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Abstract 

The IEEE Reference Model for Mass Storage Systems provides a basis for the develop-
ment of standards for storage systems. The model identifies the high level abstractions 
that underlie modern storage systems. The model itself does not attempt to provide 
implementation specifications. Its main purpose is to permit the development of indi-
vidual standards within a common framework. 
High Energy Physics has consistently been on the leading edge of technology and Mass 
Storage is no exception. This paper describes the IEEE MSS Reference model in the 
HEP context and examines how it could be used to help solve the data management 
problems of HEP. 

1  I n t r o d u c t i o n  
These lectures cover the evolution of the IEEE reference model for mass storage 

systems and examine the suitability of the model for High Energy Physics. 
The first lecture provides an overview of data handling in High Energy Physics, 

followed by a description of a software solution that was developed at CERN to meet the 
needs of the LEP experiments. Finally, the requirements of future experiments, such as 
those planned for the Large Hadron Collider (LHC) at CERN, and the Superconducting 
Super Collider (SSC) in the US, are discussed. 

The second lecture reviews existing storage systems, with particular emphasis on 
those that influenced the IEEE MSS model and those that have been developed along the 
guidelines of the model. Included in this lecture is a discussion of network file systems. 
Although such systems were typically developed independently of the model, they are 
sufficiently important to warrant inclusion. 

The final lecture is devoted to the model itself and how it can be used to build a 
global solution to the problems of data management in HEP. It covers the history of the 
model, the current status and the possible impact of the model upon HEP. Areas that the 
model does not cover are highlighted and possible solutions to these problems described. 

Non-goals are a discussion of storage hardware, the data model or languages. Al-
though these will be touched on in passing, they are not the main theme of the lectures. 

Given the title of the lectures, it is perhaps useful to explain why topics other than 
the IEEE MSS model itself are discussed. There are a number of important reasons for 
this, as described below. Firstly, the model itself is still evolving and it is useful to examine 
its origins and explore future directions in which it may develop. Secondly, many of the 
systems that will be discussed had strong influence on the development of the model. 
Indeed, it was the belief of the developers of the model that a credible standard could not 
be achieved without demonstrable prototypes. In addition, it is important to understand 
how the model could be used to solve the particular problems in High Energy Physics. 

Virtually all of the information that is contained in these lectures has been presented 
at an IEEE Mass Storage Symposium. 

2  D a t a  h a n d l i n g  i n  H i g h  E n e r g y  P h y s i c s  
2.1 Introduction 

My own interest in data management started soon after starting my physics PhD 
at the University of Liverpool. The High Energy Physics group had a small IBM 360 
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computer that ran the MFT operating system. I was immediately faced with statements 
like the following: 

//G.FT11F001 DD DSN=GEOHYB.P4C79.FILM47,DISP=NEW, 
// VOL=SER=939727,DCB=(RECFM=VBS,BLKSIZE=32756), 
// UNIT=6250 

This particular statement contains a simple error, namely that the /LABEL qualifier 
is missing. As a result, the first file on the volume will be overwritten. Such mistakes 
do not increase one's popularity with fellow students, particularly when they have spent 
many hours of computer time to write the files destroyed by this omission. 

Like many other experiments at the time, our tape catalogue consisted of a sheet 
of computer paper on which we were supposed to mark those tapes that we had used. 
Surprisingly, some groups still use electronic sheets of paper - a unstructured file that 
they modify with a text editor. 

The above JCL statement is somewhat atypical, in that a semi-meaningful dataset 
name is used. This is still uncommon practice, even today. Many experiments prefer to 
use the same dataset name for all files. 

Another lesson in the need for data management came shortly afterwards, when 
using the so-called PUBLIC EXEC DISKTAPE. As the name suggests, this exec file could 
be used to copy files from disk to tape. Unfortunately, it did not make use of one of the 
more esoteric features of IBM's job control language, namely the UNIT=AFF qualifier. This 
allowed one to specify that one would like to use the same physical drive as was used for a 
specified stream in a previous job step. Failure to specify this absurd level of detail meant 
that the system rewound and unloaded the tape between each step and then requested a 
new mount, almost invariably on a different unit. This, naturally, did not increase one's 
popularity with the tape operators. 

After these and many similar experiences, it was clear to me that some form of 
intelligent software was needed. Whilst working on the NA9 experiment at the Max Planck 
Institute in Munich, I developed a package that provided access to data by name. The 
system automatically generated the necessary JCL statements, even managing obscurities 
such as UNIT=AFF etc. The system knew the correct record attributes of the different data 
types, and generated appropriate DCB statements on output accordingly. 

Surprisingly, to me at least, this system was not popular. People preferred to hard-
code specific tape numbers into their jobs. I used to liken these people to those who still 
kept (and probably still keep) dusty punched card decks in their desk drawers. However, 
I had the last word as I would occasionally repack volumes (automatically, of course) and 
so their jobs with hard-coded tape numbers would fail. 

2.2 Data processing 
Data processing in a High Energy Physics experiment involves a number of steps: 

Raw data is acquired (or simulated) 
The raw data is processed through the reconstruction program, producing Data Sum-
mary Tapes (DSTs). 
The DSTs are then reduced for further analysis, typically by reduction into Ntuples 

for processing by PAW. 
It is interesting to note the widespread use of farms in the data processing of a 

modern HEP experiment. The simulated data is typically generated on a dedicated farm, 
such as the Central Simulation Facility (CSF) at CERN. The reconstruction is generally 
done at an experiment specific farm close to the detector itself. The data reduction is 
increasingly performed on dedicated farms such as Shift. Finally, we see the use of farms 
such as PIAF for parallel visualisation. This strong move towards distributed computing 



has a major impact on the whole question of storage and data access. This shift is often 
paralleled to the move from the Ptolemaic view of the Universe, where the earth (or 
CERNVM) was considered the center of all things to the Copernican view. [1] As we shall 
see later, one of the main problems with the storage systems developed in the 1980's was 
that they were based on a centralised model and do not adapt well to the distributed 
environment. 

Until recently, only one level of offline storage has been used. This has changed 
slightly with the introduction of tape robots, where robotically mounted volumes are 
placed higher in the hierarchy than manually mounted volumes. It is clear that we will 
use multiple types of media in the future and it is important that the data access char-
acteristics of the different types of data are taken into account. Raw data, for example, 
is processed infrequently - ideally only once - and sequentially. DSTs are processed much 
more frequently - at least once a day in the OPAL Shift configuration. Here random access 
is essential. Finally, Ntuples are processed many times per hour and should, for efficiency, 
be mapped to memory. 1) 

2 . 3  D a t a  v o l u m e s  a n d  r a t e s  
The CERN tape management system currently controls over half a million volumes. 

Assuming that all of these volumes are 3480s containing 200MB of data, this corresponds 
to some 100TB. Approximately 2% of the volumes are moved in or out of the central 
tape vault per week with a tape being mounted every 45 seconds on average. Over 300 
thousand commands are executed by the tape management system per week. 

Raw data sizes are currently in the range 100-500 KB/event. After reconstruction, 
the size of an event tends to grow by between 10-20%. This is because the raw data is 
normally carried through to the output stream to facilitate reprocessing. 

2 .4  Event  d i rec tor ies  
A relatively new technique that is used by two of the LEP experiments is the concept 

of  event  directories [2]. This technique, developed independently at DESY and on the 
OPAL experiment at CERN, uses a list of events with their characteristics, file, record 
number and offset. Rather than make multiple streams from a common set of DSTs, one 
stream for each analysis group, event directories permit a single set of files to be shared 
by all groups and users. It is clear that such techniques will be increasingly important in 
the future, if one is to reduce the overall disk space requirements. 

2 . 5  D a t a  i m p o r t  a n d  e x p o r t  
Data import is primarily concerned with simulated events which are generated out-

side of CERN. These events are often generated using unused cycles on workstations and 
frequently arrive on Exabyte or other low cost media. 

Data export is primarily at the DST level, although there is a growing trend which 
favours the export of Ntuples. Data export in particular is a non-trivial operation, requiring 
the allocation of media, shipping requests and the updating of file and media databases at 
sending and receiving sites. To what extent networks will alleviate this problem in the LHC 
era remains to be seen. 

2.6 FATMEN 
Shortly before the startup of LEP, a working group was established to investigate 

the requirements of the various experiments for a file and tape management system. This 
working group was given the somewhat unfortunate name of FATMEN, for File and Tape 
Management: Experimental Needs. The mandate emphasized the following points: 

1) This is already done for the new column wise Ntuples. Active columns are unpacked and stored in 
memory. Inactive columns remain packed on disk.  
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− The working group should also look at the software which the experiments use to 
locate events, the interfaces between the packages used to generate production jobs 
and the packages used to manage dismountable media. 

Encourage the use of commercially available software or common developments be-
tween the experiments. If a common approach proves impossible then agreed speci-
fications for inter-package interfaces must be generated. 

— Look at the problem of interfacing to tape management software that may be installed 
at different LEP production centers. 

Some of the commercial packages that were investigated will be covered later. Un-
fortunately, none of these packages were suitable at the time of LEP startup. 

2.6.1 The FATMEN review 
The FATMEN committee investigated as many commercial packages as possible. 

Unfortunately, these proved without exception to be unacceptable. Most targetted only 
one operating system and those that offered multiple platform support did so in the most 
rudimentary of manners. One vendor even suggested that tape access should be offered 
on Monday, Wednesday and Friday on the VAX and on all other days on the IBM. 

At the time of the review, the Rutherford Appleton laboratory in the UK were 
in the course of writing a new tape management system. This system was also to be 
installed at IN2P3 in Lyon, and seemed to offer most of the features that were needed for 
our purposes. The one feature that was not initially available was the ability to allocate 
tape volumes at run-time, now available via the GETPOOL command. 

At that time, CERN was in the process of installing a tape robot. If one is to use 
a robot safely, some sort of tape management is mandatory. Tape volumes can be write 
locked by hardware. In the case of round tapes, this is via a write ring. For cartridges 
or cassettes, it is via a thumb wheel or tab similar to that on audio or video cassettes. 
Although most robots are up to the task of inserting a cartridge into a drive, they are 
uniformly incapable of write locking or enabling a volume. Hence, some sort of software 
control is required. 

2.6.2 Recommendations of the FATMEN committee 
The FATMEN committee made the following recommendations: [3] 

− A file database system should be designed and written at CERN. Users would interact 
with a Zebra RZ database, whereas ORACLE would be used to maintain the master 
database. 

− A Tape Management System should be imported from the Rutherford Appleton 
Laboratory in the UK. 

− Servers should be used to supply data from the central systems to workstations. 
− The evolution of commercially available distributed mass storage systems should be 

carefully followed. In particular, the IEEE Computer Society Reference Model for 
Mass Storage Systems and systems based on it should be studied. 

The file database system is what is now known as the FATMEN package. 

2.6.3 The FATMEN model 
The FATMEN package was designed around a layer model. Although this is not 

the same as the layer model used to describe the IEEE reference model, it resembles it 
closely. 

The model is composed of the following layers: 
1. Event Tag Database 
2. Production Database 
3. F i l e  D a t a b a s e  L a y e r  
4. N e t w o r k  S t o r a g e  M a n a g e m e n t  



5. Tape Management System 
6. S t a g e / S e t u p  L a y e r  
7. O S  T a p e  I n t e r f a c e  
8. Robot/Operator Layer 

The first two layers were considered to be experiment specific, although a general 
purpose database which may be used to record details of production, calibration constants, 
detector geometry and so on is now available through the CERN Program Library under 
the name HEPDB. At the time of the review, none of the experiments expressed interest 
in what was then termed the Event Tag Database. It is interesting to note that two of 
the LEP experiments now use precisely such a system - the Direct Access to Data (DAD) 
system of OPAL and the event directories of Aleph. [2] 

This, and the production database, were considered to be experiment specific. HEPDB [4], 
based heavily on the OPAL and L3 packages, is now available through the CERN Program 
Library to address these needs. 

One of the purposes of this model was to enable different solutions at any level. 
This was to be achieved by defining standard interfaces, although that it was clear that 
it would usually involve a certain amount of glue  

Although we have not yet described the IEEE model, it is perhaps useful to intro-
duce some of the terms and compare the IEEE definitions with those used in the FATMEN 
context. 

The IEEE model includes two layers which map very closely to the above model. 
These are the Physical Volume Repository, or PVR, which is almost exactly the equivalent 
of the Robot/Operator layer. The next layer is the Physical Volume Library (PVL), which 
encompasses the Tape Management System and the Stage/Setup layer in our model. The 
Stage/Setup layer consists of software that is layered on top of the host operating system 
which, amongst other things, provides an interface between the native tape mounting 
commands the Tape Management System. In the IEEE model, cooperating operating 
systems are supposed to conform to the PVL interface. In the opinion of the author, it is 
more reasonable to add a small layer, as is done with the NFS server for example, rather 
than expect the operating system itself to interface directly to the PVL. 

The Network Storage Management layer was the subject of much discussion. In 
fact, we realised that the network would be omni-present, but were somewhat at a loss 
as to how best represent this. There is a growing trend for all of the above services to 
be available transparently anywhere in the network. This is not yet completely true for 
tape staging, but a common staging system is currently being developed at CERN which 
should be in production later this year. 

An important feature of the above model was that the actual implementation of 
any one layer was fairly flexible. Thus, when moving from one platform or site to another, 
one staging system could be unplugged and another inserted. As the IEEE model evolves 
and systems that conform to it begin to appear, one could imagine replacing some of the 
layers with commercial software. 

2.6.4 Features of the FATMEN package 
The FATMEN system consists of a number of components. These include: 

1 .  A f i l e  ca ta logue  
2 .  A set of distributed servers that maintain copies of the catalogue at remote sites 
3 .  Fortran cal lable  and command l ine  interfaces 
4 .  Tools for data management and export 

The file catalogue provides allows experiments to refer to their data via a device, 
operating system and location independent manner. The recommendation is that the 
naming scheme should describe those attributes of the data that are most useful to the 
physicist. This includes such information as 
— Is the data 'real' or simulated? (Or test beam, cosmics etc.) 



49 

− What stage of the production chain does it represent? (Rawdata, DST, ntuple etc.) 
− Physical characteristics, such as the beam energy, type, target, magnetic field, polar-

isation etc. 
An example of a naming scheme is shown below: 
FM> is -w 

Directory WCERN/NA44/RAWD/1991/PROT/450GEV/PB/HOR-3 

RUNO391 RUNO392 RUNO393 RUN0585 RUN0631 RUNO391 RUNO392 RUNO393 RUN0585 
RUN0631 

Total of 10 files in 1 directory 
FM> 
It is important to stress that the generic name provides many forms of transparency. 

The same name may be used to access data on CERNVM, Shift, VXCRNA, UVVM etc. 
and regardless of whether the data is on disk, 3480, 8200, DAT, optical disk, in a Shift 
disk pool, accessed through NFS, AFS, DFS etc. to name but a few possibilities. Today, 
we begin to see location transparency through AFS or DFS, but we still do not see the 
other forms of transparency, which are an important feature of FATMEN. 

2.6.5 The FATMEN naming scheme 
There are a few limitations on FATMEN generic names, which mainly reflect the 

fact that the catalogue is based on the Zebra RZ package. These are as follows: 
− The length of path elements may not exceed 16 characters 
− The length of the filename may not exceed 20 characters 
− The total length of the generic name may not exceed 255 characters 

− The names are case insensitive 

2.6.6 Generic names and physical files 
The last example shows two entries for each generic name. A single generic name 

may point to an arbitrary number of physical files, or to another generic name. Multiple 
entries under the same generic name are permitted for a number of reasons. Firstly, one 
may have made copies that are to be exported to remote sites. Secondly, the files may re-
side on different types of media. Finally, copies may exist in different data representations 
or file formats. For example, one generic name might point to two copies: the first on a 
3480 cartridge in a tape robot. on which the data is recorded in IBM native format 2), 
whereas the other may be on an optical disk in so-called exchange format. 3) 

Under this scheme it is important to note that it is the user's responsibility to 
ensure that a new name is used if the data is modified. 

2.6.7 Command interface 
The FATMEN command interface is based on Unix. Thus there are commands such 

as cp , mv, ls , pwd, rm, mkdir, rmdir and so on. In addition, there are commands to 
manipulate catalogue entries, such as add and modify. Finally, there are utilities, such as 
copy, which provide a high level interface to file copying, described further in the section 
on data export, and commands to access the data itself. 

2.6.8 Callable interface 
The callable interface provides all of the functionality of the command line interface 

together with many additional features. For example, one may sort a list of generic names 
according to tape number and file sequence number within the individual tapes, and so on. 
The callable interface is recommended for efficiency, whereas the command line interface 
is probably more useful for casual use. 

2) EBCDIC representation for formatted data, IBM floating point and VBS file format 
3) Fixed length records, no control words; big-endian, IEEE floating point format, ASCII code for for-

matted data.  



2.6.9 Interacting with the FATMEN catalogue 
As mentioned above, the last example shows two entries for each file. In this par-

ticular case, one copy is on conventional round tape, e.g. 3420, and the other on 3480 
cartridge. When attempting to access one of these files, a decision has to be made as to 
which copy to choose. This decision is based on a set of rules, which can of course be 
tailored or overridden. 

The decision is not always trivial. In the simplest case it might be a choice of a 
copy on disk or a copy on tape, or a copy on a cartridge in a robot versus one that has to 
be mounted manually. However, the situation immediately becomes more complex if the 
disk based copy is on a different node, and is accessed via a server. Is it more efficient to 
access a tape copy rather than attempt a network access? Alternatively, one might find a 
disk copy in so-called Zebra exchange format but a tape copy in native format (e.g. VAX 
floating point, little endian). Is it more efficient to use the disk copy or wait for the tape 
mount? 

Another feature that can be explained using the above example is that of catalogue 
subsets. For efficiency, we could limit all searches to a specific media type or set of media 
types. If, for example, we have no round tape support then we might as well mask out all 
such entries. The same can be done for data representation and location code. 

FM> set/media 2 
FM> is -w 

Directory ://CERN/NA44/RAWD/1991/PROT/450GEV/PB/HOR-3 

RUNO391 RUNO392 RUNO393 RUN0585 RUN0631 
Total of 5 files in 1 directory  
FM> 

The latter is particularly important when many copies of a file exist. To explain 
this point further, we need to understand the default selection procedure in more detail. 

Unless a specific copy is requested, or the default selection overruled, FATMEN will 
attempt to select the best copy according to the following rules: 
1. For each type of medium, FATMEN loops over all copies in turn. 
2. For disk datasets, a check is made to see if the file is accessible directly (e.g. via a 

Fortran INQUIRE), or via a server. 
3. A local copy is always taken in preference over a served copy 
4. For tape datasets, a check is made to see if the volume is available (e.g. not archived) 

and whether the device type required is available (or served) on the node in question. 
If 30 copies of a DST have been made and sent to outside institutes, one can avoid 

making redundant queries to the Tape Management System by assigning location codes 
and masking off a subset of the catalogue appropriately. 

2.6.10 Creating new data with FATMEN 
It is certainly more complicated to create new data that is catalogued in FAT-

MEN than to access existing data. However, the following model, which is designed for 
production chain jobs, is relatively straightforward to implement. 

It is assumed that the generic name of an output file differs only in one directory 
name from that of the input file. Thus the input file 

//CERN/NA44/RAWD/1991/PROT/450GEV/PB/H0R-3/RUNO391 

might lead to the output file 
//CERN/NA44/DST/1991/PROT/450GEV/PB/HOR-3/RUNO391 

Many of the fields in the output entry are generated automatically, such as the 
node name on which the job runs, the date and time, the user name and so on. Other 
fields, such as the Zebra format, record length and so may be copied from input or taken 
from a model entry, cf the so-called model DCBs on the DESY IBM system. 
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Assuming that the file is to be written to tape, the following operations may be 
required: 
1. Allocate a new tape or a new file on a multi-file volume 
2. Issue an output staging request 
3.  Write the data 
4. If the job is successfully then 

(a)  Request that the data be copied from the staging pool to tape 
(b)  W r i t e  l o c k  t h e  t a p e  
(c)  Add a  comment  ( tag)  to  the  TMS for  th is  volume 

5. If the job is unsuccessful then the volume (or space) is freed and the catalogue entry 
dropped 

To be more explicit, one might wish to allocate a tape volume from a certain pool, 
e.g. XX_FREE. After writing the output dataset this volume might be moved to another 
pool, e.g. XXJJSTS. 

2.6.11 Data export using FATMEN 
Data export can be performed through FATMEN in a number of ways. Firstly, one 

may use the routine FMCOPY, or the corresponding command COPY. This provides numerous 
copying options, including the use of STAGE CHANGE, full Zebra I/O (thus permitting data 
representation and file format conversion), network copying (both TCP/IP and DECnet) 
and finally transmission via satellite, as described below. Alternatively, one may use the 
FATMEN primitives directly, as has been done by OPAL for the tool EXPOCART. 

2.6.12 Data export using CHEOPS as transport 
CHEOPS [5] is a project that uses the Olympus satellite to transmit physics data to 

remote sites. Transfer requests are made through FATMEN, either by using the command 
COPY or through the FMCOPY library routine. 

The transmission is asynchronous. During the day, requests for copies are received 
and the data pre-staged to disk. The data is then transmitted at night. 

When the user makes a copy request, the input data are verified by FATMEN. This 
includes ensuring that all parameters required by CHEOPS are supplied, either explicitly 
or implicitly via an appropriate catalogue entry. 

An entry is added immediately to the FATMEN catalogue with the comment field 
set to something like 

Copy request  queued to  CHEOPS on 930725 at  1315 
At the same time, a copy request is queued to the CHEOPS server. The CHEOPS 

server processes the request and sends back a reply which is processed by the FATMEN 
server. This reply might indicate success, in which case a request ID is returned, or an 
error condition. In both cases the comment field of the corresponding FATMEN entry is 
updated, so that the user can track the progress of his request. 

Finally, once the transmission has completed successfully, a further report file is 
sent from the CHEOPS server to the FATMEN server. At this time, the original comment 
supplied by the user is restored in the FATMEN catalogue. 

About 37 GB were transferred by CHEOPS in July 1993. Nearly all of these data 
was sent to Helsinki, on behalf of the DELPHI collaboration. 

The CHEOPS protocols do not depend on a satellite and could be generalised to 
use any medium, such as a normal terrestrial network. Similarly, the code in FATMEN to 
handle asynchronous copying is independent of CHEOPS and could equally well be used 
with cooperating tape copy stations etc. 

2 . 7  R e q u i r e m e n t s  f o r  L H C  a n d  S S C  
The data handling requirements for experiments at the LHC or SSC are expected 

to be significantly larger than those of the current generation. For example, some 10- 
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100MB/second are expected at the 3rd level trigger at the LHC. Although these rates 
sound large, they can, in theory, already be handled today. The E791 experiment at Fer-
milab built a data acquisition system that wrote to 42 Exabyte 8200 drives in parallel [6]. 
This system achieved an average throughput of 228KB/second, which is certainly very 
respectable when compared to the theoretical capabilities of the Exabyte 8200 drives, 
which are 246KB/second. Using this system, the experiment managed to acquire 50TB 
of data on 24K 8mm tapes, during their run in 1991. 

Using similar ideas, one could cope with the anticipated data rates from LHC or 
SSC by using technology such as the Ampex D2 drive, which has a theoretical throughput 
of 14MB/second, in parallel. 

We expect several (tens of) PB (1015 bytes) of data per year. It is already possible 
to build a multi-PB library, using technology such as assembled by E-Systems [7]. 

In summary, although the hardware requirements for the LHC would appear to be 
very demanding, we could, given sufficient money, build working solutions today. However, 
the software requirements are much less clear. 

2 . 8  D a t a  m a n a g e m e n t  i n  t h e  L H C  e r a  
One of the most critical problems for the LHC era (in the area of data management) 

is the question of data access. Should access be at the file, event or byte level, where we 
expect some 106, 109 and 1015 objects respectively. Although some people argue that this is 
a database problem, it is clearly a non-trivial one. Current database technology is not 
capable of handling such large numbers of objects, particularly when good performance is 
required. The DO experiment at FNAL already have of the order of 106 files. There are no 
intrinsic reasons why today's methods will not work with an order of magnitude more files. 
However, an increasing number of people argue that access by filename is inappropriate 
and that access via high level attributes is what is really required. This remains a largely 
unsolved problem. 

However, it is clear that we do not wish to continue to write and maintain our 
own solutions for the next generation of experiments, but would prefer to obtain standard 
software, whether de-facto or de-juro. Open questions include distributed data, processing 
power and people versus distributed people, centralised processing and data [8]. Given the 
enormous volumes and the rapid decrease in cost of processing power, the latter solution 
would appear to be the more logical. Carried to its ultimate extreme, it implies keeping 
the data as close as possible to the experiment itself, and installing large processor farms 
there. This would be largely a continuation of an existing trend. 

3 Review of  exist ing storage systems 
The developers of the IEEE MSS Reference Model recognised a clear need for 

prototype systems that were deployed in real environments. All of the following mass 
storage systems have been commercialised and have greatly influenced the development 
of the model. 

A common feature of these systems is that they are designed to support super-
computers. In addition, the applications are very different to HEP. Although the data 
volumes are large, the data rates are relatively low. 

3 .1  T h e  or ig in s  o f  th e  IE E E  M a ss  S to ra g e  R e feren ce  M o d e l  
The Mass Storage Reference Model finds its origins at a workshop held at NCAR 

in 1983. Although there had been several Mass Storage Symposia prior to this workshop, 
the idea of a generic model was first formulated at this meeting. The objectives of the 
workshop were to assemble a group of mass storage specialists whose task was to document 
ideas and experience from existing systems and to present these at the 6th IEEE Mass 
Storage Symposium. It is interesting to note some of the topics of discussion, which 
included centralised versus distributed systems, the integration of the system with the 
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host operating system and whether the system or user should be responsible for the 
placement of files in the storage hierarchy. 

3 . 2  T h e  L o s  A l a m o s  C o m m o n  F i l e  S y s t e m  
The Los Alamos Common File System (CFS) [9] is probably the best known mass 

storage system. It is marketed under the name DataTree, by General Atomics. CFS was 
developed in 1979 and is still used in production at many sites today. 

CFS uses an IBM (or compatible) mainframe, running MVS, as storage server. 
Client systems are available for a large number of platforms, including COS, Unicos, 
CTSS, NOS, VMS, Unix, VM and MVS systems. CFS was originally developed in 1979 
and has since been installed at some 20 sites, including the European Centre for Medium 
Range Weather Forecasting in Reading, UK. It is mainly written in PL/1. 

CFS consists of a mass storage processor connected to a high speed network. The 
processor maintains a directory and journal file online and migrates files between a disk 
cache and offline storage. Migration depends on file size and last access. Files that are 
above a certain threshold in size are never stored in the disk cache but always offline. 

To avoid disk fragmentation, disks are separated into classes with varying allo- 
cation units. This small files will be placed on disks with small allocation units and so 
on. 

This is similar to the cluster size attribute for disks on VAX/VMS systems. The 
cluster size is the number of 512 byte disk blocks that are allocated at a time. The default 
is 3, which is clearly unsuitable for large files, such as those on the staging disks. On 
the other hand, the cluster size of 250 blocks which is used on the staging disks would 
be completely inappropriate for home directory style files, as is shown by the following 
example. 

AXCRNB? create disk$stage:[onsupport]jamie.test 
This is a test to show how wasteful a large cluster 
size can be for small files. 
Exit 
AXCRNB? dir/siz=all disk$stage:[cnsupport]jamie.test 

Directory DISK$STAGE:[CNSUPPORT] 

JAMIE.TEST;1 1/250 

Total of 1 file, 1/250 blocks. 
AXCRNB? 

Files stored in CFS are accessed via a Unix-style pathname. Files may be manip-
ulated via special CFS client software, which provides commands such as GET, MOVE, 
REMOVE etc. In addition, an ftp interface has been developed, which is particularly in- 
teresting in today's environment, as it removes the problem of client software installation 
and support on multiple platforms. 

One of the key features of CFS is that of device transparency. It provides access 
to data in a device independent manner, but also permits old technology to be replaced 
transparently. This means that the system can automatically migrate data off obsolete 
media onto newer media in the background. 

It is almost guaranteed that the predominant medium at the startup of LHC will 
be obsolete during the lifetime of the machine. Given the volumes of data involved, the 
possibility of retiring old media is almost a requirement. 

3.2.1 A user's  view of CFS 
A user typically sees both a local file system and the CFS. Files may be copied 

between the local file system and CFS. Once in CFS, the files may then be retrieved by 
any other node running a CFS client. Users may also specify attributes such as access 
frequency, which influences the decision on eligibility for migration. 



3 . 3  T h e  N C A R  M a s s  S t o r a g e  S y s t e m  
Like CFS, the NCAR MSS [10] is also based upon a central dataserver running 

MVS. It was developed at the National Center for Atmospheric Research in Boulder, 
Colorado after experience with CFS. Again like CFS, it is mainly written in PL/1. 

The NCAR systems includes a feature which is frequently emphasised in the IEEE 
model, namely the separation of control and data. Control messages are passed over a 
standard network, whereas the data transfer is made over a so-called fast path, optimized 
for bulk transfer. In today's environment one might use standard Ethernet for control, 
but FDDI or HIPPI for bulk data transfer. 

The NCAR system provides automatic repacking of tape volumes. As files are 
deleted, either explicitly or via an expiry mechanism, holes occur on tape volumes. Even-
tually the data is rewritten to a new volume and the original volume freed. 

The system also protects against media aging, by reading tape volumes at random. 
Should errors occur, the data are copied to a new volume without user intervention. 

3 . 4  T h e  N A S A - A m e s  M a s s  S t o r a g e  S y s t e m  
The NASA-Ames MSS-II [11] system is centered on Amdahl storage server running 

the UTS operating system. Its goal is to appear to the end user as just another Unix system 
with an infinite supply of very fast disk space. This system, the first we have described 
that was written for Unix, incorporates the following components: 
− A striping file system (equivalent to Berkeley RAID-5) 
− A hierarchical storage manager for Unix 

—  A volume manager ,  e .g .  a  Tape Management  System 
—  A  s t r i p e d  n e t w o r k  

It is also important in that it is hidden under Unix. That is, the user does not 
have to learn a new set of commands, but can use standard Unix commands. In addition, 
the system is completely transparent to high level languages, such as Fortran or C. 

The migration component will migrate files under two conditions. The first is 
periodic migration, which will typically be invoked using the cron utility. The second 
occurs when file system full condition occurs. Migration only affects data blocks - the 
modes and directory structure remain intact. Demand restore occurs when the users issues 
an open for a file whose data blocks are not on disk. I/O will only block if a block that 
is not already on disk is referenced. As data is restored, it is delivered directly to the 
application from the system buffers in parallel to the restoration to disk. 

Tapes are written in ANSI labelled format and contain only the files of a single user. 
This provides a convenient means of dealing with files which have not been accessed for an 
extremely long period - the associated directory structure is deleted and the appropriate 
tapes are mailed to the user in question. 

3 .5  T h e  L a w r e n c e  L i v e r m o r e  S t o r a g e  S y s t e m  
The Livermore Storage System is more commonly known by the name Unitree. 

Unitree is in fact a port of the Livermore system from their NLTSS operating system to 
Unix. Unitree is also marketed by General Atomics (since taken over by Open Vision). 
NLTSS is the Network Livermore Time Sharing System, a follow on the LTSS. In NLTSS, 
there is a single mass storage server, running under UTS (Amdahl's version of Unix). The 
system is coded in C. 

Given the relatively wide-spread availability of Unitree, the remaining discussion 
is based upon the commercial product. 

Unitree is now available through numerous suppliers, including CDC, CONVEX, 
DEC and IBM. Unfortunately, the current versions that are available in the market place 
do not fulfill many of the early promises of the company. Most importantly, there are sig-
nificant performance problems in a number of areas, particularly NFS access, and there 
are a number of design limitations which prevent its use at a large site such as CERN. 
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Firstly, the number of tape volumes is limited to 10K, although some vendors have in-
creased this to 100K. The CERN Tape Management System currently tracks well over half 
a million volumes. The meta and tape catalogues cannot be backed up online, requiring 
up to 3 hours per day when the system is unavailable. In addition, the performance of 
commands such as is is unacceptable. One site quotes roughly one hour to perform an 
is -1 of one thousand files. 

3 . 6  S y s t e m  M a n a g e d  S t o r a g e  
System Managed Storage is a response to a SHARE') white paper of 1979. SMS 

was not announced until  1988, as the Data Facil i ty Storage Management Subsystem. 
It was initially available under the MVS operating system only, but some components 
have since been made available under VM/CMS. Many of the problems cited in the white 
paper were clearly due to some of the less user-friendly features of IBM operating systems. 
Nevertheless, some extremely important features, such as device transparency, storage 
classes and transparent device conversion where high on the list of requested features. 

3 . 7  T h e  F A T M E N  r e v i e w  
All of the systems described above were reviewed by the FATMEN committee. 

Unfortunately, none of them appeared to satisfy our requirements, for the reasons cited 
below. 
− CFS requires an MVS based server. The CERN MVS system was scheduled for ter-

mination at the end of June 1989. More importantly, CFS required a proprietary 
network such as Ultranet or Hyperchannel, although ftp access was possible via a 
gateway server. In addition, there was no CFS client for VM/CMS systems. The 
NCAR system again required proprietory network protocols. In addition, it had not 
been installed at a single site outside of NCAR, although it has since been 
acquired by one of the NASA sites. 

− NAStore unfortunately runs only on Unix. We also needed to provided client support 
for VM/CMS and VAX/VMS systems. 

Unitree was not yet available. Again, it only targetted the Unix world. 

− IBM's SMS looked interesting, but was IBM only. 

In addition, all of the above products, with the obvious exception of SMS, only 
supported the STK silo. CERN had just started a joint project with IBM on their cartridge 
robot. 

3 . 8  R e c e n t  d e v e l o p m e n t s  
Many of the sites responsible for the development of the above products have con-

tinued to develop Mass Storage Systems. In particular, it is worth mentioning the recent 
developments at Los Alamos and the National Storage Laboratory hosted by Lawrence 
Livermore National Laboratory. 

3.8.1 Los Alamos High Performance Data System (HPDS) 
HPDS is a fourth generation storage system designed to meet the storage and ac-

cess requirements of Grand Challenge problems. These applications typically run on super-
computers and massively parallel machines and generate gigabytes to terabytes of output. 
HPDS is designed to store up to petabytes of data, deliver data at tens of megabytes per 
second and handle files up to terabytes in size. Under HPDS, storage devices are directly 
attached to the network and data transfer passes directly from the storage device to the 
client, without passing through an intermediary server. Client access is based on an ftp-
like interface called Data Transfer Interface (DTI). DTI differs from ftp in that it permits 

4) The IBM users' group 
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partial file transfers and appends. Future enhancements include powerful scientific data 
management tools and meta data handling. 

HPDS has a limited lifetime and will be superceded by HPSS, to be developed at 
the National Storage Laboratory. 

3.8.2 The National Storage Laboratory 
The National Storage Laboratory is located at Lawrence Livermore Laboratory 

in California. To some degree, it can be considered a proof of concept laboratory where 
new storage ideas are put into practice. There are two main areas of development, namely 
NSL Unitree and HPSS. 

NSL Unitree is based on Unitree 1.7 with enhancements, which include third party 
data transfer, as in HPDS, and multiple dynamic hierarchies. The latter is a concept 
similar to storage classes introduced by SMS and is described further below. 

3 . 9  D y n a m i c  H i e r a r c h i e s  
The current storage paradigm handles a fixed hierarchy, which often consists of 

disk and tape, or perhaps disk, robotic tape and manual tape. However, this hierarchy 
does not exploit the features of different devices, such as solid state disk, RAID, 3480, 
8mm, DAT, DD-2 etc. A more general approach is to build a multi-level hierarchy and 
define different migration paths for various types of data. For example, large, infrequently 
accessed data might migrate directly to DD-2, whereas more frequently referenced data 
might migrate to optical disk. In addition, this scheme should be flexible enough to permit 
the removal and addition of old or new media types. To remove a media type, e.g. 3420 
tape, one would edit the appropriate configuration file and perhaps add a new type at 
the same time. The system would then ensure that the data were transparently migrated 
from the old media, which could then be removed from service. 

3 . 1 0  N e t w o r k  F i l e  s y s t e m s  
3.10.1 NFS 

The Network File System or NFS, originally developed by Sun, is almost certainly 
the best known distributed file system. NFS is based upon a stateless protocol, using 
remote procedure calls over UDP. 

NFS servers must explicitly export those file systems that they wish to be net-
work accessible. Clients must mount these file systems, or use the automounter, which 
automatically mounts file systems as needed and then dismounts them after a certain 
period of inactivity. The mount point may, and often does, differ from client to client, 
leading to considerable confusion. 

NFS security is based upon Unix user and group IDs, which mean that it is only 
secure within a well-defined and controlled network. 

NFS clients and servers exist for many systems, including Unix, VMS, VM, MVS 
and Novell (in some cases, such as VM/CMS, not all NFS functionality is supported. 
VM/CMS, for example, does not provide an NFS client). 

3.10.2 The Andrew File System 
The Andrew File System, or AFS, was developed at Carnegie-Mellon University, 

Pittsburgh. It is marketed by Transarc Corporation and has been selected by the Open 
Software Foundation (OSF) as the basis for its Distributed File System (DFS). 

One of the important design considerations for AFS was that it be compatible 
with NFS. This is performed by the AFS-NFS exporter, which permits AFS file systems 
to be accessed by NFS clients through a gateway machine. For example, on VXCRNA 
the logical name AFSCERN points to a NFS mount of /a±s/cern ch/user. 

From a user point of view, one of the most important features of AFS is the 
g l o b a l  n a m e  s p a c e .  Thus, the file / a f s / c e r n .  c h / u s e r / j  / j  a m i e / f  a t m e n / f  a t m e n  .  c a r  
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can be accessed transparently from the SSCL in Texas, CERN, or indeed any other node 
that can see the cern . ch cell. 

Before describing what is meant by the term cell, it is worth mentioning an 
additional feature that is much appreciated in the wide area. This is the concept of local 
caching. 

As can be seen by the following example, the first access from Texas to a file at 
CERN involves a small time delay. Subsequent accesses, however, are almost indistinguish-
able in terms of speed from those performed locally. Note that there is an improvement 
in access time even for local access, for the same reason. 

zfatal:/afs/cern.ch/user/jamie/fatmen (543) time head -1 fatmen.car 
+TITLE. 

real 0m0.39s 
user 0m0.01s 
sys 0m0.03s 

zfatal:/afs/cern.ch/user/jamie/fatmen (545) time head -1 fatmen.car 
+TITLE. 

real 0m0.06s 
user 0m0.02s 

sys 0m0.02s 

synergy.ssc.gov$ time head -1 /afs/cern.ch/user/j/jamie/fatmen/fatmen.car 
+TITLE. 

real 0m7.36s 
user 0m0.00s 
sys 0m0.12s 

synergy.ssc.gov$ time head -1 /afs/cern.ch/user/j/jamie/fatmen/fatmen.car 
+TITLE. 

real 0m0.05s 
user 0m0.02s 
sys 0m0.02s 

AFS cells An AFS cell is a group of servers and clients in a single administrative domain. 
AFS cell names are typically those of the ftp domain, e.g. cern. ch. 

Operating system dependant pathnames One obvious problem with a global naming 
scheme is the handling of operating system dependant code. The files that one would 
normally put in the bin subdirectory of one's home directory are likely to be operating 
system specific, unless they are shell scripts. 

This is handled in AFS by the use of sys in the pathname. This is automatically 
translated by AFS into an operating system specific path. On my RS6000, this trans-
lates to rs_aix32. On an HP machine running HP/UX version 9, this would translate as 
hp700_ux90. Thus, by linking the bin directory to @sys/bin, the correct binaries will be 
automatically selected. 

3 . 1 1  A F S  a n d  p h y s i c s  d a t a  
The global naming scheme of AFS would appear to be attractive for accessing 

physics data. Although AFS cannot itself improve the network bandwidth, local caching 
will certainly result in lower network load and better response time for repeated accesses to 
the same files than NFS. As such, it is well suited to accessing small amounts of test data 
in read only mode. It is not well suited to handling files which are frequently updated, as 
this would result in equally frequent cache updates. It also does not offer any improvement 
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over NFS for bulk data access. Both of these problems can be solved by using a library 
routine which bypasses the cache. 

3 . 1 2  I n t e g r a t i n g  A F S  w i t h  h i e r a r c h i c a l  s t o r a g e  s y s t e m s  
One feature that is lacking from standard AFS is hierarchical storage management. 

Two sites have done interesting work in this area, namely the Pittsburgh Supercomputer 
Center and the University of Michigan. The approaches taken are quite different and are 
described briefly below. 

3.12.1 The Institutional File System (IFS) 
The Institutional File System was developed at the University of Michigan [12]. It 

is based on AFS, over which it offers a number of enhancements. These include new server 
platforms, intermediate servers, new classes of clients and extensions to the authentifica-
tion mechanism. 

The main new server platform is the IBM 390 architecture, running under MVS, 
VM/CMS or AIX/370. This permits IFS to exploit the traditional strengths of a main-
frame, namely high I/O capability, large disk capacity and main memory, high reliability 
and general mainframe utilities. The importance of many of these items was clearly greater 
when IFS was designed in the later 1980s. 

A more important extension is the addition of hierarchical storage management, 
provided on the mainframe by IBM's DFHSM. In addition, IFS have made a number 
of enhancements in the area of caching. The most significant of these is the concept of 
intermediate caching servers. IFS supports tens of thousands of workstations and PCs 
and it was felt unrealistic to serve such a high number systems using a single or small 
number of traditional AFS servers. 

Further enhancements in the caching policy are planned, based on the following 
observations. 
− After a file block has been accessed, the chances that it will shortly be reaccessed are 

high. Caching the block exploits temporal locality 
− The chances that the subsequent block will be accessed is also high. Prefetching 

exploits this probability 
− When a file on an archived volume is retrieved, other files from the same volume are 

frequently retrieved shortly after. Restoring all files from a tape exploits this. This 
does not necessarily hold for HEP. This feature was implemented in the 
VAX staging package used by FATMEN but did not help as anticipated at DO, 
FNAL 

Some blocks are more important than others. One should weight blocks appropriately 
in the flushing algorithm. e.g. directory blocks should be retained over data blocks 

− Blocks should also be weighted in relation to their acquisition cost. e.g. blocks that 
were expensive to obtain, e.g. read from tape, should have higher priority than those 
that were cheap to obtain 

− Similarly, some blocks are more expensive to flush, as they must be written to a 
slower storage device 

− Once a user lists the contents of a directory, he frequently attempts to access a file 
in that directory shortly afterwards. Such hints should also be taken into account 

− Some blocks within a file are more popular, e.g. head and tail blocks 

3.12.2 Pittsburgh Supercomputing Center 
Prior to migrating to AFS, the Pittsburgh Supercomputing Center used CFS to 

provide mass storage services. AFS has been extensively enhanced to meet their require-
ments for a mass storage system as described below [13]. 

Firstly, AFS has been enhanced to provide hierarchical storage management. For 
this purpose, AFS was modified to support multiple residencies. This permits a copy of 
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a file to exist in up to 32 places. This has the side effect of enhanced reliability. If one 
component of storage system is down, a request for a given file will be satisfied from highest 
priority storage system that is available. Data migration is performed between storage 
systems according to attributes in a database. These attributes include characteristics 
such as desired file size distributions amongst the different levels of the hierarchy. Media 
types can be replaced transparently by issuing only two commands. 

For practical reasons, multiple AFS servers are required. Currently, each server can 
only support 52 GB of disk space. To avoid having to connect a robotic device of each type 
to every AFS server, the servers have been modified to communicate between themselves 
via RPC to provide shared storage services. Supported servers currently include Maximum 
Strategy RAID arrays, HP optical jukeboxes, Crays running Data Migration Facility and 
RS6000s running Unitree. 

3 .13  OSF/DFS 
The OSF Distributed File System is based on AFS version 4.0. There are a number 

of differences between AFS and DFS, which include the following. DFS is currently only 
available for IBM RS6000 machines (both client and server). The RS6000 server may 
use either the standard AIX journaling file system or Episode. Episode is the standard 
file system for DFS and provides the basic functions that are required, e.g. ACLs. In 
addition, it is also log-based, which is important if one is to avoid length restarts after 
server crashes. DFS path names start /... rather than /afs. DFS and AFS can coexist, 
but are two separate file systems with two separate caches. 

Is the global naming scheme of AFS or DFS with its caching capabilities and 
hierarchical enhancements such as those made at the University of Michigan the answer 
to our problems? Unfortunately, although extremely attractive for home directory style 
files, such a solution is probably not optimal for physics data files, for reasons that are 
discussed below. 

3 .14  Home d i rec to ry  f i l e  se rv ices  
Home directory file services include backup/restore, migrate/recall and archive/retrieve. 

Surprisingly, these functions are often confused. 

3.1.1 Backup and restore 
Backup and restore can be further subdivided into disk (or filesystem) and file 

backup/restore. Disk backup is performed to permit disaster recovery. To a large degree, 
it can be avoided by using techniques such as RAID. Furthermore, it can be simplified by 
using dataless workstations. Firstly, one should ensure that the workstations are running 
from standard system disks. Any local tailoring that is required should be done using a 
script from a standard starting point. This permits one to backup only the master copy 
of the system disk and not the copy on each (remote) workstation. 

File backup is performed to permit users to recover accidentally deleted or cor-
rupted files. As such file restore must clearly be user driven. An analysis of restore requests 
on the central VAXcluster VXCERN at CERN shows that the provision of version num-
bers in the VMS file system virtually eliminates the need for file restore. Unfortunately, 
Unix does not provide version numbers. However, one may achieve a similar effect by 
using code managers which keep copies of multiple versions of a program. In addition, 
techniques such as the trash-can, where deleted files are stored for a few hours, permit 
the recovery of files deleted by mistake. Finally, one should ensure that easily recreatable 
files, such as a. out, core, .o etc. are excluded from the file backup. 

3.14.2 Migration and recall 
File migration provides the user with virtually unlimited disk space. Unused files 

move from faster, more expensive media to slower, lower cost media. Recall must clearly 
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be transparent to applications and user programs, but both migration and recall should 
be user-driveable. This permits users to explicitly migrate files that they know will not 
be accessed for a long time, e.g. if they are about to leave on sabbatical and to recall files 
that will soon be accessed, e.g. when they return. If file migration is not provided, people 
often misuse file backup and archive facilities. It is clear that many of the concepts of SMS 
are required, whereby files are migrated to an appropriate level in the storage hierarchy, 
as determined by their storage class. 

3.14.3 Archiving and retrieval 
Archiving has a number of features that differentiate it from migration. The most 

significant is that archived files belong to a different name space. Some people argue that 
this is an advantage, although this can of course be achieved using a simple script built 
around the migrate command. This script would demand migrate the file and then my 
it to a different filesystem or directory or rename it to a dot file, i.e. one that is not 
visible to a simple is command. Thus, provided a good migration system is available, the 
need for archiving is considerably reduced. Some sites, such as the Rutherford Appleton 
Laboratory in the UK, have maintained a policy of removing archival systems in favour 
of migration systems. 

3 . 1 5  O p e n  S t o r a g e  M a n a g e r  
The Open Storage Manager is a set of three products from Lachman technology. 

The family of products are built around the IEEE MSS reference model and comprises 
1 .  Transm igra to r ,  a  f i l e  m ig ra to r  
2 .  C o n s e r v a t o r ,  a  s t o r a g e  s y s t e m  
3 .  Meditator, a distributed removable medium and library management package 

3.15.1 Transmigrator 
Transmigrator is a software package that provides file migration services for exist-

ing Unix file systems. Files may be migrated in any of three ways: 
1 .  Explic i t ly ,  i .e .  a t  the  request  of  a  user .  
2 .  On demand, i .e.  of there is  a lack of disk space.  
3 .  Periodical ly ,  e .g .  f rom a cron job.  

When a file is migrated out of the normal file system, a so-called stub-file remains. 
This stub-file contains the first data blocks of the file plus a bitfile-ID which points to the 
migrated copy. Obviously, there are thresholds on the minimum file size that a file must 
have before being eligible for migration. In addition, there are thresholds for the minimum 
age of a file. By default, these thresholds are set to 10KB and 1 day since last access. 

Watermarks Transmigrator uses three watermarks. In addition to the traditional high 
watermark, at which point migration is initiated, and low watermark, at which point 
migration terminates, there is a so-called prestage watermark. This watermark is lower 
than the low watermark. After reaching the low watermark, transmigrator may optional 
migrate additional files down to the prestage mark. These files remain on disk in their 
entirety. However, should disk space be urgently required, it can now be released very 
rapidly simply by creating the stub-files - the data has already been migrated into the 
backing store. 

Symbolic attributes Two symbolic attributes are associated to a migrated file. These 
are the storage group and migration path. These attributes permit different files to be 
migrated into different stores, and control the subsequent migration within those stores. 
This can be useful when the attributes or access patterns of certain files are known. Many 
of the files that are migrated will be log files, which are rarely, if ever, recalled. One may 
then migrate these files directly to a low level in the hierarchy onto low cost devices. 



3.15.2 Conservator 
The Conservator is a storage repository that is used by Transmigrator when mi-

grating and recalling files. It is not required by Transmigrator, which can migrate to and 
from any mounted file system. 

Conservator supports multiple internal hierarchies. That is, certain files may be 
migrated to one group of storage devices and others to a different, potentially overlapping 
group of devices. 

3.15.3 Mediator 
The mediator handles dismountable volumes and robotic libraries. In terms of the 

IEEE MSS RM, it provides the functions of both the PVL and PVR. 
The mediator provides a number of timers to optimise operation. These are the 

wait-timer, hog-timer and release-timer. 
When a volume is released, it is maintained online for wait-timer seconds. If a new 

request for the same volume arrives within this interval, it will be satisfied immediately. 
To protect against a given user repeatedly remounting the same volume, the wait-

timer is turned off after hog-timer seconds from the time when the volume was first 
released. 

3 . 1 6  A D S T A R  
As one approaches the Adstar building in San Jose, California, the meaning of the 

company's name is made clear - Advanced Storage and Retrieval. These last two words 
feel strangely reassuring. 

ADSTAR is a component of IBM. It has offices in Tuscon, Arizona, which make 
tape products, and in San Jose, where disk products and storage software are produced. 
ADSTAR are currently represented at the PVR working group meetings. 

The ADSTAR Distributed Storage Manager provides backup and archive services 
for local, NFS and AFS file systems. Space management (migration) is currently being 
added. ADSM clients are already available for MVS, VM/CMS, many Unix platforms and 
Novell. Additional clients are planned for other Unix platforms and VMS systems. The 
servers are also being ported to Unix platforms. ADSM supports many concepts from 
SMS, such as dynamic hierarchies and transparent media retirement. 

In addition to command line and Motif interfaces, ADSM offers a library interface. 
This interface is potentially extremely interesting for the storage and management of HEP 
data. 

3 . 1 7  A  p o s s i b l e  s o l u t i o n  t o  p h y s i c s  d a t a  s t o r a g e  
One of the big problems of using AFS together with hierarchical storage manage-

ment for physics data is that all data must pass through the file system. Not only is this 
inappropriate for certain files, such as rawdata files, but it also gives problems due to 
the sheer number of files involved. Currently, experiments have between 105 and 106 files. 
These numbers are already large for Unix file systems. Future experiments can expect 
up to 109 files, although the actual number is likely to be somewhat smaller. Today's 
file sizes are limited to roughly 180MB so that they fit conveniently on a 3480 cartridge. 
Tomorrow's media are likely to have capacities well in excess of 1GB, so that the actual 
growth in the number of files is likely to be somewhat reduced. 

A feature that is frequently requested by Unitree users is the ability to bypass the 
disk cache for certain types of files - typically large data files such as those used in HEP. 
CFS read and wrote files larger than a certain threshold directly from/to tape - in 1979! 

In addition to the support for multiple dynamic hierarchies and retirement of 
media, ADSM also permits meta-data to be associated with files. Thus, one could consider 
using the ADSM product to manage physics data in one of three ways: 
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1. By modifying the existing FATMEN system to use the ADSM API to store and 
retrieve data 

2. By replacing the existing FATMEN catalogue with the ADSM internal catalogue and 
a small amount of code based on the API 

3. By using a conventional Unix file system instead of the FATMEN catalogue, with 
meta-data stored in dot files 

In all cases, ADSM would take on the functions of our current Tape Management 
System, Staging systems and Robot control. 

4 T h e  I E E E  M S S  R e f e r e n c e  M o d e l  
4.1 History 

The IEEE MSS Reference Model grew out of the initial generic model first pre-
sented at the 6th IEEE MSS symposium. The model is now approaching version 5, and 
it is planned to freeze the model soon and begin work on standardising the various layers 
of the model. Unfortunately, there are still a number of areas of disagreement. However, 
it is likely that the model will mature bottom up, the first standard being for the PVR. 

It is frequently pointed out that there are two sorts of standards: de facto, like 
Sun's NFS, which is widely available and de juro, like OSI, which is essentially unused. 
We would clearly like a standard at least as interoperable and available as NFS. 

4 . 2  T h e  S t o r a g e  S y s t e m  S t a n d a r d s  W o r k i n g  G r o u p  
In 1989, the IEEE Computer Society Technical Committee on Mass Storage Sys-

tems and Technology created a working group, known as the Storage System Standards 
Working Group or SSSWG. The goal of the working group is to convert the model into a 
set of standards for submission to the IEEE and ANSI. 

The immediate goal was the decomposition of the model into interoperable func-
tional components that could be offered by vendors as commercial products. The long 
term goal was to define interoperable standards which define the software interfaces and 
protocols associated with each of the architectural elements of the model. 

The members of the SSSWG come from vendors, such as DEC, HP, IBM, Stor-
ageTEK, Convex plus user sites, such as Lawrence Livermore National Laboratory, the 
University of Michigan and CERN. To acquire voting rights, at least 3 out of the previous 
6 meetings must be attended. Up to now, all meetings have been held in the US but it is 
planned to start a series of workshops in Europe, the first of which will be held at CERN 
later this year. 

4 . 3  I m p o r t a n t  a r c h i t e c t u r a l  f e a t u r e s  
The following features figure prominently in the design of the model. 

1 .  Loca t ion  independence  
2 .  User and system oriented file identifiers  
3 .  Separa t ion  o f  con t ro l  and  da ta  pa ths  
4 .  Applicable to al l  s izes of  s torage systems 

4 . 4  O v e r v i e w  o f  t h e  c o m p o n e n t s  o f  t h e  m o d e l  
The model is built out of a number of functional components. These are as follows: 

Movers are responsible for copying data to and from storage media and requesting 
the transmission of data from source to sink. 
A Physical Volume Repository is responsible for storage removable media con-
tainers, such as tape cartridges or optical disk platters, and mounting these containers 
onto devices through robotic or human agents. 
A Physical Volume Library maps storage media, or physical volumes, to movers. 
The PVL provides a client interface that permits physical volumes to be mounted. 
The PVL maps these volumes to cartridges. 
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— A Storage Server provides mechanisms to compose stores from discretely address-
able storage spaces and translate access requests to these stores into a set of requests 
to the appropriate mover and/or PVL if the associated volume is not mounted. 

4 . 5  A  p e r s o n a l  v i e w  o f  t h e  m o d e l  
I feel that it is important to use terms whose technical meaning is as close as 

possible to that of the English words used. In that respect, one would define a Physical 
volume as being the smallest entity that the Physical Volume Repository can address. 
On top of such objects, one might build logical volumes, which would be managed by 
the logical volume library. These definitions can be explained by a simple analogy with 
books. A volume may contain several books, alternatively a book may be spread across 
many volumes. In this analogy, the volume, which is the smallest thing that we can pick 
up in a book shop, is the physical volume of our model. The logical volume is the 
equivalent of a book. 

Logical to physical mapping can be used to explain existing objects, such as those 
found on VAX/VMS systems. A volume-set is a bound set of disks that appear to higher 
levels as a single entity. In this respect, the logical volume is composed for two or more 
physical volumes. A shadow-set is also a bound set of one or more disks, however its 
appearance is completely different to higher layers! In this case, the data is replicated 
on the different physical volumes, giving reliability and performance improvements (at 
least on read). A further possibility is that of a stripe set or even of a striped, shadowed 
volume set. 

In addition to the advantages expressed above, logical volumes also have benefits 
in terms of transparent migration from one physical volume to another and for caching 
purposes. At CERN, we have used single member shadow sets on VXCERN for many 
years. When a hardware problem is suspected, a spare disk is added to the shadow set. 
Once the catch up copy has completed, the original disk can be removed and repaired. 
Thus we have performed transparent migration from one physical volume to another. 
The same technique could also be used to perform transparent media migration. The 
local volume, which today might map to a complete physical volume, may well be moved 
to much higher capacity media in a many that is completely transparent to the user. 
This feature will certainly be required for the LHC era. Other benefits include cached., 
striped logical volumes. High capacity media often fails to bring with it an appropriate 
increase in throughput. If one requires that a complete volume be processed in less than 
100 seconds, to avoid problems with drive and volume contention, one finds that even 
striping is not sufficient to solve the problem. Logical volumes help by keeping the size of 
data that is to be moved at a manageable level. Finally, one could move logical volumes 
according to access patterns. Those that were frequently accessed together could be moved 
transparently so that they were on a single physical volume. 

4.6 The official view 
Unfortunately, although the IEEE model supports the concepts described above, 

the official names are cartridge for the smallest object that one can address and physical 
volume for our logical volume. 

5 Future developments 
A number of developments are foreseen to enhance FATMEN in the short and 

medium term. In the long term, it is hoped that the IEEE Mass Storage work will develop 
sufficiently so that standard solutions can be used. 

5 . 1  T h e  s h o r t  t e r m  f u t u r e  o f  F A T M E N  
The main short term changes concern usability. Originally, it was envisaged that 

the main use of FATMEN would be via the Fortran callable interface from production 
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programs. To facilitate access to data, a command fmln will be provided which will make 
access to a catalogued file, regardless of its location, as simple as creating a Unix link. 

For example, before running a program that processes a data file on Fortran logical 
unit 1, one might make a link as follows: 

I n  - s f  - j a m i e / d a t a / f x f i l e . d a t  f o r t . 1  

The same program could then access a file catalogued in FATMEN if the following 
command were first issued: 

f m i n  / / c e r n / 1 3 / p r o d / d a t a i l d r e / c c 0 2 z k x u  f o r t . 1  

Although data cataloguing is normally performed only by a small number of pro-
duction managers, a similar command could be provided to simplify this task, as shown 
below: 

f m c a t  / / c e r n / 1 3 / p r o d / d a t a n d r e / c c 0 2 z k x u  v i d .  [ f s e q ]  [ o p t i o n s ]  

5 . 2  T h e  m e d i u m  t e r m  f u t u r e  o f  F A T M E N  
In the medium term, one could envisage Fortran 90 and/or C interfaces, which 

would use standard language features, such as derived data types of structs, rather than 
Zebra banks. More importantly, the area of data export could be improved, e.g. by the 
provision of an asynchronous data export service along the lines of the CHEOPS project 
but possibly using terrestrial networks. 

In addition, a standard event catalogue, such as that used by Aleph, 111 or OPAL 
could be provided and integrated with FATMEN. 

To facilitate the use of standard conforming products, as they emerge, the declared 
interfaces of the components of the FATMEN model could be made conformant to the 
IEEE Mass Storage Systems Reference Model. This would allow us to replace our existing 
Tape Management System with a commercial solution, for example. 

5 . 3  T h e  l o n g  t e r m  f u t u r e  o f  F A T M E N  
Unfortunately, it is unlikely that the IEEE model will ever solve all of our needs. 

For example, the names server component is currently outside the scope of the model. 
Other important areas that are not presently addressed include the handling of files with 
internal structure (the IEEE model treats a file as just a stream of bits) and the whole 
question of data management. 

However, it is clear that the IEEE work will never address issues as HEP specific 
as Zebra FZ initialisation. Consequently, a (hopefully thin) layer of HEP specific code 
will always be required. Nevertheless, it is extremely important that the HEP community 
provides adequate input to the Storage System Standards Working Groups. 

6 Summary 
High Energy Physics has a data management problem that is at least the equal of 

that of any other field. Future experiments will present even more challenging problems 
and it is essential that we start trying to understand these problems now. As data manage-
ment touches many fields, we should adopt a model on which to build. The logical choice 
would appear to be the IEEE reference model for Mass Storage Systems. This model 
already addresses many areas that we know are of critical importance, such as dynamic 
hierarchies, transparent transition from old to new technologies etc. Rather than work 
in a vacuum, we should work closely with the IEEE Storage System Standards Working 
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Group to ensure that any standards or products that appear will cope with the needs of 
HEP. 
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