

References
[1] Kenneth E. Batcher. 1968. Sorting Networks and Their Applications.

In American Federation of Information Processing Societies: AFIPS Con-
ference Proceedings: 1968 Spring Joint Computer Conference, Atlantic
City, NJ, USA, 30 April - 2 May 1968 (AFIPS Conference Proceedings,
Vol. 32). Thomson Book Company, Washington D.C., 307–314. https:
//doi.org/10.1145/1468075.1468121

[2] Donald E. Knuth. 1998. The Art of Computer Programming, Volume III:
Sorting and Searching, 2nd Edition. Addison-Wesley, Reading, MA, USA.

[3] Bjarno Oeyen, Sam Van den Vonder, and Wolfgang De Meuter. 2020.
Reactive Sorting Networks. In Proceedings of the 7th ACM SIGPLAN
International Workshop on Reactive and Event-Based Languages and
Systems, REBLS@SPLASH 2020 (Virtual, USA) (REBLS@SPLASH 2020).
ACM, New York, NY, USA. https://doi.org/10.1145/3427763.3428316

[4] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala:
Bridging between Object-Oriented and Functional Style in Reactive
Applications. In Proceedings of the 13th International Conference on Mod-
ularity (Lugano, Switzerland, April 22-26) (MODULARITY ’14), Walter
Binder, Erik Ernst, Achille Peternier, and Robert Hirschfeld (Eds.). ACM,
New York, NY, USA, 25–36. https://doi.org/10.1145/2577080.2577083

2

https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/3427763.3428316
https://doi.org/10.1145/2577080.2577083

	1 Introduction
	A Bitonic Sorting Network in REScala
	B Insertion Sorting Network
	C Batcher's Odd-Even Mergesort
	References

