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An analytical approach 
to determine the optimal duration 
of continuous glucose monitoring 
data required to reliably estimate 
time in hypoglycemia
Nunzio Camerlingo1, Martina Vettoretti1, Andrea Facchinetti1, Giovanni Sparacino1, 
Julia K. Mader2, Pratik Choudhary3 & Simone Del Favero1*

Diabetes is a chronic metabolic disease that causes blood glucose (BG) concentration to make 
dangerous excursions outside its physiological range. Measuring the fraction of time spent by BG 
outside this range, and, specifically, the time-below-range (TBR), is a clinically common way to 
quantify the effectiveness of therapies. TBR is estimated from data recorded by continuous glucose 
monitoring (CGM) sensors, but the duration of CGM recording guaranteeing a reliable indicator is 
under debate in the literature. Here we framed the problem as random variable estimation problem 
and studied the convergence of the estimator, deriving a formula that links the TBR estimation 
error variance with the CGM recording length. Validation is performed on CGM data of 148 subjects 
with type-1-diabetes. First, we show the ability of the formula to predict the uncertainty of the 
TBR estimate in a single patient, using patient-specific parameters; then, we prove its applicability 
on population data, without the need of parameters individualization. The approach can be 
straightforwardly extended to other similar metrics, such as time-in-range and time-above-range, 
widely adopted by clinicians. This strengthens its potential utility in diabetes research, e.g., in the 
design of those clinical trials where minimal CGM monitoring duration is crucial in cost-effectiveness 
terms.

Diabetes is a chronic metabolic disease, affecting around 450 million people worldwide1, caused either by the 
autoimmune destruction of insulin secreting cell (Type 1 diabetes), or by malfunction in insulin secretion or 
action (Type 2 diabetes). Consequently, people with diabetes are subjected to undesirable excursions of blood 
glucose (BG) concentration outside the normal range, both in hyperglycemia ( BG > 180 mg/dL) and hypoglyce-
mia ( BG < 70 mg/dL). In order to take proper countermeasures, such as exogenous insulin injections to contrast 
hyperglycemia, or fast-acting carbohydrates ingestion to balance hypoglycemia, individuals with diabetes need 
to frequently monitor BG by a portable device.

The most modern approach to BG monitoring relies on Continuous Glucose Monitoring (CGM) sensors, 
which are noninvasive, or minimally-invasive, devices able to produce glucose level readings almost continuously 
(e.g., every 5 min) for several consecutive days/weeks2,3. According to T1D Exchange, a research organization 
dedicated to improving care of people with Type 1 diabetes, data from 2016 to 2018 shows that 30% of individu-
als with Type 1 diabetes use a CGM4, and the number of users is expected to increase, especially when cheaper 
sensors will be available on the market (currently, in the US, the cheapest device costs approximately US$40 
per week)5. In numerous recent studies6–11, CGM was seen clinically more effective than the traditional sparse 
monitoring made by fingerprick instruments. In research, CGM is now considered the state of the art system 
to gather data for evaluating the quality of diabetes therapies in clinical trials12–14. In particular, the recent con-
sensus panel of Battelino et al.14 identified several CGM-based metrics which can be used to assess the efficacy 
of clinical interventions. Among them, given the fact that (the fear of) hypoglycemia is considered the major 
barrier in preventing diabetes complications15,16, the fraction of CGM readings below target glucose range (TBR):
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where CGMhypo(k) = 1 if CGM(k) < 70 mg/dL, and it is 0 otherwise, is particularly important.
The number of data (N) considered in Eq. (1), related to the number of monitoring days, is critical. Scientists, 

clinicians and diabetes practitioners are well aware that evaluating TBR based on data collected in a too short 
monitoring period, i.e., N too small, might drive to conclusions flawed by physiological fluctuations (including 
illness and menstrual cycle) and lifestyle variability (travels, vacations, etc.). On the other hand, unnecessarily 
large values of N would result in an increase of experimental costs not justified by real benefits. This poses two 
questions which are the object of the present paper. The first question is: how precise is an estimate of TBR based 
on CGM data collected during a given temporal interval? The second one is: for how long should a patient be 
monitored to obtain a sufficiently reliable estimate of TBR?

Several published studies approached these two questions by simulating a retrospective correlation 
analysis17–19. For example, in Xing et al.17, the correlation coefficient between TBR computed over the data pre-
viously collected in a 3-month trial and the same metric computed over several shorter windows of increasing 
duration is calculated. Then, the minimal duration granting a correlation coefficient greater than a fixed threshold 
is selected. Based on the results obtained therein, the consensus of Battelino et al.14 recommended that 14 days 
of CGM monitoring are sufficient to obtain a clinically reliable estimate of TBR.

However, evaluations of this kind are only empiric and an analytical approach to the problem would be desir-
able. More important, it is easy to verify that the empirical method proposed in Ref.17 yields different results 
based on the duration of the reference dataset20.

In the present work, we present an analytical approach to determine the minimum duration that CGM record-
ings must have in order to produce TBR values that represent reliable estimates of exposure to hypoglycemia. 
The approach is based on studying the variance of the estimation error of TBR, resulting in a formula which 
allows determining the uncertainty of the TBR estimate. The formula can be extended in a straightforward 
fashion to other conceptually similar metrics, such as time-in-range and time-above-range, also widely adopted 
in diabetes research.

The paper is organized as follows: first we introduce the problem formulation and show the main result 
(Theorem 1), then we validate our findings on outpatient data. After presenting a second result (Theorem 2), 
some conclusions are drawn, with examples of possible applications. Finally we explain the methods that led 
to the results. Further information on methods and dataset can be found in the Supplementary Information.

Results
Problem formulation and analytical result.  Glucose concentration can be modelled as a continu-
ous random variable, that assumes values in the range [0,+∞] mg/dL. CGM measurements are then mod-
elled as a random process gk , where g1, g2, . . . , gk , . . . , gN are non-independent realizations of the process col-
lected at time t = kTs , k = 1, . . . ,N , where Ts is the CGM sampling period. We are interested in estimating 
ph = P[gk < 70mg/dL].

Let us introduce the following random process made of binary random variables:

that models samples in hypoglycemia, where Ih is the indicator function of hypoglycemia. Since gk , gℓ are not 
independent, also hk , hℓ are not independent.

By construction, hk ≈ B(ph) is a Bernoulli random variable of parameter ph , that denote the probability of 
hypoglycemia. Mean and variance of hk are:

Let us assume an autoregressive structure of order 1 for hk (this hypothesis will be validated in this work). This 
means that two samples k, ℓ , with k ≤ ℓ , have the following autocovariance function:

In this framework, the TBR usually computed in clinical practice and defined in Eq. (1), can be seen as an esti-
mator of ph:

It is easy to see that the estimator t(n) has the following proprieties: 

1.	 Unbiased: E[t(n)] − ph = 0,∀n.
2.	 Asymptotically consistent: t(n)n→∞

= ph (from the low of large numbers).

Finally, let us define the estimation error as:

(1)TBR =
1

N

N∑

k=1

CGMhypo(k),

(2)hk = Ih(gk) =

{
1, if gk < 70 mg/dL
0, otherwise

(3)
µ = E[hk] = ph, ∀k

σ 2 = var[hk] = ph(1− ph), ∀k.

(4)cov[hk , hℓ] = αℓ−kσ 2.

t(n) =
1

n

n∑

k=1

hk .
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In this context, the problem of determining the minimum duration of CGM that represents, with a certain 
accuracy, the time in hypoglycemia of an individual, translates in studying the convergence speed of t(n) → ph 
and, therefore, how var(e(n)) decreases as n increases.

Theorem 1  Let g1, g2, . . . , gN be a sequence of N non-independent CGM samples, obtained from the process gk.

Let hk = I(gk) be the Bernoulli process describing samples in hypoglycemia, obtained as dichotomization of the 
process gk.

Let t(n) = 1
n

∑n
k=1 hk be the unbiased and asymptotically consistent estimator of the time in hypoglycemia ph and 

let e(n) = t(n)− ph be the estimation error.

Assume that hk can be modelled as an AR(1) process:

Then, the standard deviation of the estimation error is

The proof is reported in the “Methods”.

Notation In this section and in the rest of the paper, we represent standard deviation and covariance of a 
random variable/random process with lower letters (sd and cov) while we will use capitalized letters for sample 
standard deviation and covariance (SD and COV), obtained averaging variable/process realization.

Validation of the formula on real data.  Validation will be performed first on a single-subject CGM 
trace, with α and ph specifically estimated for the patient under study, in order to validate the hypothesis of a 
AR(1). Nevertheless, patient specific values of α and ph are hardly known in practice. So, as second step, we will 
validate the formula using the population values α∗ and p∗h and test its ability to predict the error on several dif-
ferent patients.

Furthermore, when dealing with real data, the evaluation of the estimation error is complicated by the fact 
that the true subject time in hypoglycemia ph is unknown. Therefore, for each subject, in the estimation error 
evaluation, ph is approximated as p̂h the time in hypoglycemia computed over the entire CGM trial,

However, as better discussed later on in this paper, this approximation is acceptable only when working with 
short estimation windows (i.e., n << N ), and thus in this section we limit the analysis to n = 1, . . . , nmax , with 
nmax << N corresponding to 30 days.

Dataset.  The analysis on CGM data is performed using a portion of data collected in the REPLACE-BG study6: 
a randomized trial which compares two different diabetes management approaches. The selected portion of the 
dataset involves 148 subjects with T1D for at least 1 year, monitored up to 6 months with a Dexcom G4 Platinum 
CGM sensor (Dexcom, Inc). Further study details and subjects extraction criteria are reported in the Supple-
mentary Information.

Validation on CGM data of a single subject.  In this section, we report the results obtained for a representative 
subject, specifically subject #16 . Similar results hold for any other subject.

Initially, we dichotomize the CGM trace gk to obtain hk , as in Eq. (2). A short portion of gk and hk is shown 
in Panel a of Fig. 1.

The objective of this section is to verify Eq. (4), i.e., checking that hk can be modelled as an AR(1). To do so, 
we compute the sample autocovariance function of the process, COVh(τ ) , where τ is the lag between two samples:

that  represents  an est imate of  the autocovariance funct ion covh(τ ) of  the process , 
covh(τ ) = E[(hk − E(hk))(hk+τ − E(hk+τ ))].

e(n) = t(n)− ph

=
1

n

n∑

k=1

(hk − ph).

cov[hk , hℓ] = αℓ−kph(1− ph).

(5)sd[e(n)] =

√

ph(1− ph)

n

(

1+
2α

1− α
+

2α

n

αn − 1

(1− α)2

)

.

p̂h = t(N), e(n) = t(n)− p̂h.

COVh(τ ) =
1

N − τ − 1

N−τ∑

k=1

[(

hk −
1

N

N∑

ℓ=1

hℓ

)(

hk+τ −
1

N

N∑

ℓ=1

hℓ

)]
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The sample autocovariance function is reported in Panel b of Fig. 1, where the desired exponential shape is 
well visible. Although the hypothesis of AR(1) structure might be unsuitable to describe a CGM trace, which is 
often modelled as AR of a higher order21,22, such a structure seems to be appropriate to describe its dichotomized 
version.

We then fit a single exponential model ατ to the autocovariance function, normalized with respect to the 
variance of the process, and estimate the parameter α using a Weighted Non Linear Least Squared (WNLLS) 
approach. For the example subject, we obtain α = 0.86 , and a good fit, as shown in panel c of Fig. 1, where data 
(orange dots) and model (green) are reported in logarithmic scale.

We also compute p̂h = t(N) , equal to 0.047, for the example subject, and consequently 
σ̂ 2 = p̂h(1− p̂h) = 0.045.

Finally, once estimated α and σ̂ 2 , we are able to apply the theoretical formula to compute the standard devia-
tion of the estimation error. Panel d of Fig. 1 shows in a log-log scale the prediction of the formula as a dashed 
blue line.

In the same panel, this theoretical prediction is compared with the sample standard deviation of the estima-
tion error e(n; i) computed on all possible estimation windows of length n = 1, . . . , nmax = 30 << N  in the 
patient under study

Figure 1.   Single subject CGM data. (a) CGM data gi , referred to left axis (blue), and dichotomized CGM 
data hi , referred to right axis (orange). hi = 1 during the hypoglycemic events (yellow regions); (b) sample 
autocovariance function (COV(τ )) of the dichotomized CGM, normalized with respect to the sample variance 
of the process σ 2 . τ , expressed in samples, represents the delay between two samples of the process; (c) 
exponential fit ατ of the sample COV, reported in log scale; (d) sample standard deviation of the estimation 
error (red) and standard deviation obtained through the proposed formula (dashed blue), reported in log-log 
scale.
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with i = 1, . . . ,M and M being the number of possible window. For example, for n = 1 we have M = N possible 
windows for each patient while for a generic n we have only M = N − n+ 1 possible windows of length n. Panel 
d of Fig. 1 shows that the proposed formula fits well the sample standard deviation estimation error e(n), proving 
that the assumption of an AR(1) structure is acceptable for hk.

Validation on population CGM data.  This section aims at verifying if our formula can be applied to an entire 
population.

The previous analysis identified and employed a pair (p̂h,α) for each subject. The distributions of these 
parameters in the population are shown in Fig. 2, p̂h = 0.038 [0.011− 0.090] (median [ 5th - 95th percentiles]) 
and α = 0.867 [0.783− 0.917].

We now consider the use of a single pair ( p∗h , α
∗ ) in Eq. (5) to represent the entire population. We select the 

population p∗h as the distribution mean, equal to 0.043, while the population α∗ is selected as the 95th percentile 
of the distribution, equal to 0.917. This choice is due to the fact that the most correlated CGM traces (i.e., those 
with a higher α ) exhibit the slowest estimation error decrease, thus strongly influencing the estimation error in 
the population for large n.

Thus, we can use these population parameters to compute sd[e(n)] using Eq. (5) that becomes

Plotting the results of the above formula for various values of n, we obtain the dashed-blue line depicted in Fig. 3.
In the same figure, this theoretical prediction is compared with the sample standard deviation of the estima-

tion error e(n; i) computed on all possible windows in all possible patients

where i = 1, . . . ,M and M is the total number of possible windows. For example, for n = 1 we have N possible 
windows for each patient, thus M = N · Npat , while for a generic n we have only N − n+ 1 possible windows of 
length n in each patient, so M = (N − n+ 1) · Npat . SD[e(n)] is depicted in Fig. 3 as a red solid curve.

Moreover, in the figure we report the boxplots of e(n; i), i = 1, . . . ,M and depict also the sample mean of the 
estimation error (orange line) and its theoretical prediction, i.e., E[e(n)] = 0 as per Eq. (3) (green-dashed line). 

e(n; i) = t(n; i)− p̂h = t(n; i)− t(N; i)

SD[e(n)] =

√
√
√
√

1

M − 1

M∑

i=1

e(n; i)2

sd[e(n)] = 0.203

√

23.1

n
+ 266.2

0.917n − 1

n2
.

e(n; i) = t(n; i)− p̂h = t(n; i)− t(N; i)

SD[e(n)] =

√
√
√
√

1

M − 1

M∑

i=1

e(n; i)2,

0.02

0.04

0.06

0.08

0.1

0.12

[%
]

0.75

0.8

0.85

0.9

a) b)

Figure 2.   Boxplot representation of the distribution of the estimated p̂h (a) and α (b), over the entire 
population. Red horizontal line represents median, the blue box marks the interquartile range, dashed black 
lines are the whiskers and red stars indicate outliers.
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First of all, notice that sample mean and its theoretical prediction match well. More importantly, also the sample 
standard deviation and its prediction overlap very well. Therefore we can conclude that the proposed formula 
with the given population parameters is effectively able to describe the standard deviation of the estimation 
error for the overall population.

Computing the sample standard deviation over long estimation windows.  The formula of Theo-
rem 1, assumes that true time in hypoglycemia ph of a subject is known. When analyzing real data, ph has to 
be approximated by p̂h = t(N) , the time in hypoglycemia computed over the entire CGM trial. By doing so, in 
real data validation we are computing e(n;N) = t(n)− t(N) instead of e(n) = t(n)− ph . In this section we will 
derive a formula for sd[e(n; N)].

Figure 3.   Time in hypoglycemia estimation error, for different window durations, for all the population under 
analysis. Mean and standard deviation of the estimation error are computed both on CGM data (orange for the 
mean, red for the standard deviation) and using the proposed formula of Eq. (5) (dashed green for the mean, 
dashed blue for the standard deviation).

1 4 8 12

n [months]

0

0.5

1

1.5

sd
 [e

(n
)]

10-2 sd[t(n)-t(N)] vs sd[t(n)-ph] for different N

sd[t(n)-t(N)], N = 1 month
sd[t(n)-t(N)], N = 4 months
sd[t(n)-t(N)], N = 8 months
sd[t(n)-t(N)], N = 12 months
sd[t(n)-ph]

Figure 4.   Standard deviation of the estimation error sd[e(n)] (dashed blue) and its approximation sd[e(n, N)] 
affected by the approximation p̂h = t(N) . The curves are obtained for different trial durations: N = 1 month 
(diamond yellow), N = 4 months (triangle red), N = 8 months (circle green), N = 12 months (square black). 
Moreover, α = α∗ = 0.917 and ph = ph∗ = 0.043 are used.
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Then, we will compare sd[e(n; N)] with the true estimation error sd[e(n)] (see Fig. 4). It is apparent that 
sd[e(n, N)] obtained on real data decreases faster than sd[e(n)] as n approaches to N, with increasing dis-
crepancy, up to the point when it becomes zero for n = N  , sd[e(n = N ,N)] = 0 , whereas the true standard 
deviation estimation error for n = N is strictly greater than zero sd[e(n = N)] > 0 . In Fig. 4 it can also be seen 
that sd[e(n)] ≃ sd[e(n,N)] for n << N . This discrepancy observed for n approaching N will be referred to as 
“tail-effect”.

Finally, we will consider the systematic discrepancy from the true error caused by the tail effect and propose 
a fraction n/N < 20% under which this approximation has a small impact on the results.

Quantifying the “tail‑effect”.  In the same mathematical framework used to develop Eq. (5), the “tail-effect” is 
quantified by following result.

Theorem 2  Under the same assumption of Theorem 1, for any N and n, n = 1, 2, . . . ,N it holds that:

The proof is reported in the “Methods”.

Figure 4 illustrates the “tail effect”, by comparing sd[e(n)] and sd[e(n; N)] provided by Theorems 1 and 2, 
respectively. Different values of N are considered. Population values α∗ and p∗h are used. sd[e(n)], reported in 
dashed blue line, is clearly not dependent from N, and goes to zero for n → ∞ . sd[e(n; N)] provides different 
curves based on N: 1 month (yellow curve with diamonds), 4 months (red curve with triangles), 8 months (green 
curve with circles), 12 months (black curve with squares). It is well visible how the curves exhibit the “tail effect”: 
they decrease faster than sd[e(n)], thus leading to a systematic underestimation of the error. The systematic dis-
crepancy is the larger the closer n approaches N until, the curve of sd[e(n; N)] becomes zero for n = N.

Determining an acceptable range of n << N.  We analyzed the systematic underestimation of sd[e(n)] intro-
duced by the approximation p̂h = t(N) in sd[e(n; N)] by considering the Relative Discrepancy (RD)

(6)sd[t(n)− t(N)] =

√

var[t(N)] +
N − 2n

N
var[t(n)] − 2σ 2

(
α

nN

(1− αn)(1− αN−n

(1− α)2

)

.

RD =
sd[e(n;N)] − sd[e(n)]

sd[e(n)]

0 0.2 0.4 0.6 0.8 1

n/N

-1

-0.8

-0.6

-0.4

-0.2

0

[%
]

Relative Discrepancy

1 month
4 months
8 months
12 months

RD = - 0.106

Figure 5.   Relative Discrepancy between the standard deviation of the estimation error sd[e(n)] and its 
approximation sd[e(n, N)] affected by the tail effect. The curves are obtained for different trial durations: N = 1 
month (diamond yellow), N = 4 months (triangle red), N = 8 months (circle green), N = 12 months (square 
black). Moreover, α = α∗ = 0.917 and ph = ph∗ = 0.043 are used.
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that is, the relative magnitude of the discrepancy between the sd[e(n;N)] and the true error sd[e(n)], with respect 
to the true error.

In Fig. 5, RD is reported with respect to the trial fraction n/N for different N values: 1 month (yellow curve 
with diamonds), 4 months (red curve with triangles), 8 months (green curve with circles), 12 months (black 
curve with squares). Note that the discrepancy is always negative, confirming a systematic underestimation of 
the magnitude of the estimation error. RD curves obtained for different values of N overlap well, suggesting that 
the relative discrepancy does not depend on N but only on the fraction n/N.

As a result, it is possible to determine a fraction of n/N for which the relative discrepancy is negligible. In 
particular, for n/N ≤ 0.2 then RD ≤ 0.11 . Thus if a systematic underestimation of at most 11% is considered 
acceptable, and one is interested in evaluating on a new dataset the estimation error by computing the sample 
variance SD[e(n; N)], than n should not be larger than 20% of the total trial length N. For example, we have 
considered nmax = 30 days over N = 6 months, i.e., n ≃ 0.16N , which corresponds to a relative discrepancy of 
RD = 8.35% . According to Theorem 1, sd[e(n)] = 1.0% for n = 30 days (see Table 1). This means that using the 
formula of Theorem 2 we are underestimating the actual sd[e(n)] of 0.083%.

Discussion
In diabetes management, CGM sensors are used by patients to continuously monitor BG in order to keep it inside 
the physiological range of (70–180) mg/dL. The fraction of time spent within or outside this range, namely the 
TBR considered in this paper but also the time in range (TIR) and the time above range (TAR), are indicators 
commonly adopted by clinicians and patients to assess therapy effectiveness. However, clinical reliability of these 
metrics requires sufficiently long CGM recordings.

In this work, we proposed a mathematical approach to determine the minimum CGM monitoring window 
which warrants a desired level of accuracy for TBR. Specifically, we derived a theorem that, under the assump-
tion of autoregressive structure of order 1 for the dichotomized CGM data, provides a formula which links the 
accuracy of TBR estimation to the number of CGM samples in the recording. We considered outpatient CGM 
data collected in 148 adults with type 1 diabetes and successfully assessed the formula using either subject-specific 
parameters or population parameters.

The proposed formula of Eq. (5) links the number of CGM samples n to the uncertainty of time in hypo-
glycemia estimation, expressed as standard deviation of the estimation error sd[e(n)] . Thus, the formula can be 
used to compute sd[e(n)] when examining data of a clinical trial of a certain duration n, providing a measure of 
reliability of the experimental findings (application 1). On the other hand, when designing a clinical trial, the 
formula can be used to determine a sufficient n granting to achieve a desirable accuracy sd[e(n)] (application 2). 
Table 1 reports several couples of trial duration (expressed in number of days in the first row and CGM samples 
in the second row) and uncertainty (third row), obtained with the population p∗h and α∗ previously derived.

Examples of possible applications are reported below:

•	 Application 1 When estimating the time in hypoglycemia spent by a subject monitored for m days, our 
formula allows evaluating the uncertainty of the estimate. For example, if a patient is monitored for m = 14 
days (corresponding to n = 4032 samples for a CGM sensor providing 1 sample every 5 min) and shows 5% 
of time in hypoglycemia, our formula suggests that 2-week monitoring grants the uncertainty of: 5%± 1.5%.

•	 Application 2 When designing a clinical trial, our formula can provide the minimum number of CGM samples 
n (i.e., the minimum trial duration) needed to reach a desirable estimation error. For example, if 1% estima-
tion error is deemed clinically acceptable, the proposed formula suggests to collect, at least, n = 8808 CGM 
samples that, for a CGM sensor providing 1 sample every 5 min, equal to m = 30.6 days.

In conclusion, the proposed formula can be used to determine the uncertainty of TBR estimated in a trial 
of a given duration and to determine the minimum duration of a clinical trial granting to achieve a desirable 
uncertainty in TBR.

It should be remarked that the proposed approach can be straightforwardly extended to the other TIRs met-
rics, thus strengthening its utility in the design of all those clinical trials where the duration of BG monitoring 
is particularly significant in clinical relevance as well as in cost-effectiveness terms.

As an example, this is illustrated for the so called “level 2 hypoglycemia” (L2H), defined as the percent time 
spent with CGM < 54 mg/dL14. This metric focuses on glucose concentration levels even lower than the ones 

Table 1.   Trial duration in days (m, first row) and CGM samples (n, second row), and associated standard 
deviation of time in hypoglycemia estimation error (sd[e(n)], third row) obtained for the population under 
analysis ( ph = 0.043 and α = 0.917 ), obtained using the proposed formula.

m (days) 7 14 30 60 120

n (CGM samples) 2016 4032 8640 17280 34560

sd (e(n)) (%) 2.1 1.5 1.0 0.7 0.5
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considered in TBR and has a demonstrated association to cognitive dysfunction, impaired awareness of hypo-
glycemia, cardiac arrhythmia and increased mortality23. To consider this new metric, we estimated p̂h and α̂ as 
described above, and plug the newly obtained parameters into Eq. (5). Figure 6 reports the standard deviation 
of L2H estimation error predicted by the so-derived formula (dashed blue), and the sample standard deviation 
computed on the data (red). The two curves overlap well, showing that the methodology of this work results 
effective also for L2H.

As a final comment, note that the REPLACE-BG dataset was used here to illustrate the meaningfulness of 
the assumptions underlying our theorem. This dataset has a reasonable sample size and uses CGM sensors with 
reasonable accuracy but it is should be acknowledged that it includes only subjects treated with insulin pumps, 
without significant hypoglycemia unawareness and with low risk for the developing severe hypoglycemia. There-
fore, future works will focus on the analysis of larger datasets, more representative of the overall T1D population, 
including a larger representation of hypoglycemia unawareness, subjects under different insulin regimens and 
subjects with larger incidence of hypoglycemia. Furthermore, the proposed formula will be also tested in other 
populations of people with diabetes (e.g., type 2 diabetes, pregnancy) and in specific sub-populations (e.g., 
young, adolescent).

Methods
Derivation of Theorem 1.  Proof  Let us define h̄i = hi − ph the zero-meaned version of hi . Similarly, we 
can define t̄n = 1

n

∑n
i=1 h̄i , so that the estimation error variance can be expressed as follows:

where σ 2 = ph(1− ph) is the variance of the Bernoulli variable h̄i.
The term E[h̄kh̄ℓ] represents the autocovariance function of hk that, under the hypothesis of AR(1) structure, 

can be rewritten as σ 2αℓ−k . So we obtain:

Substituting ξ = ℓ− k − 1 in the last summation:

var[e(n)] = var[t̄(n)]

= E

[
1

n

n∑

k=1

h̄k
1

n

n∑

ℓ=1

h̄ℓ

]

=
1

n2
E

[ n∑

k=1

h̄2k + 2

n∑

ℓ=1

n∑

ℓ>k

h̄kh̄ℓ

]

=
1

n2

(

nσ 2 + 2

n∑

k=1

n∑

ℓ>k

E[h̄kh̄ℓ]

)

,

var[e(n)] =
1

n

(

σ 2 +
2

n
σ 2

n∑

k=1

n∑

ℓ>k

αℓ−k

)

.

Figure 6.   Estimation error of time in level 2 hypoglycemia, for different window durations, for the whole 
population under analysis. The standard deviation of the estimation error is computed both on CGM data (red) 
and by using the proposed formula of Eq. (5) (dashed blue).
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The second summation is the geometric sum of parameter α , which converges to 1−αn−k

1−α
 . Substituting ν = n− k , 

we obtain:

Again, the second summation is the geometric sum of parameter α . So we have:

	�  �

Illustration of the results on synthetic data.  To illustrate the correctness of the proposed formula, we 
generated synthetic data matching the assumptions driving our theorem.

To generate a Bernoulli random process with user-defined parameters ( ph,α ), we implemented a time-
homogeneous Markov chain with a finite state space, whose scheme is reported in Panel a of Fig. 7. The chain 
has two states: s = 1 represents a sample in hypoglycemia, while s = 0 reflects a non-hypoglycemic state. The 
probabilities of being in a state s ∈ [0, 1] ( p0 , p1 ) at time k evolve according to the following equations:

where pij represents the transition probability of being at state s = j at time k + 1 starting from the state s = i at 
time k. Since there are only two possible states, p01 = 1− p00 and p10 = 1− p11.

From Eq. (7) it is possible to determine the stationary probability of the chain p(∞) = [p0(∞), p1(∞)] , as 
a function of p00, p11 . In particular, p1(∞) represents the probability of hypoglycemia ph . So, there is a unique 

var[e(n)] =
σ 2

n

(

1+
2

n
α

n∑

k=1

n−k−1∑

ξ=0

αξ

)

.

var[e(n)] =
σ 2

n

(

1+
2αn

n(1− α)
−

2α

n(1− α)

n−1∑

ν=0

αν

)

.

var[e(n)] =
σ 2

n

(

1+
2α

1− α
+

2α

n

αn − 1

(1− α)2

)

.

(7)
{
p0(k) = p00p0(k − 1)+ (1− p11)p1(k − 1)
p1(k) = (1− p00)p0(k − 1)+ p11p1(k − 1),

Figure 7.   Synthetic data analysis. (a) Scheme of the Markov chain used to generate synthetic Bernoulli 
processes matching the assumptions driving our theorem. (b) Sample standard deviation of the estimation 
error e(n; i) computed over Nrep = 5000 Bernoulli processes, each of N = 1000 samples with α = 0.86 and 
σ 2 = 0.024 (red). The sample standard deviation is predicted well by the proposed formula of Eq. (5) (dashed 
blue).
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link between the transition probabilities of the Markov chain p00, p11 and the probability of hypoglycemia ph . 
Similarly, the transition probabilities can also be uniquely linked to the correlation parameter α:

The derivation of these relationships is provided in the Supplementary methods. By appropriately setting the 
values of p00, p11 , it is therefore possible to control the values of ph,α , that are thus exactly known. In particular, 
the higher p00 and p11 absolute values, the more correlated the samples (e.g., p00 = 0.5 , p11 = 0.5 provide the 
minimum correlation α = 0 ). Furthermore, the higher the difference between p00 and p11 , the closer ph to 0 or 
1 (e.g., p00 = 1 , p11 = 0 provide ph = 0 , while p00 = 0 , p11 = 1 provide ph = 1).

We then used the above described Markov chain to generate a random process hk of N correlated Bernoulli 
variables, simulating the dichotomized glucose measurements of a subject. On this trace, we computed the esti-
mate t(n), i.e., the sample mean over the first n samples, and the estimation error e(n) = t(n)− ph . This is done 
for various lengths of the averaging window n = 1, . . . ,N.

We replicated this procedure Nrep times to simulate a clinical trial of Nrep subjects, thus generating Nrep 
realizations of the random process hk.

Following this procedure, for each value of the window length n = 1, . . . ,N we have Nrep realization of the 
estimation error e(n):

and we can evaluate the standard deviation of e(n), sd[e(n)] , by considering the sample standard deviation SD 
over the Nrep realizations:

The approach is described in detail in the pseudo-code reported below.
Figure 7 shows the sample standard deviation (solid red line) obtained after the generation of Nrep = 5000 

Bernoulli processes of N = 1000 samples each, with α = 0.86 and σ 2 = 0.024. The curve matches well the stand-
ard deviation obtained with the proposed formula, illustrating the correctness of our finding. A log-log scale is 
used to better represent both the quantities.

 

Derivation of Theorem 2.  Proof 

The first two terms of the sum can be obtained by Eq. (5). The last term of the sum represents the covariance of 
t(n) and t(N), that can be rewritten as follows:

{

ph =
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By joining Eqs. (8) and (9) we obtain the expression of Theorem 2. 	�  �

This formula was verified both in a controlled environment (using a Markov-chain model to build synthetic 
Bernoulli processes) and over real CGM data. In both cases, it was proven to accurately model the estimation 
error e(n;N), n = 1, 2, . . . ,N.

Data availability
Data can be obtained from the T1D Exchange archive (https​://t1dex​chang​e.org/resea​rch/bioba​nk/). All the 
scripts for implementing the methodology in Matlab are publicly available at https​://githu​b.com/Nunzi​oCame​
r/Analy​tical​TBRes​timat​ion.
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