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ABSTRACT Various molecular fluorophores have been identified to be present during carbon-dot 

(C-dot) syntheses. However, the organization of such fluorophores in C-dots is still unknown. We 

study the self-assembly of 5-oxo-1,2,3,5-tetrahydroimidazo-[1,2-α]-pyridine-7-carboxylic acid 

(IPCA), a molecular fluorophore present during the synthesis of C-dots from citric acid and 

ethylenediamine. Both forms of IPCA (neutral and anionic) show a tendency to self-assemble into 

stacked systems, forming seeds of C-dots during their synthesis. IPCA also interacts with graphitic 

C-dot building blocks, and fragments easily incorporates into their structures via π-π stacking. 

Both IPCA forms are able to create ad-layers internally stabilized by an extensive hydrogen 

bonding network, with an arrangement of layers similar to that in ordinary graphitic C-dots. The 

results show the tendency of molecular fluorophores to form organized stacked seeds of C-dots 

and incorporate into C-dot structures. Such noncovalent structures can be further covalently 

interlinked via the carbonization process during C-dot growth. 
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Although carbon dots (C-dots) were only first discovered in 2004, they have rapidly become one 

of the most extensively studied carbon-based nanomaterials. Their facile synthesis, stability, 

biocompatibility and extensive luminescence properties1,2 make C-dots a promising material for 

optoelectronics,3,4 theranostics,5,6 drug delivery,7 sensing applications8 and bioimaging.9 A C-dot is 

a quasi-spherical 0D nanomaterial (usually smaller than 10 nm) which consists of a graphite-like 

core of graphene sheets stacked on each other and an outer shell bearing oxygen- or nitrogen-

containing functional groups.2,10–12 The detailed structure of C-dots is currently under intensive 

debate owing to their complexity and non-uniform nature. C-dot photoluminescence (PL) is also 

complex, but some common features can be identified. In particular, it is possible to distinguish 

among core, surface and molecular states13–16 contributing to C-dot PL.17,18 

Recent discoveries have shown that molecular fluorophores can also be integrated in the 

structure of C-dots,19 significantly affecting the PL properties.18,20–25 Song et al.17 demonstrated the 

presence of a fluorescent molecule, i.e., 5-oxo-1,2,3,5-tetrahydroimidazo-[1,2-α]-pyridine-7-

carboxylic acid (IPCA), in solution when preparing C-dots via a bottom-up synthesis from citric 

acid and ethylenediamine and showed that it significantly increased the fluorescent quantum yield 

and shifted the absorption/emission spectra. As recently reviewed,26 aggregation of several 

fluorescent molecules in solvent has been observed experimentally, e.g., 5-oxo-3,5-dihydro-2H-

thiazolo[3,2-a]pyridine-7-carboxylic acid (TPCA), 5-oxo-3,5-dihydro-2H-thiazolo[3,2-

a]pyridine-3,7-dicarboxylic acid (TPDCA)27,28 and hydroxymethylfurfural (HMF).19 Thus, it has 

been suggested that these aggregates may affect the overall fluorescence properties of a C-dot 

solution.29–32 These findings are consistent with the fact that planar conjugated materials tend to 

form aggregates in solutions/suspensions.33–35 Self-assemblies of polyaromatic hydrocarbons 

(PAHs) used as building blocks display PL properties resembling those of C-dots, and the 
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properties of C-dots can be tuned by changing the composition of individual PAH building 

blocks.36 Self-assemblies of luminescent molecules have been suggested to play a significant role 

in the C-dot formation process16 and contribute to C-dot PL. However, the precise structural 

features of such assemblies are still unknown and particularly challenging to determine by 

experimental methods owing to their complexity and expected inherent dynamics. Understanding 

the structural features of such assemblies may help to better understand the processes of C-dot 

formation and origins of C-dot PL enabling rational design of C-dots with tailored properties and 

facilitate theoretical studies dealing with the PL properties of C-dots.37–42 

In this work, we employed classical all-atom molecular dynamics (MD) simulations in explicit 

solvent to analyze the self-assembly process of the molecular fluorophore IPCA and the structural 

features of such self-assemblies in water. We also analyzed interactions of IPCA molecules with 

graphitic C-dots fragments. We focused on the self-assembly of IPCA anions (Scheme S1 in 

Supporting Information, estimated pKa of IPCA COOH group is 2.9 according to MarvinSketch 

18.17.043) as the dominant protonation form close to neutral pH. Results for the neutral IPCA form, 

i.e., a dominant form in an acidic environment, are shown in the Supporting Information. MD 

simulations of five systems were carried out (Table 1): (1) self-assembly of IPCAs, (2) interaction 

of IPCAs with a C-dot fragment, (3) interactions of IPCAs with a spherical C-dot model, and (4 

and 5) self-assembly of edge functionalized PAHs44 without (4)/with (5) IPCAs in water. Systems 

(4) and (5) were also studied with a set of PAH layers with smaller radius (see Table S1 for a full 

list of simulations and system details). Although we performed all simulations with three 

independent replicas, the results are presented for only one of them as they were very similar (if 

not stated otherwise). 
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Table 1. Composition of simulation boxes with numbers of PAH layers, IPCA(-1) anions and water 

molecules. For each system, three independent replicas were performed (cf. Table S1 in Supporting 

Information). 

System C-dot IPCA(-1) Water Box dimensions (nm) Simulation length (ns) 

1 None* 50 10894 7.4 × 7.0 × 6.7 200 

2 4 layers 20 7302 6.1 × 6.1 × 6.1 200 

3 9 layers 10 10753 7.4 × 7.0 × 6.7 200 

4 9 layers 0 8280 6.5 × 6.5 × 6.5 200 

5 6 layers* 15 8360 6.5 × 6.5 × 6.5 200 

*These simulations were also performed at temperature 473 K and pressure 15.5 bar. 

Self-assembly of IPCAs in water 

MD simulations showed the spontaneous and rapid formation of IPCA stacked assemblies in a 

water environment. Initially, within the first few nanoseconds of the MD simulations, randomly 

distributed monomers of IPCA anions started to form small aggregates (containing 2-3 IPCA 

molecules) (Figs. 1a, 2a, b). The nanoclusters subsequently grew and self-assembled into longer 

fibrils interacting via π-π stacking interactions (Figs. 1a, 2a, b, S1 in Supporting Information SI). 

The π-stacked layers were separated by ~0.34 nm, which corresponds to the separation of graphene 

layers in graphite and the distance between individual layers in C-dots.45,46 The negatively charged 

carboxylate groups of stacked IPCA molecules were oriented either in opposite directions or 

interacted via a counterion (salt-bridge, Figs. 1d-f, S1). Note that neutral IPCAs (see Figs. 2a, c, 

S2-S5) displayed even higher tendency to form long π-stacks stabilized by electrostatics and 

dispersion interaction as revealed by the symmetry-adapted perturbation theory (SAPT)47 analysis 

(Table S2 and Fig. S6), suggesting that pH may affect the structure of C-dot seeds during synthesis, 

as discussed in the literature.48 These findings also imply that longer π-stacks are destabilized by 



 6 

the unfavorable electrostatic repulsion of deprotonated carboxylic groups of IPCA anions. Overall, 

the MD simulations revealed a strong tendency of IPCA to form nanoclusters in an aqueous 

environment with a highly dynamic structure, as many reorganization events of stacks were 

observed during the entire simulation time (see movie in Supporting Information). Different 

reorganization schemes of stacks were followed in the simulations, e.g., dimers were formed either 

from two monomers or by the disintegration of larger stacks; and they either aggregated into longer 

stacks or dissolved back into two monomers. Therefore, the lifetime of particular stacks, e.g., 

dimers, was very diverse (median for several dimers in MD simulations was ~8 ns). The lifetime 

of larger stacks was even shorter (0.5 – 2.4 ns). The observed stacked nanoclusters of IPCA may 

form seeds for the formation of C-dots, e.g., during bottom-up thermal synthesis, as suggested in 

other experimental works.49 To corroborate this idea, we carried out MD simulations at higher 

temperature (473 K) and pressure (15.5 bar) corresponding to synthetic conditions.17 The tendency 

of IPCA clustering at these conditions with respect to ambient (300 K and 1 bar) conditions was 

reduced (Figs. 2d, e, f) due to a significant role of the entropic contribution to free energy of 

association (Tables S3). The stacked nanoclusters of IPCAs were also observed at the higher 

temperature and pressure conditions (Fig. S7). The layered structure of IPCA self-assemblies 

imprinted by π-π stacking may explain the graphitic-like structure of C-dots. 
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Figure 1. Snapshots taken from MD simulations (at 200 ns) of (a) System 1 (detailed in Table 1) 

showing self-assemblies of IPCA anions; (b) System 2 showing that IPCA anions can self-

assemble and also stack on an accessible surface of a C-dot fragment (shown by darker colors), 

forming an ad-layer on the C-dot; (c) System 3 showing that IPCA can also interact with a spherical 

C-dot. (d, e, f) Insets taken from panel (a) showing examples of IPCA dimer, trimer and tetramer, 

respectively. On average, π-stacked layers were separated by ~0.34 nm in all systems. Coloring 

scheme: cyan, black-carbon; red-oxygen; blue-nitrogen; white-hydrogens. Water and Na+ are 

omitted for clarity.  
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Figure 2. (a, d) Number of π-stacks of neutral (cyan) and deprotonated (magenta) IPCA molecules 

(system 1) collected at different times of MD simulations simulated at (a) 300 K and 1 bar; and (d) 

at 473 K and 15.5 bar, revealing the tendency of IPCA monomers to be self-assembled in water. 

Clustering analysis of (b) deprotonated IPCAs (300 K, 1 bar), (c) neutral IPCAs (300 K, 1 bar), 

(e) deprotonated IPCAs (473 K, 15.5 bar), (f) neutral IPCAs (473 K and 15.5 bar) analyzed for 

selected simulation times show the number of IPCAs that preferentially formed the clusters. 

Cluster size distribution refers to how many IPCAs of the total number are in the particular stack. 

Interaction of IPCAs with C-dot in water 

MD simulations were also used to investigate the affinity of IPCA anions to interact with a C-

dot fragment, i.e., half-spherical C-dot. The graphitic C-dot fragment consisted of four layers of 
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edge-functionalized PAHs (Fig. 1b). IPCA monomers interacted with the C-dot layers via π-

stacking and preferentially stacked on layers with a solvent exposed surface (Figs. 1b, S8). IPCA 

anions created typically one or two or three ad-layers on the outer C-dot layer. The layer spacing 

was ~0.34 nm (Figs. 3a, b), which is the same as for a (002) facet of graphitic fragments of C-

dot.50–52 During the assembly process, molecules of IPCA also interacted with the C-dot fragment 

via OH–COO(H) hydrogen bonds (HBs, Fig. S8), but such complexes were unstable and broke 

apart within a few ns. In the case of neutral IPCA molecules, more layers composed of exclusively 

IPCA molecules were formed (Fig. S9) with IPCAs connected by HBs. These layers were very 

similar to C-dot layers formed of PAHs (Fig. S9). Hence, the assembly process led to the formation 

of C-dots with graphitic structure that were hardly distinguishable from PAH C-dots in terms of their 

density profile (Fig. S9). 

MD simulation of IPCA anions (and neutral molecules) with a fully spherical C-dot in solution 

(System 3) showed a similar stacking behavior and formation of temporary HBs with hydroxyl 

groups on the C-dot surface shell (Figs. 1c, S10-12). The lifetime of such HBs was ~39 ps, and 

they were repeatedly formed between IPCA and the C-dot or water molecules (analyzed by the 

intermittent HB correlation function using the gmx hbond tool for the first 100 ns of simulation 

time, as described by Luzar and Chandler53,54). For the sake of completeness, it should be noted 

that IPCA anions (and also neutral IPCA molecules) formed short-lived two- or three-membered 

stacks in solution (Fig. 1c).  
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Figure 3. Panel a) shows density profile (left) of a C-dot fragment with IPCA anions showing the 

tendency of IPCA anions to stack on the outer layers of the C-dot fragment, forming nearly regular 

ad-layers with 0.34 nm interlayer spacing. Snapshot taken at 200 ns shows structure of the 

assembly of PAH layers (in black balls) and IPCAs (in cyan). Water, ions and dissolved IPCAs 

are omitted for clarity. Panel b) displays the same structure taken at 200 ns in a different view with 

an IPCA ad-layer displayed in detail with water molecules and Na+ ion within 0.3 nm from IPCAs.  

Formation of C-dot from PAH building blocks in the presence of IPCA 

In addition to assembly of IPCAs on a C-dot fragment, we also investigated if and to what extent 

the presence of IPCA affects the process of C-dot self-assembly. We prepared randomly 

distributed hydroxyl edge-functionalized PAHs in water and analyzed their behavior with or 

without the presence of IPCA molecules. The simulations without IPCAs showed a tendency for 

PAHs to form graphitic C-dot structures stabilized by π-π stacking (Figs. 4, S13-14). In contrast, 

if IPCA ions/molecules were present, ad-layers were formed via π-stacking interactions on top of 

PAH sheets (as seen in the MD simulations with a C-dot fragment). In addition, IPCA was able to 

incorporate/intercalate into the C-dot structure, complementing/amending the PAH layers (Figs. 

4, S15-19). In such a case, IPCA prefers to stay at the edge of the C-dot, with its carboxyl groups 
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exposed to water (Fig. S20). Neutral IPCA molecules were able to form internal layers stabilized 

by HBs and sandwiched in-between PAHs layers (Figs. S19, S20). Although we observed that 

higher temperature (473 K) and pressure (15.5 bar) conditions reduced the stacking ability of 

IPCAs in solution (cf. Fig. 2), we did not detect any significant changes in MD simulations of PAH 

layers and IPCAs at these conditions (Fig. S21). This behavior can be attributed to higher affinities 

of IPCA(0) to PAH with respect to binding affinity between IPCA(0)s as evidenced by the 

potential of mean force (Fig. S22). All these findings suggest a mechanism by which molecular 

fluorophores may incorporate into a C-dot structure.17,18 During the carbonization process, these 

non-covalently bound systems may be further covalently linked, e.g., by dehydration reactions, to 

form final C-dot structures.18 

 

Figure 4. Final snapshots (taken at 200 ns) of self-assembled C-dots composed of functionalized 

PAHs only (left: System 4 Rg = 1.16 nm) and C-dots formed from functionalized PAHs in the 

presence of IPCA anions (right: System 5, Rg = 1.08 nm) and their corresponding density profiles. 

PAH layers are represented by spheres (carbon – black, oxygen – red, hydrogen – white) and IPCA 

by sticks (carbons – cyan, nitrogen – blue). Water is omitted for clarity. 
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In summary, all-atomic MD simulations revealed that IPCA molecules rapidly self-assembled 

in water to form p-p stacked assemblies, which may serve as aggregation centers for C-dot 

formation, e.g., during the bottom-up synthesis of C-dots. Furthermore, if C-dot or a C-dot 

fragment was already present in the solution, IPCAs adsorbed on its surface, interacting mostly 

via p-p stacking on C-dot solvent exposed layers or alternatively through HBs with the surface 

functional groups. The complexes of C-dot with IPCA stabilized by HBs were relatively unstable 

and broke apart on a time scale of a few of nanoseconds. In contrast, the p-p stacked complexes 

were significantly more stable. IPCA was also capable of forming ad-layers on C-dot surfaces by 

creating a full layer of IPCAs internally stabilized by HBs. IPCAs together with functionalized 

PAHs were able to form C-dots with IPCA incorporated into their structures, preferably in solvent 

exposed (at least partially) poses. All these findings show that i) molecular fluorophores can 

spontaneously form C-dots seeds, ii) p-p stacking of molecular fluorophores in C-dot seeds 

facilitates the formation of graphitic C-dots, and iii) molecular fluorophores can readily 

incorporate into C-dot structures, where they can function as molecular fluorophores contributing 

to the PL properties of C-dots.17,18  
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Computational Methods 

IPCA molecules were described by the GAFF force field.55 Parameters for the neutral form were 

taken from the literature56 (topology files are available in the Supporting Information) and 

parameters for the IPCA anion were derived by the same protocol56 (see Supporting Information). 

C-dots were described by the AMBER ff99 force field57 with refined parameters for aromatic 

carbon atoms.58 Structures of C-dots were generated with carbon dot builder44 and PAH layers 

were functionalized on 30 % of their edges by hydroxyl groups.  

IPCA molecules were added randomly into a simulation box or around a C-dot/C-dot fragment. 

For Systems 4 and 5, we inserted first randomly the PAH layers and afterwards inserted IPCA 

molecules. Further, we solvated the systems with the SPC/E water model59 and neutralized them 

with Na+ ions.60 All systems were prepared and simulated as three replicas. After minimization 

with the steepest descent algorithm, MD simulations were performed under NpT conditions with 

a 2 fs time step, and bonds involving hydrogen were constrained using the LINCS algorithm.61 

Owing to initial instability, Systems 4 and 5 were first subjected to 1 ns of heating, starting at 250 

K and reaching 300 K. In subsequent simulations, the temperature was kept at 300 K with the V-

rescale thermostat62 with a 0.1 ps scaling constant. The isotropic Berendsen63 barostat was 

introduced to keep the pressure at 1 bar during the simulation, and the time constant for pressure 

relaxation was set to 2.0 ps. Electrostatic interactions were treated by means of the particle-mesh 

Ewald (PME)64 method with a real-space cutoff of 1.0 nm; the same cutoff was applied for van der 

Waals interactions. Periodic boundary conditions were applied in all three dimensions. All MD 

simulations were performed in Gromacs 5.0.65 Further, MD simulations at temperature of 473 K 

and pressure 15.5 bar were performed in order to emulate experimental synthetic conditions17 when 

carbonization of C-dots occurs. 
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Simulations were analyzed in terms of density profiles, the radius of gyration (Rg), number of 

hydrogen bonds (analyzed with GROMACS tools) and number of π-stacking interactions 

(evaluated with a home-written code,66 analyzing the overlap of two IPCA planes geometrically, 

i.e., by a mathematical analysis of convex planar polygons for all ordered pairs of IPCAs with the 

stacking distance set to 0.3 – 0.4 nm). Figures were rendered in PyMoL.67 
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