Examination and Comparison of TOSCA
Orchestration Tools

Anze Luzar!, Sago Stanovnik!, and Matija Cankar!

XLAB Research, XLAB d.o.0., Pot za Brdom 100, 1000 Ljubljana, Slovenia
https://www.xlab.si/research/

Abstract. The use of orchestration and automation has been growing
in recent years. This can be especially evident in cloud infrastructures
where OASIS TOSCA orchestration standard can be used to provide
independence and prevent vendor lock-in. In this paper we examine dif-
ferent TOSCA compliant orchestration tools, test them with TOSCA
templates and present a comparison between these tools. This compar-
ison should be used to decide which tool is easier to use for both the
companies and the developers according to their requirements.

Keywords: Comparison - Cloud Computing - DevOps - Orchestration
- Automation - Orchestrator - Orchestration tool - TOSCA.

1 Introduction

Automation and orchestration tools usually do not draw the attention of de-
velopers who are independent or are working on smaller projects. However,
for large companies and corporations they are of great significance, bringing
business value through the possibilities to orchestrate and transfer applications
throughout several cloud infrastructures. Although developers want complete
independence from the target platforms, numerous cloud providers only provide
compatibility and first—party support for their own services. This can create a sig-
nificant impact on the effort and cost expenditure, associated with the migration
of services to from one to another cloud platform. Companies therefore search
for universal orchestration tools, which promise compatibility with many cloud
providers. However, these often don’t support specific functionalities within each
of the supported cloud platforms. To pick the orchestrator and the accompany-
ing tools means researching their advantages and also all their drawbacks. There
currently seems to be no evident intersection between orchestration or automa-
tion support within the cloud services as orchestrators usually do not support
deployment on all available cloud platforms and also do not support all possible
automation tools. For this paper we delve into orchestration and set a goal to
examine and compare different orchestration tools in order to make the deci-
sion process more straightforward. This paper presents the properties and use
of several selected tools.

2 A. Luzar et al.

1.1 DevOps and Orchestration

Development and Operations (DevOps for short) is an approach in information
technology that emphasizes communication and integration between software
developers and other IT experts and is used mostly for introducing automated
software and infrastructure changes [7].

Orchestration is a sort of distributed automated configuration that includes
monitoring and coordination of computer systems, application and services and
thereby helps making the execution of complex tasks or task groups easier. The
process of orchestration is used to solve the problem of connecting and arrang-
ing larger amounts of automated tasks in a desired workflow [14]. Within or-
chestration a workflow is defined (this is usually called a process of workflow
orchestration) and consists of a sequence of automated tasks. Based on the or-
chestration targets there are many different types of orchestration and the ones
that stand out the most are cloud orchestration, service orchestration and release
orchestration [8].

It is important to distinguish orchestration from automation which are often
confused. The execution of a task and the operations within, belongs to the
automation, which aims to reduce the human factor in the processes that can
be automated. On the other hand, the orchestration process aims to join the
majority of already automated tasks and put them in a logical order which then
results in the deployment of the complete application or services[3].

1.2 Orchestration tools

Orchestrators or orchestration tools represent a wide set of complex I'T software
that is used to invoke the aforementioned process of workflow orchestration.
These tools can be very specific — from deploying applications to setting up
Docker containers. In order to pick the appropriate tool we should follow different
criteria such as:

— the size of the company which is important when paying for tool licences,

— the operating systems used in the orchestrated system,

— whether the tool is open-source or commercial, where one should note that
open-source tools are often supported by their community and that commer-
cial tools offer professional support and can therefore be used in mission—
critical IT systems [13].

The orchestration tools can often be scaled and can deliver highly complex ap-
plications and, as we repeat the tasks again and again, they become predictable
and can be optimized. Apart from that, it is known that these tools reduce
costs and errors (through repeatability of the orchestration process), increase
productivity, save significant amount of time, make operations faster, minimize
system down times etc. In the last few years there has been an enormous growth
in cloud orchestration for several cloud providers (for instance Amazon Web
Services, Microsoft Azure and Google Cloud Platform) where the orchestration

Examination and Comparison of TOSCA Orchestration Tools 3

process includes deploying applications, creating cloud resources (e.g. for stor-
age), configuring networks, setting up virtual machines and so on. Organizations
use orchestrators to migrate their applications to the cloud and in doing so they
increase the accessibility, reduce times for healing the services in case of errors
and make all their business processes faster [15].

1.3 OASIS TOSCA standard

OASIS Topology and Orchestration Specification for Cloud Applications, or
shortly TOSCA, is an open standard that defines the application topology within
cloud infrastructures by dividing services into components and defining their
connections, dependencies, capabilities and requirements. This makes the appli-
cations portable and independent of any cloud providers which corresponds to
the DevOps theory of installing and delivering applications throughout their life
cycle [11]. Apart from TOSCA there are other cloud orchestration standards such
as Amazon AWS CloudFormation or OpenStack Heat, but they are specific and
tailored to their platforms. CloudFormation seems to be more AWS oriented and
Heat was designed for OpenStack and targets cloud workloads, whereas TOSCA
is more general and meant for enterprise workloads and applications.

The TOSCA standard includes a special metamodel with a declarative domain-
specific language that offers the definition of portable TOSCA documents called
TOSCA templates and complete application packages (commonly called blue-
prints) which include templates with all the accompanying files needed for the
deployment. All these files usually get packed into compressed artifacts called
Cloud Service Archives or CSARs. TOSCA has a strictly defined system of types
which for example includes node types, relationship types, their properties, at-
tributes, interfaces, requirements and so on. The TOSCA standard can be used
within different markup languages and the most common ones are YAML and
XML. We centered ourselves around TOSCA Simple Profile for YAML that
currently has four different versions (v1.0, v1.1, v1.2 and v1.3) [2].

There are currently many emerging and promising tools using TOSCA such
as Alien4Cloud, Apache AriaTosca, CELAR, Cloudify, DICER, Eclipse Win-
ery, MSO4SC HPC, Indigo, ONAP, OPEN-O, OpenBaton, OpenStack, Open-
TOSCA, Opera, RADON, SODALITE, OPNFYV, Puccini, SeaClouds, TosKer,
Ubicity and so on. Some of them are completely compatibile with the standard
and some others have extended it and defined their own DSL. However, TOSCA
YAML templates have little practical value without their implementations. To
provide these, different automation tools can be used, such as Ansible, Chef,
Puppet, Salt, Juju, Jenkins, Vagrant, Bash, Docker and Terraform. TOSCA or-
chestrators are focused on connecting these tools with parsed TOSCA definitions
so that tasks can be executed [12].

2 Testing the orchestration tools

For the analysis we have chosen xOpera, Ystia Yorc, IndigoDC and Cloudify or-
chestrators which all support TOSCA standard definitions. For the testing part

O~ O T W

[T I I N I R T I T N N N T S e S o S S e
KOO0 a0 RNEWN—R,O©WOW-IO U WNF~O ©

4 A. Luzar et al.

we prepared a simple TOSCA template (see Figure 1) for creating a directory
with an example file. The template uses the latest TOSCA YAML profile version
1.3 (for the orchestrators which did not support this version we have changed
it to lower ones). Here we defined one simple node type called hello_type with
one input (which is set to "Hello from TOSCA!" at the beginning of the or-
chestration) and two paths to operations for creating (deploying) and deleting
(undeploying).

tosca_definitions_version: tosca_simple_yaml_1_3

node_types:
hello_type:
derived_from: tosca.nodes.SoftwareComponent
interfaces:
Standard:
inputs:
content:
default: { get_input: content }
type: string
operations:
create: playbooks/create .yml
delete: playbooks/delete .yml

topology_template:
inputs:
content:
type: string
default: "Hello, from_ TOSCA!'!™"

node_templates:
my—workstation:
type: tosca .nodes.Compute
attributes:
private_address: localhost
public_address: localhost

hello:
type: hello_type
requirements:
- host: my—workstation

Fig.1: TOSCA YAML template for testing.

For the operation actuators we used Ansible playbooks because Ansible is
the easiest automation tool for setup and usage and also most of the TOSCA or-
chestrators prefer and support it. The example playbook we used for the create

O~ O T W

= e
W N = oo

Examination and Comparison of TOSCA Orchestration Tools 5

TOSCA interface operation is shown in Figure 2. A similar playbook was used
to implement delete TOSCA operation.

- hosts: all
gather_facts: false
tasks:
- name: Create the new folder structure
file:

path: /tmp/opera—test /hello
recurse: true
state: directory

- name: Create hello.txt and add content

copy:
dest: /tmp/opera—test/hello/hello.txt
content: "{{_,content }}"

Fig.2: Ansible playbook for the TOSCA create operation.

2.1 xOpera

xOpera is a project that includes opera tool which is a lightweight open-source
TOSCA orchestrator compatible with TOSCA Simple Profile in YAML v1.3 [17].
As primary developers of opera we follow the UNIX convention of a minimal
tool that does only one thing (e.g. orchestration) and that one thing well in-
stead of having a tool that can handle multiple tasks of different types. This
orchestration tool uses Ansible to implement the TOSCA standard operations
which means that operations like deploy and un-deploy run a set of actuators
in the form of Ansible playbooks [4]. Opera is easily installed through a Python
pip package that is available on PyPI (https://pypi.org/project/opera/). Opera
only provides the client CLI interface so it can be used very quickly [17]. Our
xOpera orchestration test where we used opera deploy and opera undeploy
commands has been successful (see Figure 3).

2.2 Ystia Yorc and Alien4Cloud

Yorc is the High Performance Computing (HPC) TOSCA orchestrator which
targets support for hybrid infrastructure applications such as Infrastructure as a
Service (IaaS), HPC schedulers and Container as a service (CaaS). The impor-
tant part of Yorc are the scaling of applications within TOSCA workflows [18].
Yorc has multiple set—up options. The usual way is to run its server on a re-
mote virtual machine (such as an OpenStack VM) where we have to take care
of the configuration of the server. This is also important if we want to properly

6 A. Luzar et al.

Fig. 3: The orchestration testing with xOpera.

interact with the open—source orchestration platform Alien4Cloud where Yorc is
officially supported. An easier setup method that we used is to use the official
Yorc Docker image and deploy the server in a Docker container. For interacting
with the server we used a CLI client Yorc tool and downgraded the prepared
TOSCA template to YAML version 1.2 which is the latest supported TOSCA
version in Yorc. We also needed to pack our templates and playbooks in a zipped
CSAR to be able to run the yorc deployments deploy command as shown in
Figure 4.

Fig. 4: Orchestration process result using Ystia Yorc.

Alien4Cloud (or a4c) stands for Application LIfecycle ENablement for Cloud
or shorter Alien4Cloud which is an Atos open-source platform that facilitates
managing complex applications and cloud services within companies and here-
with also offers a tool for fast application deployment for users and develop-
ers. Alien4Cloud extends TOSCA Simple Profile in YAML along with all the
TOSCA entities providing its DSL called Alien4dCloud DSL. The adc orches-

Examination and Comparison of TOSCA Orchestration Tools 7

trator receives a TOSCA CSAR artifact with all the TOSCA templates, their
implementations and the accompanying files as an input. The orchestration pro-
cess depends on the adc version we use. Apart from officially supported Ystia
Yorc there is also a support for Cloudify 3, Cloudify 4, experimental support for
Marathon tool (which is a meta framework for Mesos offering orchestration of
clusters and Docker containers) and the support for Puccini orchestration tool in
beta version. By supporting multiple orchestrators Alien4Cloud becomes more
independent from the cloud provider and therefore tries to prevent so called ven-
dor lock-in since multiple orchestrator includes the support for multiple cloud
providers. The installation of adc can be done on Linux or OS X with one curl
command in terminal solely and then we can already access the tool’s dash-
board in the browser. There is a simple drag and drop topology modelling tool
where we can use already prepared adc roles from the TOSCA topology catalog.
TOSCA definitions can be imported from Git and when modelling is done we
can export a full TOSCA template or CSAR. [1].

Because of numerous features that we found useful, we also decided to test
the usage of adc orchestration tool. After reshaping the TOSCA template to
be compatible with Alien4Cloud domain specific language we have setup adc
platform in a Docker container and installed Yorc plugin to connect adc with
Yorc orchestrator. From there on the orchestration process was smooth as we
packed our TOSCA templates into CSAR and initiated the deployment within
the adc platform.

Chopications s Topology lemplates & Componenis Adminsration

wordpross

b [@see) DUk

+ Add Node Tempiate

T LinuieSys... «

Apache =
u computeWww D computeDb
-l © (=]

Mysal =
b R 3
{2 % wordpress i PHP (e
‘@» g ®hp

@ Wordpress =

BlockStorage @

Fig. 5: Alien4Cloud topology modelling tool.

2.3 Indigo DC

IndigoDC is a TOSCA orchestration tool representing a Platform as a Service
(PaaS) component which primarily offers setting up resources on cloud comput-
ing platforms like OpenStack or OpenNebula and also offers managing groups
of computers using open—source Apache Mesos clusters [9]. The orchestrator

8 A. Luzar et al.

was developed within a European Union Horizon 2020 project called INDIGO-
DataCloud (INtegrating Distributed data Infrastructures for Global ExplOita-
tion) which aimed to provide hybrid infrastructure and software in the form of
IaaS and SaaS components. The speciality of this tool is that it uses a Service
License Agreement (SLA) to choose the orchestration target and the order of the
automated tasks with the help of a REST service called Cloud Provider Ranker
that collects the data about available cloud providers and chooses one using
different rules and algorithms [16]. For the testing part we have set up Indigo
DC server locally in a Docker container and used the Orchent CLI client tool to
interact with the orchestrator. Indigo uses Ansible playbook or roles for TOSCA
operations but the supported version of TOSCA YAML is only 1.0 so we had to
refactor our TOSCA template by providing minor changes to TOSCA interface
operation definitions. From that point we had issues as the orchestrator was un-
able to initiate the deployment. The problem was also that for the orchestrator
to work we would have to supply different cloud provider secret credentials (like
for AWS, Azure and GCP) to the server which could raise some security issues.
The configuration if Indigo Data Cloud orchestrator was not intuitive so from
there we did not proceed with the testing.

Y ey o\®’ o~
TOSCA template [

User : ®/ 4 .
Orchestrator

Try and Deploy
on 1st site
Try and Deploy
on 2nd site
Resource (RP) A 4 Resource (RP)
ngm r (RP)

Fig. 6: Architecture of orchestration with IndigoDC [10]

2.4 Cloudify

Cloudify is an open-source framework for cloud orchestration with a built-in
TOSCA orchestrator, modelling tool and monitoring software that offers mod-
eling applications, optimizing their life cycle and deploying on numerous cloud
providers [5]. Some of the components that can be a part of applications are in-
cluded by default (for instance Nginx, Gunicorn, Flask, PostgreSQL, RabbitMQ
and Pika), while others can be included through special plugins (for example

Examination and Comparison of TOSCA Orchestration Tools 9

Ansible and cloud plugins). Cloudify can be used by setting up a Cloudify Man-
ager in a Docker container that acts as an orchestration server and then it can
be interacted with using the Cloudify CLI. The other way is to use the Cloudify
web component that represents a concept of Environment as a Service (EaaS) to
provide reusable orchestration environments with the goal to reduce the bottle-
neck between orchestration, automation, CI/CD tools and cloud providers. The
Cloudify orchestrator has moved beyond TOSCA, developing its own Cloudify
DSL that is used to define its own application blueprints. Therefore it offers
Cloudify DSL versions 1.0, 1.1, 1.2 in 1.3 that are derived from corresponding
TOSCA profiles. The DSL includes extended TOSCA definitions and plugins
that can be used for TOSCA implementations (e.g. plugin defintions for Chef,
Puppet, Ansible, Salt,...). The other embedded TOSCA actuators can be in the
form of Python, Bash, PowerShell, Ruby scripts and so on [6].

> Cloudify Premium

& Getstatedwinthe

& s E 1 9 1 * 8 E 0 Q‘D 0

BLUEPRINTS DEPLOYMENTS PLUGINS COMPUTENODES RUNNING EXECUTIONS

o —

Fig. 7: Cludify dashboard.

For the testing part we used free testing license for Cloudify Labs (in Figure
7), translated our TOSCA template to Cloudify DSL and used the prepared
Ansible playbooks for creating and deleting the service. We packed all the files
into a CSAR and uploaded it to the Cloudify labs web portal where we initiated
the workflow and the deployment (see Figure 8).

Deployments

* Create Deployment

Deployments

v » Blueprint Created Creator Node Instances (2)
test cloudify 19-04-202011:04 admin [x |

Fig. 8: Successful blueprint deployment via Cloudify Labs orchestrator.

10 A. Luzar et al.

3 The comparison of TOSCA orchestrators

During the testing of different orchestrators we created a comparison that would
help us decide which tools are appropriate for the tested use case and to show
the perspective that orchestrators have. The comparison is visible in Table 1
where we picked the most commonly occurring characteristics among these
tools: release year, tool purpose, supported platforms, architecture, language,
installation, license, supported automation tools, user interface, modeling tool,
OASIS TOSCA compatibility, supported TOSCA profiles and supported cloud
providers.

Installation

and opera pip package

an OpenStack VM
or a Docker container

a Docker container

Aspect Opera Yorc Indigo Cloudify
Release year 2019 2017 2016 2012
Pur Minimalistic HPC TOSCA ?(ﬁsgﬁtpfisr Opensource TOSCA
urpose TOSCA orchestrator orchestrator orchestrator 1o orchestration platform
cloud frameworks
Supported le}.x’ 0S X, Linux Linux Linux, OS X
platforms Windows
Architecture client server, client server, client server, client
Implemented in Python Go Java Python
. . Server on . . Server on
Virtual environment Server in

an OpenStack VM
or a Docker container

Installation and usage

difficulty easy medium hard medium
. Apache Apache Apache : .

License License 2.0 License 2.0 License 2.0 Apache License 2.0
Supported e All (by default bash, Python,
automation Ansible Bash Ef'rlp%’ Ansible Ruby and other scripts

Ansible . .
tool and Ansible plugin
User interface No Yes Yes Yes
Modelling AT Yes (embedded
tool No Yes (AliendCloud) No and Alien4Cloud)
TOSCA
compatibility Yes Yes Yes No
Latest y .
TOSCA profile TOSCA TOSCA TOSCA YAML 1.0, Cloudify DSL 1.3
P YAML 1.3 YAML 1.2 TOSCA NFV 1.0 | (derived from TOSCA 1.3)
version
Officially supported The support AWS, AWS, Azure,
target cloud is performed }])jp the user OpenStack AWS, Azure GCP, OpenStack,
platforms S pe ec by the use in GCP vCloud(plugins)

Table 1: Orchestration tools comparison table.

Looking into the release year it is apparent that the newest orchestrator
is xOpera and the oldest is Cloudify. Every tested orchestrator serves its own
purpose such as: versatile and light-weight approach, supporting heterogeneous
infrastructures (HPC, Cloud) for xOpera, HPC computing for Yorc, PaaS or-
chestrator for Indigo and open-source orchestration platform for Cloudify. All
of the orchestrators support the Linux operating system and Cloudify has the
additional support for OS X. Cloudify and xOpera are written in Python, Yistia
Yorc in Go and IndigoDC is implemented in Java. All tools except xOpera re-
quire setting up an orchestration server which can reside in a Docker container.
The installation process for xOpera consists of only installing it as a Python

Examination and Comparison of TOSCA Orchestration Tools 11

package. Based on setup difficulty and usage we have categorized the xOpera or-
chestrator as easy to use, whereas Yorc and Cloudify were marked with medium
difficulty. IndigoDC was the most problematic for usage because it consumed
the biggest amount of time and at the end we were not able to use it for the
orchestration. All analyzed orchestration tools have an open-source Apache 2.0
license. xOpera and Indigo are implementing the TOSCA standard by using An-
sible as the automation tool, while Yorc offers Bash and Ansible. Cloudify is the
most advanced in this aspect since it can be used with Python, Ruby or Bash
scripts, with an embedded Ansible plugin or by using any other custom—defined
plugin in order to use other automation tools like Chef, Puppet or Salt. Apart
from xOpera, all of the tools provide a graphical user interface. Yorc and Cloud-
ify also include a modelling tool for combining TOSCA entities and both are
part of the Alien4Cloud platform. The orchestrators are fully compatible with
TOSCA standard, except from Cloudify which uses its own DSL language, ex-
tending TOSCA standard definitions. Opera supports the latest TOSCA YAML
profile version 1.3, Yorc supports YAML 1.2, Indigo used version 1.0 and also
provides the support for TOSCA NFV network profile v1.0 and Cloudify also
uses the latest TOSCA version since its DSL v1.3 is derived from TOSCA pro-
file in YAML v1.3 but it also keeps the support for all the older TOSCA YAML
versions. The xOpera orchestrator does not have any predefined cloud plugins
and the user is required to provide the support himself based on TOSCA defini-
tions and Ansible modules. Yorc explicitly supports OpenStack, AWS and GCP,
whereas IndigoDC includes the support for AWS and Azure cloud providers.
Cloudify can be connected to any cloud by using our custom plugins or the
prepared plugins for AWS, Azure, GCP, OpenStack and VMware vCloud.

4 Results and decisions

The aspects of the orchestration tool comparison they helped us to decide which
tool is the best for our testing use case. For us the most important characteristics
were the installation, which had to be easy and fast. This allows us to test the
deployment right away and consequently requires the latest TOSCA compati-
bility to keep up with the latest TOSCA standard features. Our key purpose,
the minimalistic TOSCA orchestrator, which can be used for simple client de-
ployment without any scaling or HPC features can be achieved by opera as the
most suitable tool for our experiment. That choice might not be the best for
other use cases. The presented comparison aspects can guide developers through
the choice of the best tool according to their own different requirements. For
instance if HPC computing is needed, uses should consider Yorc, as it was de-
veloped especially for that purpose, or maybe xOpera orchestrator if they want
to benefit from the latest TOSCA version. For example if we would want to
deploy our application on several cloud providers along with the use of various
automation tools and plugins, Cloudify would prevail as it offers the support
for almost all these tools. Then there are special cases when developers want
to create a model of their application in a graphical environment with all the

12 A. Luzar et al.

visible connections between different components. Going this way opera is not
the best choice, whereas Cloudify and Yorc along with Alien4Cloud modeling
tool could stand out.

The next aspect that cannot be waved aside is the supported version of the
TOSCA Simple Profile in YAML. Every version brings new syntax updates and
features and it is important for the orchestrators to support the latest TOSCA
versions in order to ensure the best possible cloud deployment process. There
opera and Cloudify, which are based on latest TOSCA v1.3 are the most suitable.
The security is also a big concern when picking these tools since engineers does
not want to expose their cloud credentials (e.g. AWS secret keys, GCP service
account keys etc.) to numerous possible treats and they want to be sure that
the orchestrator or the service that is being used within will not copy or move
credentials away from the local machine. Considering security, Cloudify seems
as a good option as it provides so called secrets store which is a secure variable
storage where the secrets are stored and called from as key-value pairs. On the
other hand Yistia Yorc also turns out to be reliable in this perspective since
it uses HashiCorp Vault to protect sensitive data. Apart from the fact that
deployment with Indigo orchestrator did not work properly, this orchestrator
has its own separated Identity and Access Management service which supports
different cloud secrets and can be a good choice.

5 Conclusions and future work

Orchestration and with it, automation, are already important today, but will
further gain importance, with the rise of 5G (and with it, edge). The latter
will bring additional complexity basically on all infrastructure levels, as the
number of connected devices and their capabilities will increase further. During
our examination OASIS TOSCA turned out to be a promising standard with the
ability to define and maintain application topology. Combined with orchestration
tool and equipped with automation actuators TOSCA standard gets a practical
use that can simplify multiple processes and can save a lot of precious time. All
the orchestrators that we have tested were unique and had their own purpose
whether this was HPC computing or PaaS interaction. Since we were not able to
get IndigoDC to work, xOpera, Yorc and Cloudify were analyzed more in detail.
Apart from Yorc being the official Alien4Cloud orchestrator, xOpera is also a
tool with significant potential. From all the tools it was the easiest to install
and to use. It does not have any embedded cloud plugins which is, in fact, not a
negative thing since it then allows users to define this part as they wish. xOpera
also supports the latest 1.3 version of TOSCA YAML which proves that the tool
is being maintained and updated through time. Cloudify is a more enterprise
solution and seems to be used by corporations which desire support and a user
friendly environment, whereas xOpera is currently an open-source orchestrator
in the making. This fact is also different from all the other tools, which seem to
be in a mature state of development. It is evident that the orchestrator that will

Examination and Comparison of TOSCA Orchestration Tools 13

be most flexible and will follow the latest cloud trends with the support for the
latest TOSCA version will have a good chance of dominating.

Acknowledgements This paper has been partially supported by the Euro-
pean Union’s Horizon 2020 research and innovation programme under Grant
Agreement No. 825040 (RADON). The work described here has also been con-
ducted within the European Union’s Horizon 2020 Research & Innovation action
SODALITE (project no. 825480).

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Aliendcloud documentation. https://aliendcloud.github.io/ (2020), accessed on
2020-6-17

Binz, T., Breiter, G., Leyman, F., Spatzier, T.: Portable cloud services using tosca.
IEEE Internet Computing 16(3), 80-85 (2012)

Caballer, M., Zala, S., Lopez Garcia, A., Molto, G., Orviz Fernandez, P., Velten,
M.: Orchestrating complex application architectures in heterogeneous clouds

Carbonell, M.: xopera: an agile orchestrator.
https://www.sodalite.eu/content /xopera-agile-orchestrator ~ (2019), accessed
on 2020-6-24

Cloudify. https://cloudify.co/ (2020), accessed on 2020-6-18

Cloudify documentation center. https://docs.cloudify.co/ (2020), accessed on 2020-
6-23

Devops day. https://slovenia.iiba.org/sl/devops (2017), accessed on 2020-6-24
Goldberg, J.: Workflow orchestration: An introduction.
https://www.bmc.com/blogs/workflow-orchestration/ (2019), accessed on
2020-6-22

Indigo — datacloud github. https://github.com/indigo-dc/ (2020), accessed on
2020-6-21

Indigo paas overview.

https://www.slideshare.net /TheEOSChubproject /indigopaasoverview/ (2019),
accessed on 2020-6-21

Oasis tosca. https://www.oasis-open.org/ (2020), accessed on 2020-6-19

Oasis tosca documentation. https://docs.oasis-open.org/tosca/ (2020), accessed on
2020-6-19

Orchestration scheduling tools. https://www.plutora.com/ci-cd-
tools/orchestration-scheduling-tools (2019), accessed on 2020-6-20

Redhat. https://www.redhat.com (2020), accessed on 2020-6-22

Rouse, M.: What is cloud orchestration (cloud orchestrator)?
https://searchitoperations.techtarget.com/definition/cloud-orchestrator ~ (2017),
accessed on 2020-6-26

Salomoni, D., Campos, 1., Gaido, L.: Indigo-datacloud: a platform to facilitate
seamless access to e-infrastructures. Journal of Grid Computing 16, 381-408
(2018), accessed on 2020-6-21

xopera github repository. https://github.com/xlab-si/xopera-opera (2020), ac-
cessed on 2020-6-18

Ystia project github. https://github.com/ystia (2020), accessed on 2020-6-20

