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ABSTRACT
We propose a game-theoretical model to simulate the dynamics
of AI adoption in adaptive networks. This formalism allows us to
understand the impact of the adoption of AI systems for society as a
whole, addressing some of the concerns on the need for regulation.
Using this model we study the adoption of AI systems, the distri-
bution of the different types of AI (from selfish to utilitarian), the
appearance of clusters of specific AI types, and the impact on the
fitness of each individual. We suggest that the entangled evolution
of individual strategy and network structure constitutes a keymech-
anism for the sustainability of utilitarian and human-conscious AI.
Differently, in the absence of rewiring, a minority of the population
can easily foster the adoption of selfish AI and gains a benefit at
the expense of the remaining majority.

CCS CONCEPTS
•Networks→ Network dynamics; • Computing methodologies
→ Modeling and simulation; • Applied computing→ Sociology.
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1 INTRODUCTION
For more than half a century that the development of improved AI
(Artificial Intelligence) systems is predicted to affect drastically our
economic and societal landscape [1, 8, 15, 19, 45, 46]. Fearing the pos-
sible detrimental effects, several ethical guidelines and frameworks
for AI have been developed over the past few years [2, 13, 18, 21, 28].
Some say it is impossible to fully hard-code moral principles into
an agent [16], defending the agent should learn morality through
observation, using, for example, Inverse Reinforcement Learning
(IRL) [26] or Cooperative Inverse Reinforcement Learning (CIRL)
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[17]. Others argue that a mixture of both learning and hard-coded
morality is the most reliable solution [9, 32].

There are many ways to look at AI, from all knowing super
intelligent beings, the brains of humanoid robots or masters at
playing computer and board games [7, 44]. In this work, we abstract
AI systems as an asset that brings a decisionmaking advantage to its
adopters. Systems of this kind begin to be present on our society, like
(e.g.) autonomous driving vehicles [6] or automatic trading agents,
creating a hybrid societies comprising humans and machines, and
new self-organized behavioral dynamics [10, 31, 39, 40].

Even if such systems are able, for each decision, to correctly
estimate the utility gain or loss for all affected individuals (Value
Alignment Problem), another problem still remains. There are many
ways the system can act upon such information. They can be: self-
ish, caring only for the gain of their owners; utilitarian, trying to
maximize the utility for all affected individuals; or try to find a
balance between those two. We call this problem of deciding when
faced with several entities with different values the "Societal Value
Alignment Problem".

With that in mind, we take a more pragmatic view of the problem
and study the population dynamics in the presence of different types
of AI systems. We aim to understand if the self-regulating mechan-
ics present in society are enough to reach a beneficial equilibrium.
In this context, in Ref. [12] we showed that in the absence of any
interaction structure, and without any regulation, the population
converges to a highly unequal society, where a small percentage
of the society is able to adopt selfish AI systems (defined by the
authors as systems that maximize the utility for their users) and
obtain a disproportionate amount of wealth. We claimed some regu-
lation is needed to force AI systems to be human-conscious (defined
as a system that on average does not make people worse while still
brings an advantage to its users). Despite being the most beneficial
to the world if unanimously adopted, utilitarian AI systems (defined
as systems that try to maximize the gain to all individuals) were
not adopted by the population, as they could be easily exploited
both by either AI systems or by humans.

On this work, we study if, in a more realistic setting where
there is a topology between individuals, a beneficial equilibrium
can be reached. We adopt a heterogeneous network structure, in
which some individuals interact and are seen as role models more
often than others. As a paradigmatic example of this type of social
patterns, we resort to populations of agents interacting through the
edges of degree-heterogeneous networks [37, 38], while considering
the possibility of link rewiring to understand the complex interplay
between strategic decisions and topological change in the context
of AI adoption. Mainly, we aim at understanding if this coupled
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dynamics, already present on social networks, could help society
to self-regulate into a beneficial equilibrium between adopters and
non-adopters of AI systems.

We adopt the ubiquitous scale-free networks as a realistic net-
work topology [3, 4]. Here, the distribution of the number of part-
ners of each node follows a power-law distribution. In practice, this
means nodes do not all have around the same number of links, but
the grand majority of nodes are poorly connected whereas a few,
called hubs, are very highly connected. The presence of hubs make
it so that this few nodes have a disproportionate relevance in the
network. Given the apparent prevalence of scale-free networks on
human social networks and the fact that this topology has been
shown to promote cooperation [37, 38], we believed that it would
be relevant to study the impact of having such a network on the
simulation model.

Network rewiring and partner choice are present on every real
life social networks and have been shown (theoretically and ex-
perimentally) to promote cooperation in social networks [5, 11, 30,
35, 36]. For example, a company A will stop buying products from
B if it feels it is being exploited or knows B has a reputation for
exploiting, buying instead from a different company. This in turn
gives a strong incentive for companies not to exploit, as they will
have no customers if they do. This dynamics can be modeled as
link rewiring within a networked population.

Regulating authorities, like the European Union or the United
States, have in place legislation with the intent of maintaining such
a competitive and free market for the benefit of the consumers. This
is known as Competition Law.

Trying to understand how scale-free networks and rewiring
impact the adoption of AI systems and if they lead to beneficial
equilibria is the focus of this work. We begin by describing the
stochastic game theoretical model we adopt, the different types
of individuals and the network structure and dynamics. We then
present the results of our computer simulations, and conclude by
discussing the impact of this study with regards to the societal
value alignment problem.

2 METHODS
In this section, we present the game-theoretical framework used to
study the dynamics of adoption of AI systems. Let us consider that
individual non-adopters of an AI system— referred to asH, Humans
— have to take all the decision by themselves. Differently, some
individuals, referred to as AI, have adopted an AI system on which
they delegate their decisions, effectively working as autonomous
proxies [10]. We assume that the AI system is perfectly aligned
with its user, and that it can take better decisions than its user.

Below, we detail the interactions between individuals and the
differences betweenH and AI. We present a number of behaviours
that AI systems might follow, from purely utilitarian to purely
selfish. Although no exhaustive list is possible, we cover a rather
limited set of different strategies to be able to study their effects in
hybrid populations of AI and H players. Finally we define the imi-
tation and rewiring dynamics between individuals and the overall
simulation algorithm.

2.1 Model of Interaction Between Individuals
When two individuals, I1 and I2, interact, a stochasticm-by-m payoff
matrix Mt is generated. Being a1, a2 the actions chosen by I1, I2
respectively, the corresponding utility gained by each individual,
u1, u2, is given by:

(u1,u2) = Mt (a1,a2).

The payoff matrices have the following structure:

u1 = R + z(0, 2)|R |(α − 1)
u2 = −R + z(0, 2)|R |(α − 1)

with R = z(−3, 3), where z(a,b) represents a sample from a uniform
distribution in the interval [a,b]. The interval [−3, 3] was chosen
for the simulations, but any equivalent interval could be used. R
is the same for each u1 and u2 pair. The z(0, 2) parameter, being
applied independently to each element of the matrix, creates an
additional source of variability between different interactions, so
that not all action pairs have the same overall utility gain. |R | is the
absolute value of R. We call α an inflation constant, allowing us to
generate general sum games. In our simulations, in order to study
a positive sum world, we consider α = 1.2. The number of possible
actions per individual was set to 4 (m = 4), an empirically found
balance between complexity and computational feasibility.

2.2 Simulating AI Systems and Humans
An AI system can grant a number of advantages to its adopters
when interacting with non-adopters. Compared to humans, those
systems can be less prone to making errors, have access to and
analyze larger quantities of data and interact more frequently and
with a greater number of individuals. AI systems might further be
able to grant an advantage to their users in ways that we might not
be able to understand yet given the current state of the technology.
All these characteristics can me summarized in one main model
assumption: when interacting with H, AI have a decision making
advantage.

Such an advantage could be modeled using several different ap-
proaches, like introducing an error on the decisions made by H,
such that the action taken wasn’t always the rationally decided
one, or modeling humans as having sub-rational decision capa-
bilities. We chose to only give H access to a noisy version of the
interaction payoff matrix, Mϵ , whereas AI are able to grasp the
entirety of the problem, having access to the true payoff matrix,
Mt . This allows us to model H as rational decision makers while
still allowing AI individuals to make optimal decisions, whereas H
individuals are confined to sub-optimal decisions. This introduces
partial observability to our stochastic game.

Such an approach rests on the assumption that the individual
value alignment problem is solved, since AI systems know the utility
payoff of both its owner and of the individuals they interact with.

Having the true payoff utilities, u1,u2, their noisy counterparts,
uϵ1 ,u

ϵ
2 , are produced as follows:

uϵ1 = u1 + (z(0, 10 −Q) − z(0, 10 −Q))

uϵ2 = u2 + (z(0, 10 −Q) − z(0, 10 −Q))



To model the knowledge about the true payoff matrix Mt in a
continuous way, we consider a term z(0, 10 − Q), where Q corre-
sponds to the level of intelligence. For Q = 10 there is no noise
and the true matrix is observed, whereas Q = 0 represents a low
intelligence, such that the observed matrix is very different from the
true one. AI are modelled with Q = 10, having therefore access to
the true matrix, while H are modelled with Q = 5. Other intervals
for the intelligence factors of Hwere experimented with, inside the
[0, 9] range, but they lead to the same qualitative results. The sum
(z(0, 10−Q) −z(0, 10−Q)) was used instead of z(−(10−Q), 10−Q)
to create a Irwin-Hall distribution instead of a uniform one.

Generating an example 2-by-2 true matrix (seen by AI) as:

Mt =

[
(0, 0) (−3, 1)
(1,−5) (−1,−1)

]
We can then have the noisy matrix observed by H become:

Mϵ =

[
(0,−1) (−1, 3)
(0,−6) (−2, 1)

]
where each (u1,u2) pair was transformed into the corresponding
(uϵ1 ,u

ϵ
2 ) pair. In this example, Mt (1, 0) is (1,−5) whereas Mϵ (1, 0)

is (0,−6).

2.3 Human Behaviour
Before delving into the different AI types, we describe the strategy
used by H. Despite not having access to the true game matrix,Mt ,
H remain rational and will try to choose the actions most profitable
for themselves. For this matrix game, that will correspond to the
Nash equilibrium [22, 24, 25].

2.3.1 Nash Equilibrium (NashEQ). H play the Nash equilibrium in
the noisy matrix Mϵ . If more than one is found, they choose the
most profitable one. If two or more are equal, they choose the one
most profitable for their opponent. If no Nash equilibrium is found,
individuals choose the best action assuming that the opponent acts
randomly.

2.4 AI Behaviours
In this section, we propose four different types of AI. While they
can use the previously defined strategy for humans (NashEQ), using
the true matrixMt , AI can also resort to more elaborate strategies
ranging from a fully selfish to an utilitarian approach. AI, being
modelled as having super-human intelligence, can also predict the
action of a H opponent. AI cannot, however, predict opposing AI
actions as for our model we assume all AI have equal intelligence
and capabilities.

2.4.1 Nash Equilibrium (NashEQ). AI choose exactly like H, but
using the true matrixMt .

2.4.2 Selfish. AI, facing H, considers only its own profit, in accor-
dance with ethical egoism [34]. Knowing what action H is going
to take, AI chooses the action that maximizes its own payoff gain.
When AI faces AI, they both choose according to the Nash Equilib-
rium method.

2.4.3 Utilitarian. The other extreme is a pure utilitarian [23] AI
system. AI facing H chooses the action that brings the greatest
amount of payoff to the world, knowing what action H will take.

This means that AI will choose the action that maximizes the sum
between its own payoff and the payoff of H. When AI faces AI,
it again chooses the action that maximizes the summed payoff of
both players.

2.4.4 Human Conscious (HConscious). In between ethical egoism
and utilitarianism, the objective of HConscious AI is to gather the
greatest amount of payoff while, on average, avoiding negative
impact on the H population. In practice, HConscious AI keeps
two variables:U that represents the summed payoff gain of all its
previous H adversaries; and E, that represents the summed payoff
those sameH adversaries would have if they had faced a simulated
H. When facing a H adversary and having U ≥ E, AI chooses
an action that leads to a positive payoff to itself. When there are
several such actions, the AI chooses the one that maximizes the
utility payoff for the world, that is, that maximizes the sum of its
own payoff and the opponent’s payoff. If U < E, AI chooses an
action that allows a positive payoff gain for its H opponent. Once
again, when there are several such actions, the AI chooses the
one that maximizes the utility for the world. Whenever the AI
cannot find a positive action for himself (when U ≥ E) or for its H
opponent (whenU < E), then it chooses according to the Utilitarian
method. WhenAI facesAI, they both choose according to the Nash
Equilibrium method.

2.5 Fitness
The fitness of an individual, H or AI, is a measure of how well
adapted it is to the world on which it is currently inserted. In our
stochastic game model, the fitness of an individual is the sum of the
payoff received after interacting once with all the individuals with
which it is connected. This contrasts with our previous work where
the fitness of an individual was calculated by interacting once with
all the individuals of the population [12].

2.6 Social learning dynamics

Algorithm .1: Imitation Algorithm
Let I1 and I2 be two individuals;
with probability µ = 0.0005, I1 can mutate and either adopt
an AI type or become H;
if there was a mutation then

return;
let F1, F2 be the fitness of I1, I2.;
if (I1 == H) and (F1 < P ) then

return;
else

with probability p(F1, F2), I1 imitates I2;

In order to study adoption dynamics, we allow individuals to
adopt an AI system (H to AI), abandon an AI system (AI to H), or
change between AI types. Individuals revise their choices through
social learning. For instance, aH can decide to imitate anAI follow-
ing a Selfish choice behaviour if it finds such AI has a significantly
better fitness than its own. On such imitation, the individual would
stop beingH and becomeAI. AH individual that decides to imitate
an AI individual can only do so if its fitness is greater or equal to



Table 1: Relative expected utility gain from the link with different types of individuals. A link is considered neutral (0) if the
expected utility gain from having it is the same as the expected utility gain from a link between two H. A link is considered
beneficial (+) if the expected utility gain is above the neutral threshold and harmful (-) if below. The Conservative approach
will rewire only harmful links (-), whereas the Greedy approach will rewire both harmful (-) and neutral (0) links.

Human NashEQ Selfish HConscious Util
Human 0 - - 0 +
NashEQ + 0 0 0 +
Selfish + 0 0 0 +
HConscious + 0 0 0 +
Util - - - - +

a certain threshold, P . This is used to model the possible cost of
adoption of AI systems.

In practice, Algorithm .1 is followed. In it, we adopt the Fermi
update [42, 43], commonly used in the context of evolutionary
game theory and population dynamics in finite populations [27, 41],
where p is given by

p(fx , fy ) =
1

1 + e−β (fy−fx )

in which β translates the noise associated with the imitation process
[20, 42, 43]. Throughout the simulations we have β = 0.1. As a result
of this process, the strategy of individuals with higher fitness will
tend to be imitated, and spread in the population.

2.7 Scale-free Network
Scale-free networks are built through a direct implementation of
the Growth and Preferential attachment model proposed by A. L.
Barabási and R. Albert [4]. The algorithm requires two parameters:
the number of nodes, N , and the number connections each new
node has, m. At each time step of the algorithm, a new node is
added. Each new node connects to m other nodes, chosen with
a probability that increases linearly with its degree. This allows
for the creation of hubs (the older, more connected nodes), one of
the fingerprints of scale-free networks, and a power-law degree
distribution.

2.8 Link Rewiring
To model the dynamic nature between free interactions of in-
dividuals, we implemented an incipient form of partner choice
[14, 30, 33, 36]. This allows individuals that are discontent with a
link to be able to cease interacting with that node and connect to
another node instead. This meant, for example, that aH linked to a
Selfish AI individual could stop interacting with it and connect to
another individual instead.

Knowing the choice behaviours of each type of individual, one
may know which link combinations are beneficial, harmful or neu-
tral (Table 1). Using this information, we defined two rewiring
strategies:

2.8.1 Conservative: An individual will want to rewire a link when-
ever it results in a loss for itself. In practice, this means that H
rewire whenever they were linked to Selfish or NashEQ AI and
Utilitarian AI rewire unless they were linked to another Utilitarian
AI. Selfish and NashEQ individuals never rewire.

2.8.2 Greedy: An individual will want to rewire a link whenever
it results in a loss for itself or is neutral. In practice, this means that
Selfish, NashEQ and HConscious AI rewire unless connected to
H or Utilitarian AI and Utilitarian AI rewire unless connected to
another Utilitarian AI.

2.9 Simulation Algorithm

Algorithm .2: Simulation Algorithm
create the scale-free network of n individuals;
for i = 0; i < N ; i = i + 1 do

pick a random link from the network;
set the two nodes of that link as individuals I1 and I2;
let R be a random float between 0 and 1;
if R > Ω then

run Algorithm .1 with I1 and I2;
else

if I1 wants to rewire its link with I2 then
I1 will cut the link with I2 and create a new one
with a random individual

Initially, we consider a world populated with n individuals n
2 of

those are AI, with all choice behaviours equally represented, and
the remaining n

2 are H.
A parameter, Ω, controls the frequency of rewiring relative to

imitation. When Ω = 0, there is no rewiring and the links remains
static throughout the simulation. For Ω = 1, there is only rewiring
and no imitation. For Ω = 0.9, there are on average 9 rewiring
iterations for each imitation iteration, and so on.

The algorithm is described in Algorithm .2.

3 RESULTS
On this section we study both the effects of a scale-free network
and link rewiring on the adoption dynamics between AI and H.

3.1 Scale-free Network
By setting the Ω parameter to Ω = 0, we are running the simu-
lations on a static scale-free network. As our model is inherently
stochastic and the created scale-free network is always different,
we averaged the results over 100 repetitions. Having an AI system
adoption cost (P = 1), the population stabilized having around



Figure 1: Percentage of each type of individual for different
values of Ω, in a world with P = 1 and n = 1000. For Ω ≥ 0.99
we have the emergence of Utilitarian and HConscious AI,
which were not present for Ω < 0.99.

69% of the population H whereas the remaining 31% were Selfish
AI (Fig. 2a).These results are equivalent to the ones obtained on
previous works that did not use a specific network topology [12].
The presence of a scale-free network, by itself, did not lead to any
new beneficial equilibra.

3.2 Link Rewiring
WithΩ > 0, we have link rewiring in the simulations. Using initially
Conservative rewiring, we experimented with several different
values for Ω and found that as we increased Ω in a world with
(P = 1), the final percentage of the AI population also increased,
being constituted solely by Selfish and NashEQ AI. However, when
reaching Ω ≥ 0.99, the equilibrium dynamics suddenly changed
(Fig 1). Both the Utilitarian and the HConscious populations, that
were nonexistent, became a considerable part of the final population.
The evolution of the population for Ω = 0.99 and P = 1 using
Conservative rewiring can be seen on Fig. 2b.

Despite all AI types having a similar presence in the population
in terms of number, that is not the case regarding links. The average
degree (k) of the network is 4, but analysing the average degree for
each type of individual we find that connections are not uniformly
distributed. The average degree is: 0.64 for H; 0.76 for NashEQ;
0.69 for Selfish; 14.12 for Util; and 0.81 for HConscious. It becomes
obvious that Util AI individuals are much more heavily connected
than all other types of individuals.

When usingGreedy rewiring, the resulting equilibrium, in terms
of population percentage, is equivalent to the one obtained using
Conservative rewiring (Fig2c). The initial evolution of the popu-
lation was slightly different, but the end equilibrium was mostly
the same. However, the average degree for each type of individ-
ual changed, being 14.78 for Util AI and 0 for all other types. This
meant that all individuals that were not UtilAI had become outliers
and had no links to any other individuals.

A comparison of the fitness values for each population type for
the previously mentioned simulations can be found on Table 2.
The disproportional connection of Util individuals translates on a
disproportional fitness compared with the rest of the population.

3.3 Adoption Cost
All the previous simulations were done with a cost of adoption
for AI systems (P = 1). We explored what would happen if there
was no cost of adoption (P = −∞). On a static scale-free network
(Ω = 0), the population became fullyAI, having amajority of Selfish
individuals (≈ 77%) and the remainder being NashEQ (≈ 16%) and
HConscious (≈ 7%). For Ω = 0.99, the results remained the same
for both Conservative and Greedy rewiring.

4 CONCLUSION
In this work, we study the adoption dynamics of AI systems. We
do so on a scale-free network topology with and without network
rewiring.

Our results suggest that, without rewiring and with a cost of
adoption, a minority of the population becomes SelfishAI and gains
a benefit at the expense of the remaining H population that does
not have enough fitness to become AI (Fig. 2a). This replicates the
results found on previous works that did not use a specific network
topology [12].

With rewiring, be it Conservative or Greedy, the equilibrium
consists of similar numbers for each AI type (Fig. 2b and 2c) but
highly disproportional connections and fitness (Table 2). The Util
AI population ends up colliding and obtaining a very high fitness,
leaving the rest of the population poorly linked and with low fit-
ness. The difference between AI types is greater, using Greedy
rewiring, but both rewiring types lead to a society with a high level
of inequality.

Removing the cost of becoming AI only affected the results
obtained with static scale-free networks, and provide no benefit
compared to a fully H (100% H) population (Table 2).

Our simulations suggest that network dynamics promote the
sustainability of both Utilitarian and HConscious AI. Under the
conditions of our model, we were not able to achieve a beneficial
equilibrium between AI and H solely through self-regulating me-
chanics. That does not mean such an equilibrium does not exist
under a different set of conditions. Studying and understanding
how to achieve such an equilibrium is a strong venue for future
work.

Our simulations only allow individuals to imitate those with
whom they were connected through the network. It will be of
interest to explore if the equilibria change when individuals can
imitate anyone or base their imitations on a second network, not
necessarily overlapping with the interaction graph (see, e.g., [29]).

Our rewiring approaches were strictly selfish. Individuals looked
only at their gain when deciding to rewire, either trying not to lose
fitness (Conservative) or trying to improve their fitness (Greedy).
Other approaches could be explored. It is reasonable to consider
populations with a mixture of rewiring strategies. Also, instead of
maintaining the number of links constant throughout the simula-
tions, we could assume a continuous creation of new links leading



(a) (b) (c)

Figure 2: Evolution of the population on a world initially populated by 1000 individuals (n = 1000), 500 of which were AI,
having all types equally represented. In a) the network is scale-free and static (Ω = 0), and there exists a cost for becoming AI
(P = 1). The network stabilizes with ≈ 71% H whereas the remaining ≈ 29% are Selfish AI. In b) the network has Conservative
rewiring, Ω = 0.99, and P = 1. The H population steadily decreases, ending up as only ≈ 1% of the population. All AI types
rise in number, despite a sharp initial drop on the number of HConscious AI and a slight drop of Selfish AI. In the end of
the simulation, all the AI types have roughly the same presence in numbers, with 26% NashEQ, 22% Selfish, 25% Util, and 24%
HConcious. In c), the network has Greedy rewiring, Ω = 0.99, and P = 1. Despite some differences on the initial evolution of
the population, the resulting equilibrium of the population is very similar to the one usingConservative rewiring (Fig 2b). The
final percentages are 25% NashEQ, 22% Selfish, 27% Util, 25% HConscious and 0.5% H.

Table 2: Fitness distribution at the end of the simulations for each type of individual. We use as baseline the average fitness
of individuals on a fully H population (100% H). The optimal equilibrium of a fully Util A.I. population (100% Util) is never
achieved on our simulations, but is relevant as a means of comparison. All the simulations lead to a society with a high
inequality. On a static scale-free network (Ω = 0, P = 1), wealth is hoarded by the Selfish AI population, whereas in both
rewiring simulations (Ω = 0.99,Conservative and Ω = 0.99,Greedy) wealth is hoarded by a collusion of Util AI individuals. For
Ω = 0.99,Greedy, all individuals but the Util AI ones have their average fitness as 0 because they are not connected to anyone.

100% H Ω = 0, P = 1 Ω = 0, P = −∞ Ω = 0.99,Conserv Ω = 0.99,Greedy 100% Util
Fitness(Degree) Fitness(Degree)

Human 1.39 -0.31 - -0.10(0.64) 0(0) -
NashEQ - - 1.39 0.11(0.76) 0(0) -
Selfish - 5.01 1.38 0.25(0.69) 0(0) -
HConscious - - 1.41 0.21(0.81) 0(0) -
Util - - - 10.24(14.12) 11.7(14.78) 3.05
Total Avg 1.39 1.24 1.38 2.71 3.11 3.05

to a time-evolution of the average degree and other network prop-
erties. This would also allow for the reintegration of ostracized
individuals, a feature absent from our model.
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