
In: Zimmermann, Harald H.; Schramm, Volker (Hg.): Knowledge Management und
Kommunikationssysteme, Workflow Management, Multimedia, Knowledge Transfer. Proceedings des 6.
Internationalen Symposiums für Informationswissenschaft (ISI 1998), Prag, 3. – 7. November 1998.
Konstanz: UVK Verlagsgesellschaft mbH, 1998. S. 273 – 282

Interface for Navigation and Database - Querying
via WWW

A.L. Heuer, K. Siemonsen, T. Engel and C. Meinel

{Heuer, Siemonsen, Engel, Meinel}@ti.fhg.de

Institut für Telematik
Bahnhofstraße 30-32, 54292 Trier

Contents

Summary
1. Introduction
2. The Design of the System
2.1 The Metadatabase
2.1.1 The Meta Information
2.1.2 The Database Information
2.1.3 Atomic Storage of Query-Components
2.1.4 The Navigation Structure
2.2 The Server
2.3 The Administration Tools
3. Possible Employment of the System
4. Conclusion and Outlook
Literature

Summary

We describe the concept and the implementation of a Navigation and Database
Interface (NDI) on the World Wide Web. The prototype combines the storage of
database queries and navigational structures, both made more valuable by
comprehensive meta information. The multilingual design of the meta information
set prepares the system for use in an international environment.

1. Introduction
As described in (Benn 1998) there is an enormous number of systems, scientific or
commercial, trying to make databases available on the WWW. The most common
way is using forms and CGI-scripts. Although this is a very easy solution, it

Dieses Dokument wird unter folgender creative commons Lizenz veröffentlicht:
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

273

http://www.informationswissenschaft.org/
http://de.creativecommons.org/
http://de.creativecommons.org/
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

A.L. Heuer, K. Siemonsen, T. Engel and C. Meinel

becomes more and more unmanageable if the number of queries has to be
extended or modified frequently. The number of scripts will increase with the
number of queries. The performance is rather poor and problems occur as the
number of accesses rises.
Another common approach uses macro-HTML. Documents include special tags
that are preprocessed by the server before sending the document to the client, so
that the tables are generated on the fly. The results are put into predefined HTML-
pages either by CGI scripts or by an added server functionality. This method is
implemented easily and allows better maintenance than using CGI-scripts that mix
executable code with database queries and layout. Some database vendors
implement HTTP interfaces in their database engines. HTTP requests to such
databases are processed directly. However, this method will only work on a
proprietary basis. Each database vendor will create his own interface.
Finally there is the more complex approach of using distributed services. Using
IIOP or other protocols, applications - distributed by application servers to the
clients - connect to objects implementing business logic in order to manipulate
data. The client only displays data, while database interaction uses appropriate
services provided by database applications.
Our approach is similar to a database engine implementing HTTP. We built a
server that delivers navigational information enriched with meta information. Such
meta information are, as described below, a speaking name, a comment, a
number of keywords and an additional HTML page containing detailed information.
Meta information is stored in different languages. Therefore the same navigational
structure can be used in multilingual environments. On the client side users
receive dynamically generated HTML pages containing links. Each link leads
either to another navigational page lower in the hierarchy or represents a database
query on a relational database. Meta information is provided in either case. If
users choose a database query link, the according query will be executed. The
result set will be returned as a table.

2. The Design of the System
The system architecture is quite simple. A relational (Codd 1990) database, the so
called metadatabase, is used to store information about other relational
databases. An interface based on this metadatabase provides access to the
databases known to the system.
The complete system, as shown in Fig. 1, actually consists of four components on
the server side. Firstly there is the metadatabase itself. For example, it stores
information about relational databases (DB1, DB2, ...). Furthermore there is the
HTTP-server-like program (NDI) that provides the interface. It displays the
navigational structures and executes the select-statements. Finally there are two
tools for administration. One (Admin 1) is being used to maintain the information
about the managed databases. The other one (Admin 2) allows to generate
queries and navigation paths. Platform independence is aspired by doing all
coding with Java. Therefore the server component and the administration tools are
expected to run on most systems. Database connections are managed by JDBC
drivers (Reese 1997). Because of our decision to use simple HTML pages
submitted to the client via HTTP, every common WWW-Browser can be used as a
front-end to the system.

 274

Interface for Navigation and Database

DB ..

DB 2
DB 1

NDI

MetaDatabase

Jdbc/sql

Jdbc/sql

HTTP/HTML

Browser

Admin 2

Admin 1
Jdbc/sql

Jdbc/sql

Fig. 1 The system architecture of the Navigation and Database Interface (NDI).
The Browser as a client, and the NDI as Server that connects to databases using
information from the metadatabase. Furthermore the two Admintools to manage
the alignment between the metadatabase and the maintained databases (Admin
1) as well as the navigational structure(Admin 2)

2.1 The Metadatabase
The data needed to provide a navigational interface to the client is stored in a
relational database. This database contains different kinds of information. Firstly
there is the information about the databases known to the system. Secondly there
are navigational structures. Furthermore the metadatabase retains the queries to
be executed on the known databases. Finally it stores metadata to enable a user-
friendly informational interface to the databases with their contents.
The metadatabase consists of over thirty tables managing the mentioned
information. The following paragraphs describes the different kinds of information
in detail.

2.1.1 The Meta Information
In our system meta information (Fig. 2) is an additional description for all objects
stored in the metadatabase. This means there is description maintainable for
single columns as well as for complete queries. Such meta information is at first a
speaking name that is presented to the user for each object. For example, the
system allows administrators to give each column a name describing the content
of the column to the common user. This name can be defined simultaneously in
any language maintained by the system. In addition to the speaking names it is
possible to enter multilingual comments. They allow a short description of the
objects they are linked to. For example, they may be displayed in the status line of
the Browser with JavaScript, if the user moves the mouse pointer over the

 275

A.L. Heuer, K. Siemonsen, T. Engel and C. Meinel

corresponding link. Finally the administrators may use HTML pages served by a
common webserver for detailed description.

Speaking Name

Comment

Http://server/help.html

Sprechender Name

Kommentar

Http://server/hilfe.html

...

...

...

Meta Information

Language 1 Language 2 Language n

Fig. 2 The metadata managed for each object stored in the metadatabase.
The system stores only the URLs of these detailed help-pages. Therefore common
techniques can be used to create and store the pages. Of course such detailed
pages can also be differentiated by language. Furthermore such description pages
may contain links to other relevant database contents. This adds an additional
navigation layer, that is not maintained by the NDI anymore. In order to ease
finding of an object a set of multilingual keywords can be attached to the objects.

Meta
Object

InformationKeyword

Status Type

Language

Keyword
Relation

has has

hashas

explains

1,1 1,1

0,n 1,n

1,11,n 0,n

1,1

0,n

0,n

0,n

0,n

Fig. 3 The meta object with its relations. Other objects that need meta information
inherit from this object.
In the data model a meta object (Fig. 3) was designed that contains the set of meta
information. Each other object that needs access to metadata inherits from this
object .

2.1.2 The Database Information
In order to access tables or views of any other relational database with the NDI,

 276

Interface for Navigation and Database

the metadatabase has to store information about their structures. This means that
each table or view with its columns and its data formats has to be referenced in
the metadatabase. Parameters to access those databases are stored as well as
their type, the corresponding hostname and the port of the database server.

Database

Table View

Virtual
Table Column

=

Foreign Key
Relation

has has0,n

0,n

0,n

1,n0,n1,1

Fig. 4 The relationship of the entities relevant for the access of the maintained
databases. Because of their similarities, tables and views are described in the
model as virtual tables. Tables and views only extend those virtual table objects.
While this approach makes it difficult to handle constantly modified database
structures, it is satisfying for databases that are set up once and modified only
very seldom. Of course a modification in the sense of extension is easier to handle
than removing columns or tables.

2.1.3 Atomic Storage of Query-Components
A common SQL (Date 1997) statement consists of several components. The NDI
system does not store queries as strings. Each component is stored by reference
separately. This means a select statement is broken down on column and table /
view basis. Because the metadatabase does not use strings to store queries, it is
very easy to modify a query afterwards. Furthermore, if some table is modified or a
column is removed, there is no need to parse query strings. One can directly
search in the sets of query components. Since each query consists of a set of
components, the system creates query strings dynamically. If one wants to use the
same query on a different database system, the syntax can differ. The dynamic
creation of query strings allows to adapt the syntax.
Furthermore the atomic storage of the query components can be used for query
inheritance in case of a further drill down. For each inheritance level the
administrator can define which component he wants to add to or remove from the

 277

A.L. Heuer, K. Siemonsen, T. Engel and C. Meinel

actual basic query. So such a basic query can be extended until the resultset is
the desired one.
Restriction of queries can be done by three different kinds of values. Firstly there
are static values. They are set at the time of query creation. Furthermore the
system provides two kinds of dynamic values. Date and time periods, e.g. today,
yesterday or last 20 days are generated for restriction dynamically before the
query is sent to the database. Finally there are text fields that have to be filled out
by users at runtime and lists, from which users may select entries. In such a case
of interaction with users a form has to be shown before the execution of the query.

2.1.4 The Navigation Structure
Besides the database dependent information the system has to store navigational
information (Fig. 5). Therefore a hierarchical structure was chosen. The system
stores nodes and edges.

Node Statement Original
Database

Meta Object

has child
0,n

0,n
0,1

1,n

contains
information

1,n

1,1 0,11,1

uses mn

Fig. 5 The relationship between nodes and statements. Each node can have one
parent node. A node may have child nodes and statements. Each statement can
be linked to an arbitrary number of nodes. A statement is executed by the
database it was built for. For nodes as well as statements and the original
databases meta information is available.
For ease of maintenance each node may have several child nodes but only one
parent node. A node contains a set of meta information, as described above.
Connecting the nodes with edges creates a hierarchy which allows an upward and
downward navigation in the structure. Equivalent to the directory structure in file
systems, nodes may have child nodes that would represent subdirectories. To
each node a number of queries (queries could be associated with the files in file
systems) can be attached. Those queries may aim at different databases. So in
the navigational structure it is possible to group queries by the content they
deliver, independent of the database that stores the data. Users will not need to
know which database stores the data they require. They will follow the content
dependent paths.

 278

Interface for Navigation and Database

One query object can be linked to many nodes, eventually in different contexts. So
it is possible to build more than one path to the same set of queries. Therefore
different views on the data can be generated. This allows to adapt the system for
different groups of users. The system does not build a content dependent
navigational structure automatically. Administrators have to develop such
structures manually. In the node and query space the search by keywords that can
be attached to them would be a kind of free navigation.

2.2 The Server
Using Java the NDI server was implemented platform-independent. The server
program (Sridharan 1997) listens for HTTP requests on a specified port. It parses
the requests and extracts the required information from the metadatabase. Either
the system generates then a new navigation page that is presented to the user, or
it executes a query on a database. In this case the received resultset will be
shown to the user in a HTML-Table.
In the navigation pages each node object is represented by its speaking name.
The name is connected via a hyperlink to the child nodes and the attached
queries.
The server program (Fig. 1, NDI) runs multithreaded and is capable to connect to
several different database engines (from different vendors) at once. The
connection to all databases is done by JDBC. Therefore the server can only
connect to databases which provide JDBC drivers that make them accessible via
internet. Since nearly each bigger vendor provides a driver to his databases, this is
no real restriction. In order to adapt to user requests, the server logs each
database query. This may help to specify existing and further needed queries.

2.3 The Administration Tools
As mentioned above (Fig. 1) there are two tools that were designed in connection
with the Navigation and Database Interface. Both tools are quite platform
independent, since their coding was done with Java. They connect to the
databases with JDBC in the same manner as the server.
The first one (Fig. 1 ,Admin 1) is needed to import the structures of the databases
to be maintained by the system. It reads the system tables of the databases and
extracts the required information from them. Since the system tables differ for
each database type, this process requires some adaptational work, if a new
database is to be imported. When JDBC drivers provide a complete set of
database metadata the import process can be standardized. As described above
each table, view and column of the maintained databases is referenced in the
metadatabase. Furthermore meta information may be added during the import
process. Besides this import functionality, certain consistency checks have to be
implemented. The complete system will only work, if the information about the
original databases concerning tables and columns is correct.
After an import the available information can be managed with a second tool (Fig.
1, Admin 2). This tool allows to create the hierarchical structures for navigation
described above.

 279

A.L. Heuer, K. Siemonsen, T. Engel and C. Meinel

Fig. 6 The window with the tree view that displays the navigational structure of the
NDI. The window can also be used for editing.

The navigational structure is shown in a tree view (Fig. 6) that may be edited with
the functions the window provides. A meta information window (Fig. 7) gathers the
information associated with a node or query. The information can be entered in
several languages at the same time.

Fig. 7 The window that gathers the meta information for a node or statement. The
choice in the top switches the language.
Simple queries can be designed with a query design window (Fig. 8).

 280

Interface for Navigation and Database

Fig. 8 The window used to generate simple select statements.
Each query may be attached to several nodes. This enables different navigational
structures leading to the same data. So users with different preferences
concerning navigation can be satisfied. While the first tool is implemented as an
application, the second one will run as an Applet as well. This allows database
administrators to create their queries for the databases maintained by themselves
via Internet.

3. Possible Employment of the System
The main aim of the NDI is to increase the availability of existing databases. The
system provides one general user interface for databases of different vendors. It
does not bother users with the need for knowledge of each databases existence,
content and handling. Users just select what kind of information they need by
following the predefined paths built by experienced people (administrators). The
system will lead them to the available database queries. So Users do not even
need to know anymore, which database answers their queries. They just receive a
table containing a result set. If they need to gather further information, they may
read the comment or the additional help page belonging to the query they
executed. Because of its multilingual implementation and the meta information it
provides, the system could be employed for the documentation of databases, too.
The most important use of the NDI is probably the intranet of a multinational
company or an international organization. Even public databases, e.g. in
environmental protection (Siemonsen 1998) could possibly use the system.
Usually such companies and institutions own several “older” databases with very
valuable data. Often it is unreasonable to migrate such systems to more up to date
database engines, since there are still some applications running, that require the
existing database engines. Up to now, very often one has to use special,
database-dependent, difficult to use proprietary tools, which are very often
platform-dependent, in order to extract information from these databases.

 281

A.L. Heuer, K. Siemonsen, T. Engel and C. Meinel

4. Conclusion and Outlook
In this paper we described the concept and prototype implementation of a Java
based and therefore platform- independent database interface on the World Wide
Web. This interface combines navigation and database queries. Both are enriched
with multilingual metadata. Of course the system will not be satisfying for people
being used to access databases directly with SQL in a proprietary environment.
But it works very well for a great percentage of common users that have to
execute nearly the same set of queries on several databases every day.
Furthermore it supports users with their search for information, of which they do
not know where it is stored.
Database administrators can generate statements satisfying users needs and
provide them by using the interface.
While still being a prototype, the system can be improved in several ways. In order
to create a more general way to run the server component, we intend to implement
the server service described above as a servlet. Then each webserver capable of
running Java servlets could be extended with the Navigation and Database
Interface (NDI). At the moment only database querying is provided. If we decide to
manage sessions and implement user registration, it is also feasible to allow data
manipulation. In the near future we plan to extend the system in regard of URL
managing. Then not only database queries can be attached to nodes, but arbitrary
URLs pointing to content related data sources. This will allow a navigation in an
even more open information space. In contrast to a search engine the system
would deliver URLs that have been reviewed and sorted by experienced people.

Literature
[Benn 1998]

Benn, W. Gringer, I. : Zugriff auf Datenbanken über das World Wide Web,
Informatik Spektrum 21:1-8(1998), Springer Verlag 1998

[Codd 1990]
Codd, E.F. : The Relational Model for Database Management: Version 2.
Reading, MA: Addison-Wessley 1990

[Date 1997]
Date, C.J., Darwen,H.: A Guide to SQL Standard. 4. Auflage. Reading, MA:
Addison-Wessley 1997

[Reese 1997]
Reese, G.: Database Programming with JDBC and Java, O'Reilly 1997

[Siemonsen 1998]
Siemonsen, K. Heuer, A. Engel, T. and Meinel C.
Ein Web-basiertes Navigationssystem für allgemeine, heterogene
Datenbanksysteme, Proceedings of 1. Workshop Hypermedia im
Umweltschutz, Ulm (1998) ,p. 83-86

[Sridharan 1997]
Sridharan, P. : Advanced Java networking, Prentice Hall 1997, p.67-75

 282

	Interface for Navigation and Database - Querying via WWW
	A.L. Heuer, K. Siemonsen, T. Engel and C. Meinel

	Contents
	Summary
	1. Introduction
	2. The Design of the System
	2.1 The Metadatabase
	2.1.1 The Meta Information
	2.1.2 The Database Information
	2.1.3 Atomic Storage of Query-Components
	2.1.4 The Navigation Structure
	2.2 The Server
	2.3 The Administration Tools

	3. Possible Employment of the System
	4. Conclusion and Outlook
	Literature

