
Auto-scaling using TOSCA Infrastructure as
Code

Matija Cankar1, Anže Luzar1, and Damian A. Tamburri2

1 XLAB d.o.o., Pod za Brdom 100, 1000 Ljubljana, Slovenia
https://www.xlab.si/research/

2 Eindhoven University of Technology - JADS, s’Hertogenbosch, The Netherlands

Abstract. Autoscaling cloud infrastructures still remains a challenging
endeavour during orchestration, given the many possible risks, options,
and connected costs. In this paper we discuss the options for defining and
enacting autoscaling using TOSCA standard templates and its own pol-
icy definition specifications. The goal is to define infrastructure blueprints
to be self-contained, executable by an orchestrator that can take over au-
tonomously all scaling tasks while maintaining acceptable structural and
non-functional quality levels.

Keywords: Cloud Computing · Scaling infrastructures · Autoscaling ·
TOSCA · Orchestration · Function-as-a-service · FaaS.

1 Introduction

The cloud computing era fostered the emergence of ways to exploit the compute,
storage, and network resources and provide new abilities to adapt dynamically
the amount of the computing resources to the need of the application that relies
on resource provisioning [8]. The aforementioned practice—defined as scaling of
the resources [9]—has increasingly became more efficient and responsive to the
current application load. On the one hand, two known approaches to scaling
are nowadays used, with the first one making possible to scale-in or perform
vertical scaling, which means that the capacities of the provisioned resources
(CPU, RAM, etc.) are scaled up or down. The second is scale-out or performing
horizontal scaling, which means that the number of units (e.g., virtual machine
with specific amount of RAM, CPU, and storage) is enlarged or shrunk.

On the other hand, all cloud providers address the scaling of the leased virtual
infrastructure in some way and mostly all do this by their own approach that
differs mainly in configuration of this task. For example, the OpenStack [5] uses
its own language called Heat, Amazon AWS uses CloudFormation [1] and some
cloud management tools, like open-source representative called Slipstream [3]
use their own techniques.

Besides the differences of the cloud providers, the approach to the scaling
depends on the technology that powers the application. For example, applica-
tions based on Docker and Kubernetes allow for horizontal scaling. However,

2 M. Cankar et al.

applications based on Function-as-a-Service (FaaS) [2] will mainly use a combi-
nation of vertical and horizontal scaling. Almost all public provides allow man-
ually defined values for vertical scaling, while horizontal scaling is covered by
the provider. Only in private open source cloud solutions, as Open-FaaS, both
scaling approaches need to be performed by an external software.

To support the autoscalable orchestration of microservice applications in-
termixing FaaS, Container, and regular virtual-machine components that can
be deployed on any provider we develop xOpera, an orchestrator capable of
“speaking” with all cloud providers and technologies, addressing autoscaling in
a policy-based fashion. On the one hand, interoperability is achieved thorough
abstraction, which can be solved with the OASIS standard on “Topology and
Orchestration Specification for Cloud Applications” (TOSCA) [4]. On the other
hand, the policy-based facilities offered by xOpera only partially address the
expected scaling capabilities and the approach shows several limitations.

We contribute to the state of the art and practice with experiences gained
through the design and prototypization of xOpera—and its autoscaling features—
which we expect to spark fruitful discussions and speedup the standardisation
and practice of the auto-scaling definition of cloud applications.

The rest of this paper is structured as follows, first the problem of scaling
and current support in TOSCA is presented. In Section 3 presents the concepts
of scaling and the Section 4 proposes an approach and evaluation. The paper
discusses ideas in Section 5 and is concluded with Section 5.

2 Problem definition

The introduction section described different scaling approaches based on un-
derlying technology. Performing (auto)scaling is complicated task that needs to
take into account the state of the application before and after the scaling and
perform all required steps to guarantee a safe transition between the states. The
software performing this act needs to rely on a set of policies and thresholds
that define scaling limits and duties. To perform the scaling on an appropri-
ate moment, the scaling software needs to be subscribed on a messaging queue
from monitoring and perform actions with the orchestrator. This tight integra-
tion between monitoring service, scaling service and orchestrator service makes
the issue even harder and frequently is well solved only inside closed provider
environments (Amazon AWS, Microsoft Azure, Google Cloud Platform, etc).
This means that user is able to deploy application to one provider and use one
approach of scaling, but moving this application to another provider will re-
quire manual re-configuration of deployment and scaling. Our aim is to depend
on TOSCA standard and propose a way to define scaling at the deploy time,
so the orchestrator will be able to create initial deploy on infrastructure and
configuration of monitoring in a way that will be easily manageable in case of
scaling.

Auto-scaling using TOSCA Infrastructure as Code 3

2.1 Definition of application scaling

One most crucial agreement to be defined before forming the scaling approach
is to determine what scaling is and what is not. The modification of the running
application is scaling when we can change the amount of resources without having
a significant impact on the running application(s). In our case this means that
scaling should not result in total un-deploy and redeploy of application but rather
moving the functionality from one state to another without shutting down or
re-deploying everything.

Based on aforementioned limits we focused on the three most general scaling
approaches:

1. simple horizontal scaling, e.g., scaling of containers;
2. simple vertical scaling, e.g., FaaS scaling;
3. complex horizontal scaling, e.g., load balancer example.

In our proposal we consider all other scaling approaches that include more sig-
nificant changes in the application as (re-)deploying of a new application and
are therefore, out of scope.

Next two crucial agreements to be defined on scaling are determining a way
to explain the scaling limitations and scaling actions. The TOSCA suggests the
use of scaling policies to define scaling limitations and thresholds, as shown on
Figure 1. The current version of standard does not provide any details explaining
how this data can be used in action therefore it is not obvious what is the job
of a scaler, orchestrator or maybe some other tool. When the thresholds are
reached something should happen, e.g., a scaler application should take care of
it. To overcome this issue we propose a TOSCA which example tries to resolve
this issue in section 4.

1 tosca_definitions_version: tosca_simple_yaml_1_3

2 my_scaling_policy_1:

3 type: tosca.policy.scaling

4 description: Simple node autoscaling

5 properties:

6 min_instances: <integer>

7 max_instances: <integer>

8 default_instances: <integer>

9 increment: <integer>

Fig. 1. TOSCA YAML example from TOSCA v1.3.

3 Scaling concepts

Most common approach to implement scaling is to use three components (see
Figure 2), namely orchestrator, monitoring and scaler. In this approach the scaler
receives notifications from monitoring, defines next scaling state and instructs
the orchestrator how to achieve this change. To describe this approach with
a particular monitoring application and a TOSCA orchestrator would imply,

4 M. Cankar et al.

that scaler encapsulates all knowledge about scaling and also about deploying.
Scaler would need to a) receive monitoring notifications b) create a new TOSCA-
application blueprint based on the defined policies and c) send the blueprint to
the orchestrator. The downside of this idea is a division of the process lead
between the orchestrator.

Fig. 2. Scaling using the scaler component.

For example – using the mentioned concept – when orchestrator receives
the initial application blueprint in TOSCA CSAR, which we consider that it
is an application package including all necessary information to spawn up and
set application in runtime, it needs to a) deploy all application components, b)
configure monitoring and c) define scaler. But after the initial orchestration of
the application is done, the scaler overtakes the leadership and instructs the
orchestrator how to proceed. This approach complicates the situations on two
levels, first it is a requirement for a scaler, which is TOSCA compliant and can
scale applications on various providers. The second issue raises when user sends a
small update of the application configuration to the orchestrator which could be
overridden by the scaler sending new TOSCA configuration to the orchestrate at
the same time. Therefore, if something goes wrong and specifications are different
in orchestrator and scaler it is not clear if the targeted application state is in the
orchestrator or in the scaler.

4 Proposed approach, scaler inside the orchestrator

Our proposed approach eliminates the scaler and adds its functionality inside the
orchestrator, as it is sketched in Figure 3. This means that orchestrator would
be the entity in charge of deploying and scaling application at any moment. In
the initial deployment orchestrator deploys application, configures monitoring

Auto-scaling using TOSCA Infrastructure as Code 5

threshold and defines a TOSCA scaling policy with all scaling definitions. This
means that monitoring would send notifications directly to the orchestrator when
the thresholds would be reached. In this particular cases, orchestrator would run
a scale command on the TOSCA blueprint (by executing the linked Ansible
playbook) which would perform scaling.

From the Figure 3 it seems that there is no significant change, we anticipate
to solve two things. First is the one that the deployment and scaling process deal
only with one entity. The second even more important is that the description
of the scaling can use the same language as the deploying one and exploits the
orchestrator engine and TOSCA actions to perform it.

Fig. 3. Proposed architecture without scaler component, TOSCA defines everything
and orchestrator is able to accept monitoring notifications.

An example of the proposed TOSCA scaling policy and scaling interface
for our approach is shown in Figure 4. Note that the example is simplified to
emphasise only the crucial parts of an approach that can be used to fulfill scaling
within the TOSCA orchestrator by configuring scaling in TOSCA YAML service
template. In the first part of the listing in Figure 4 – lines 1-22 – the OpenStack
virtual machine presenting an initial application state is defined. Next block –
lines 24-40 – presents the scaling policy, similarly that TOSCA standard suggests
and was presented in Figure 1. The property of CPU is defined to be monitored,
and the initialisation is globaly limited, not accepting values lower than 80. This
threshold should be configured by the orchestrator in a particular monitoring tool
as Prometheus. This monitoring configuration part is omitted from our example
for brevity. The next part – lines 41-51 – defines the triggers that would initiate
scaling procedures. A trigger affects our application, the openstack node, and
calls the scaling operation. The important part of this TOSCA definition comes
next – lines 53-61 – where we define scale operation called by trigger. This

6 M. Cankar et al.

interface would call a specific Ansible script that orchestrator would process at
the deployment phase. This scale out.yaml script would perform scaling on an
OpenStack VM e.g. deploy one additional instance to balance the load on the
application. The rest of the TOSCA template on Figure 4 – lines 63-79 – defines
a topology template that initializes first VM and sets scaling policy properties.

In action the scale-up policy (radon.policies.scaling.ScaleOut) would
be used when the CPU load would surpass the adjusted value (see cpu upper bound).
When this would happen the policy could use targets keyword to filter out the
node it applies to and use a TOSCA scaling trigger definition in order to call
the defined TOSCA scale operation within the radon.interfaces.scaling.
This interface operation would then pass on the amount by which to scale (see
the adjustment parameter) to the Ansible playbook (scale out.yaml) which
would perform scaling on an OpenStack VM (for example it could deploy one
additional instance so that the load would be balanced).

4.1 Proposed experiment and evaluation plan

The implementation of the proposed concept is in progress and will be fin-
ished and tested during RADON project [2]. For the orchestrator we will use
xOpera [10] orchestrator with current support of TOSCA v1.3 and Prometheus [6]
for monitoring. Currently in progress is finalising the possibility to scale FaaS
applications, supporting vertical scaling of the requirements based on configu-
ration update on the providers side, e.g. AWS, Azure or GCP. The next step is
to support horizontal scaling with adding or removing container instances. The
last step will be to support horizontal scaling of regular virtual machines.

The crucial step here is to define TOSCA types, namely nodes, policies and
triggers in a way that will serve as a template to other applications. The outcomes
will be tested by the RADON project partners providing template applications
and industrial use-cases and the xOpera orchestrator community. The templates
for scaling will be published in a publicly available TOSCA template library
provided by RADON project and project GitHub repository [7].

Evaluation will be straight-forward with testing the designed TOSCA blue-
print of a scalable application with the proposed orchestrator. If this combination
will be able to scale application in a same way that scalers can, the verdict will
be that the TOSCA standard yaml specification is strong enough to exploit the
orchestrator in a way to act as a scaler. That approach simplifies the solution as
we do not need special TOSCA scaler to scale TOSCA applications.

5 Discussion and Lessons Learned

Deploying application is a complex job with many tasks. Having the ability to use
one IaC language, as TOSCA, is a commodity for a DevOps teams that deploy
their applications to heterogeneous environment with multiple cloud providers.
The deployment step is very well covered in TOSCA, while the ability to auto-
scale application is not yet fully defined. During the process of creating the

Auto-scaling using TOSCA Infrastructure as Code 7

1 tosca_definitions_version: tosca_simple_yaml_1_3

2
3 node_types:

4 radon.nodes.OpenStack.VM:

5 derived_from: tosca.nodes.Compute

6 properties:

7 name:

8 type: string

9 image:

10 type: string

11 flavor:

12 type: string

13 network:

14 type: string

15 key_name:

16 type: string

17 interfaces:

18 Standard:

19 type: tosca.interfaces.node.lifecycle.Standard

20 operations:

21 create:

22 implementation: playbooks/create.yaml

23
24 policy_types:

25 radon.policies.scaling.ScaleOut:

26 derived_from: tosca.policies.Scaling

27 properties:

28 cpu_upper_bound:

29 description: The upper bound for the CPU

30 type: float

31 required: false

32 constraints:

33 - greater_or_equal: 80.0

34 adjustment:

35 description: The amount by which to scale

36 type: integer

37 required: false

38 constraints:

39 - greater_or_equal: 1

40 targets: [radon.nodes.openstack.VM]

41 triggers:

42 radon.triggers.scaling:

43 description: A trigger for scaling

44 event: trigger

45 target_filter:

46 node: radon.nodes.openstack.VM

47 action:

48 - call_operation:

49 operation: radon.interfaces.scaling.scale

50 inputs:

51 adjustment: { get_property: [SELF, adjustment] }

52
53 interface_types:

54 radon.interfaces.scaling:

55 derived_from: tosca.interfaces.Root

56 operations:

57 scale:

58 inputs:

59 adjustment: { default: { get_property: [SELF, name] } }

60 description: Operation for scaling.

61 implementation: playbooks/scale_out.yaml

62
63 topology_template:

64 node_templates:

65 vm1:

66 type: radon.nodes.OpenStack.VM

67 properties:

68 name: HostVM

69 image: centos7

70 flavor: m1.xsmall

71 network: provider_64_net

72 key_name: my_key

73
74 policies:

75 test:

76 type: radon.policies.scaling.ScaleOut

77 properties:

78 cpu_upper_bound: 90

79 adjustment: 1

Fig. 4. TOSCA YAML template example with scaling policy.

8 M. Cankar et al.

framework for developing, deploying and lifecycle management we realised that
the latter, which includes scaling, is complex and fragile. Following the approach
with outside scaler did not promise a stable solution. For example, in case of
issues an interruptions during the application life-cycle management, it is not
clear which state – scalers or orchestrators – is the desired one? It could be that
scaler is in process to submit new application template to the orchestrator, or
the orchestrator should update the scalers’ configuration.

Exploring the solutions that would not be affected from aforementioned
orchestrator-scaler leadership issue we focused on TOSCA definitions and pro-
pose the usage of TOSCA, which incorporates scaling definitions to be executed
by orchestrator. The TOSCA standard will not require significant updates to
use our approach, while some improvements of the TOSCA orchestrators will
be necessary. Orchestrator cannot be stopped after the deploy (or particular
re-deploy job), but needs to be alive and ready to accept the triggers from the
monitoring system. This changes the way how the orchestrator should operate.

6 Conclusions and Future work

To conclude, scaling and autoscaling are and will be desired functionalities within
larger microservice applications e.g. AWS Lambda applications and applications
using Docker containers. There are several ways of establishing scaling policies
successfully but some of them can consume more time or require more tools than
others. Instead of commonly used separate scalers this part can be moved to the
orchestration process in order to facilitate this task and have universal approach
to the application scaling. OASIS TOSCA standard provides promising scaling
policies that can be supported in TOSCA orchestrators which can then use their
own services to maintain the automatic scaling of application’s resources and
therefore relieve the end-users and the companies by keeping the applications
constantly accessible.

Acknowledgements

This paper has been partially supported by the European Union’s Horizon
2020 research and innovation programme under Grant Agreement No. 825040
(RADON).

References

1. Aws cloud formation. https://aws.amazon.com/cloudformation/ (2020), accessed
on 2020-6-19

2. Casale, G., Artac, M., van den Heuvel, W., van Hoorn, A., Jakovits, P., Leymann,
F., Long, M.C.D., Papanikolaou, V., Presenza, D., Russo, A., Srirama, S.N., Tam-
burri, D.A., Wurster, M., Zhu, L.: Radon: rational decomposition and orchestration
for serverless computing. SICS Software-Intensive Cyber-Physical Systems pp. 1 –
11 (2019)

Auto-scaling using TOSCA Infrastructure as Code 9

3. Janiesch, C.: Slipstream: Live dashboarding for sap netweaver
bpm (”galaxy”). sap community network blog (2009),
http://scn.sap.com/people/christian.janiesch/blog/2009/11/17/slipstream–
live-dashboarding-for-sap-netweaver-bpm-galaxy

4. Lipton, P., Palma, D., Rutkowski, M., Tamburri, D.A.: Tosca solves big problems in
the cloud and beyond! IEEE Cloud Comput. 5(2), 37–47 (2018), http://dblp.uni-
trier.de/db/journals/cloudcomp/cloudcomp5.htmlLiptonPRT18

5. Openstack heat. https://wiki.openstack.org/wiki/Heat (2020), accessed on 2020-
6-19

6. Prometheus. https://prometheus.io/ (2020), accessed on 2020-6-21
7. Radon github repository. https://github.com/radon-h2020 (2020), accessed on

2020-6-29
8. Sahare, D.D.V.R.S.: Cloud computing. International Journal of

Trend in Scientific Research and Development 1(6), 786–789 (Oct
2017), http://www.ijtsrd.com/engineering/electronics-and-communication-
engineering/4685/cloud-computing/shubhangi-sahare

9. Wei, Y., Kudenko, D., Liu, S., Pan, L., Wu, L., Meng, X.: A reinforce-
ment learning based auto-scaling approach for saas providers in dynamic
cloud environment. Mathematical Problems in Engineering 2019, 11 (2019),
https://doi.org/10.1155/2019/5080647

10. xopera github repository. https://github.com/xlab-si/xopera-opera (2020), ac-
cessed on 2020-6-20

