The TECA, Toolkit for Extreme Climate
Analysis, User’s Guide

Lawrence Berkeley National Lab

June 13, 2017

BERKELEY LAB

S
o

Contents

1 Installation

1.1 Imstall the Binary Distribution o
1.2 Build and Install from Sources
1.2.1 Installing from Source L L
1.2.2 Installing from a Package Manager
1.2.3 Validating the Install
2 TECA Applications
2.1 Tropical Cyclone Detector
2.1.1 Command Line Arguments e
2.1.2 Example
2.2 Tropical Cyclone Trajectories
2.2.1 Command Line Arguments
2.2.2 Example e e
2.3 TCWind Radiio e
2.3.1 Command Line Arguments e
2.3.2 Example.
2.4 Tropical Cyclone Statistics
2.4.1 Command Line Arguments
2.4.2 Analysis e
2.4.3 Example.o
2.5 TC Trajectory Scalars o e
2.5.1 Command Line Arguments
2.5.2 Example e
2.6 TC Wind Radii Stats
2.6.1 Command Line Arguments
2.6.2 Example.
2.7 Event Filter e
2.7.1 Command Line Arguments
2.7.2 Example L e
3 Python
3.1 Pipeline Construction, Configuration and Execution
3.2 Algorithm Development L
3.2.1 Working with TECA’s Data Structures
3.2.2 NetCDF CF Reader Metadata

DWW wWw

1 Installation

1.1 Install the Binary Distribution

TODO. Jeff has setup the superbuild that we will use to make binaries. The location from which to
download them has not yet been determined. Nor has details like do we use brew on apple and apt on
ubuntu etc.

1.2 Build and Install from Sources

TECA is written in C++11. on Unix like systems GCC 4.9 or newer, or LLVM 3.5 or newer are
required. CMake is needed for configuring the build. Additionally, TECA relies on a number of third
party libraries for various features and functionality. The dependencies are all optional in the sense that
the build will proceed if they are missing. However, core functionality may be missing if dependencies
are not available. We highly recommend building TECA with NetCDF, UDUNITS, MPI, Boost, and
Python.

1.2.1 Installing from Source

List of Dependencies

The partial list of dependencies are:
NetCDF 4: Required for CF-2.0 file I/O

HDF5: Optional, required only for files written in NetCDF 4 HDF5 data format.
UDUNITS 2: Required for calendaring

MPI 3: Required for MPI parallel operation

Python, SWIG 3, NumPy: required for Python bindings

mpidpy: Required for parallel Python programming

Boost: Required for command line C++ applications

libxlsxwriter: Required for binary MS Excel workbook output
The superbuild described below will compile and install TECA with its dependencies.

Using the Superbuild

The TECA _superbuild package provides a mechanism for installing TECA and all of the dependencies
directly from source. This is the recommended approach. To build the latest released version of TECA
including all of its dependencies.

$ git clone https://github.com/LBL-EESA/TECA_superbuild.git
$ cd TECA_superbuild

$ mkdir build

$ cd build

$ cmake -DCMAKE_INSTALL_PREFIX=<prefix> ..
$ make -j <number of build threads> install

It’s important to set the install prefix to a spot that is writable as running 'make’ installs each depen-
dency as it’s built.

Mac OS. When using clang On Mac OS one must set the compilers explicitly, else zlib fails to detect
that its being compiled for Mac OS and libz will be built as a Linux libarary and will not contain the
correct rpaths, and Python zlib module will fail to import, as a result breaking setuptools build. One
can set the clang (or other compilers) with

cmake <other -D options> \
-DCMAKE_C_COMPILER=‘which clang‘ \
-DCMAKE_CXX_COMPILER=‘which clang++‘ \

Using the install. In order to make use of the libraries created one must first configure the environment
so that they take precedence over any conflicting libraries already installed.

#!/bin/bash

$. <prefix>/bin/teca_env.sh

Note, that the configuration script must be sourced at the start of each session before using TECA to
prevent conflicts with existing installs of any of the dependencies. This completes the typical TECA
install.

1.2.2 Installing from a Package Manager

Installing TECA’s dependencies via a package manager is not recommended due to
TECA’s requirement for a thread safe HDF5 HL library. If one does not need support for
the NetCDF 4 HDF5 file format then installing from a package manager is a viable option.

Using apt on Ubuntu 14.04

The following shows how to install dependencies on Ubuntu 14.04:

#!/bin/bash

setup repo with recent package versions

sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test

sudo add-apt-repository -y ppa:teward/swig3.0

sudo apt-get update -qq

install deps

sudo apt-get install -qq -y cmake gcc-5 g++-5 gfortran swig3.0 \
libopenmpi-dev openmpi-bin libhdf5-openmpi-dev libnetcdf-dev \
libboost-program-options-dev python-dev libudunits2-0 \
libudunits2-dev

use PIP for Python packages

pip install --user numpy mpiédpy

Note that on more recent releases of Ubuntu one will not need to use PPA repos to obtain up to date
packages. Other Linux distros, such as Fedora, have a similar install procedure albeit with different
package names. The apt install does not provide threadsafe HDF5! If your data is in
NetCDF 4 HDF'5 format please use the TECA _superbuild superbuild.

Using brew on Apple Mac OS Yosemite

On Apple Mac OS using homebrew to install the dependencies is recommended.

#!/bin/bash

brew update

brew tap Homebrew/homebrew-science

brew install gcc openmpi hdf5 netcdf python swig udunits

brew install boost --C++11

pip install numpy mpi4dpy
We highly recommend taking a look a the output of brew doctor and fixing all reported issues before
attempting a TECA build. Significant complications can arise where user’s have mixed installation
methods, such as mixing installs from macports, homebrew, or manual installs. Multiple Python
installations can also be problematic. During configuration TECA reports the Python version detected,
one should verify that this is correct and if not set the paths manually. = The brew install does
not provide threadsafe HDF5! If your data is in NetCDF 4 HDF5 format please use the
TECA _superbuild superbuild.

Installing TECA

Once the dependencies have been installed TECA may be compiled and installed. Note, the TECA _superbuild
superbuild will build and install TECA by default. This section is targeted toward those installing de-
pendencies via a package manager or developers who need a build that is not installed.

Obtaining the Sources To obtain the TECA sources, clone our github repository.
git clone git@github.com:LBL-EESA/TECA.git

TECA comes with a suite of regression tests. If you wish to validate your build, you’ll also need to
obtain the test datasets.

svn co svn://missmarple.lbl.gov/work3/teca/TECA_data

Before compiling you’ll need to install the dependencies. See the following sections for operating system
specific instructions.

Compiling TECA Once dependencies are installed a TECA build can be configured and compiled.
The following sections show operating specific examples of compiling TECA. TECA_SOURCE_DIR
should be replaced with the path to the TECA sources, TECA_DATA_DIR replaced with the path to
the test data, and TECA_INSTALL_DIR replaced with the path to the install location.

Note that on all operating systems TECA requires an out of source build. The first step is to create a
build directory and cd into it.

#!/bin/bash

mkdir ${TECA_SOURCE_DIR}/build

cd ${TECA_SOURCE_DIR}/build

Ubuntu 14.04

#!/bin/bash

cmake \
-DCMAKE_C_COMPILER=‘which gcc-5¢ \
-DCMAKE_CXX_COMPILER=‘which g++-5°¢ \
-Dswig_cmd=‘which swig3.0¢ \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=${TECA_INSTALL_DIR} \
-DBUILD_TESTING=0N \
-DTECA_DATA_ROOT=${TECA_DATA_DIR} \
${TECA_SOURCE_DIR}

make -j4 && make -j4 install

Here compilers and swig are explicitly set to prevent the older and not fully C++11 compliant versions
present on Ubuntu 14.04 from being used. On newer releases and other distros this is not necessary.

Apple Mac OS Yosemite

#!/bin/bash

cmake \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=${TECA_INSTALL_DIR} \
-DBUILD_TESTING=0N \
-DTECA_DATA_ROOT=${TECA_DATA_DIR} \
${TECA_SOURCE_DIR}

make -j4 && make -j4 install

Configuring the Environment

Depending on your configuration PATH and LD_LIBRARY PATH (or DYLD_LIBRARY_PATH on
Apple) may need to include your TECA_INSTALL_DIR. Additionally, use of TECA’s Python modules
require setting PYTHONPATH. Note that the superbuild includes a script to configure the environment.
The following is only necessary when not using TECA installed via the superbuild.

Ununtu 14.04

#!/bin/bash

export PATH=${TECA_INSTALL_DIR}/bin:.:$PATH

export PYTHONPATH=${TECA_INSTALL_DIR}/lib:$PYTHONPATH

export LD_LIBRARY_PATH=${TECA_INSTALL_DIR}/1lib:$LD_LIBRARY_PATH

Apple Mac OS Yosemite

#!/bin/bash

export PATH=${TECA_INSTALL_DIR}/bin:.:$PATH

export PYTHONPATH=${TECA_INSTALL_DIR}/lib:$PYTHONPATH

export LD_LIBRARY_PATH=${TECA_INSTALL_DIR}/lib:$LD_LIBRARY_PATH
export DYLD_LIBRARY_PATH=${TECA_INSTALL_DIR}/lib:$DYLD_LIBRARY_PATH

1.2.3 Validating the Install

TECA comes with an extensive regression test suite which can be used to validate your build. The
tests can be executed from the build directory with the ctest command.

#!/bin/bash
ctest --output-on-failure

Do not forget to configure the environment as described above.

2 TECA Applications

2.1 Tropical Cyclone Detector

The cyclone detector is an MPI+4threads parallel map-reduce based application that identifies tropical
cyclone tracks in NetCDF-CF2 climate data. The application is comprised of a number of stages that
are run in succession producing tables containing cyclone tracks. The tracks then can be visualized or
further analyzed using the TECA TC statistics application, TECA’s Python bindings, or the TECA
ParaView plugin.

2.1.1 Command Line Arguments
The most common command line options are:

—help prints documentation for the most common options. MPI programs, such as teca_tc_detect aren’t
allowed to run on the login noes at NERSC. For this reason to use —help you’ll need to obtain a
compute node via salloc first.

—full_help prints documentation for all options. See —help notes.

—input_regex this is how you tell TECA what files are in the dataset. We use the grep style regex,
which must be quoted with single ticks to protect it from the shell. Regex meta characters present
in the file name must be escaped with a \. An example of an input regex which includes all .nc
files is: ".*\.nc$’. If instead one wanted to grab only files from 2004-2005 then ’.*\.200[45].*\ .nc$’
would do the trick. For the best performance, specify the smallest set of files needed to achieve
the desired result. Each of the files will be opened in order to scan the time axis.

—start_date , an optional way to further specify the time range to process. The accepted format is a
CF style human readable date spec such as YYYY-MM-DD hh:mm:ss. Because of the space in
between day and hour spec quotes must be used. For example ”2005-01-01 00:00:00”. Specifying
a start date is optional, if none is given then all of the time steps in all of the files specified in the
—input_regex are processed.

—end_date see —start_date. this is has a similar purpose in restricting the range of time steps processed.

—candidate_file , a file name specifying where to write the storm candidates to. If not specified result
will be written to candidates.bin in the current working directory. One sets the output format via
the extension. Supported formats include csv, xlsx, and bin.

—track_file , a file name specifying where to write the detected storm tracks. If not specified the tracks
are written to a file named tracks.bin in the current working directory. See —candidate_file for
information about the supported formats.

2.1.2 Example
Once on Edison load the TECA module

module load teca

Figure 2.1: Cyclone tracks plotted with 850 mb wind speed and integrated moisture.

note that there are multiple versions installed, just use the latest and greatest as they become available.

Processing an entire dataset is straight forward once you know how many cores you want to run on.
You will launch teca_tc_detect, the tropical cyclone application, from a SLURM batch script. A batch
script is provided below.

TECA can process any size dataset on any number of compute cores. However, the fastest results are
attained when there is 1 time step per core. In order to set this up one must determine how many time
steps there are and write the SLURM batch script accordingly. The teca_metadata_probe command line
application can be used for this purpose. When executed with the same —input_regex and optionally
the —start_date and or —end_date options that will be used in the cyclone detection run it will print out
the information needed to configure a 1 to 1 (time steps to cores) run. The metadata probe is a serial
application and can be run on the login nodes.

teca_metadata_probe --input_regex ’.*\.199[0-9].*\.nc$’

A total of 29200 steps available in 3650 files. Using the noleap calendar.
Times are specified in units of days since 1979-01-01 00:00:00. The available
times range from 1990-1-1 3:0:0 (4015.12) to 2000-1-1 0:0:0 (7665).

With the number of time steps in hand one can set up the SLURM batch script for the run. The fol-
lowing batch script, named 1990s.sh, processes the entire decade of the 1990’s. The teca_metadata_probe
was used to determine that there are 29200 time steps. The srun command is used to launch the cyclone
detector on 29200 cores.

#!/bin/bash -1
#SBATCH -p regular
#SBATCH -N 1217
#SBATCH -t 00:30:00

data_dir=/scratch2/scratchdirs/prabhat/TCHero/data
files_regex=camb_1_amip_run2’\.cam2\.h2\.199[0-9].*.nc$’

srun -n 29200 teca_tc_detect \

Regional Breakdown

Distributions Annual Saphir-Simpson Distribution Monthly Breakdown 1980 1991 1992

Cyclone Max Surface Wind 1990 1991 1992 1990 1991 1992 100 00 00
s s

; [E [E EB é é é é [5 [5 D:L-—D:LII-D:LI- E HHnHﬂnHMHHHi Hﬂ-ﬁ.!ﬂ!! ; H...HHHHHHIJH ressr HHB et H”H et HHH

$52285325 523553550 s5e35gazE

1903 1994 1005
0

el ol

TRETELREAC "RERALgRERC rggRangRid
1996 1997 1998
o o

Cyclone Min Sea Level Pre:

uuuuuu

o E-H IH HH-) =.B.20 H!H) ="} -H HHH

35720392 i TR
en e
. 5o g, a
w) =
Cloo e b 3
° meszsggazse o
(a) Parameter Dist. (b) Categorical Dist. (c) Monthly Breakdown (d) Regional Breakdown
s v wwoaane
e
Amme==Bate) 2l o e aAEa
RERRIREGRE RRERAERERS RESRIREGRE
5. w
RERRIREGRE RRERAERERS n'&@‘&@&#ﬁ’&#%‘
s pacn s acans e
S

(e) Reglonal Trend (f) Basin Definitions and Cyclogenesis Plot

Figure 2.2: Analyses produced by the stats stage

--input_regex ${data_dir}/${files_regex} \
—-candidate_file candidates_1990s.bin
——-track_file tracks_1990s.bin

P

Finally, the batch script must be submitted to the batch system requesting the appropriate number of
nodes. In this case the command is:

$sbatch ./1990s.sh

For the % degree resolution dataset when processing latitudes between -90 to 90 the detector runs
in approx 15 min. Detector run time could be reduced by subsetting in latitude (see —lowest_lat, —
highest_lat options). Note that as the number of files in the dataset increases the metadata phase takes
more time. You can use teca_metadata_probe to get a sense of how much more and extend the run time

accordingly.

2.2 Tropical Cyclone Trajectories

The trajectory stage runs after the map-reduce candidate detection stage and generates cyclone storm
tracks. The TC detector described above invokes the trajectory stage automatically, however it can
also be run independently on the candidate stage output. The trajectory stage can be run from the
login nodes.

2.2.1 Command Line Arguments

The most commonly used command line arguments to the trajectory stage are:

10

—help prints documentation for the most common options.
—full_help prints documentation for all options. See —help notes.
—candidate_file , a file name specifying where to read the storm candidates from.

—track_file , a file name specifying where to write the detected storm tracks. If not specified the tracks
are written to a file named tracks.bin in the current working directory. One sets the output format
via the extension. Supported formats include csv, xlIsx, and bin.

2.2.2 Example

An example of running the trajectory stage is:

teca_tc_trajectory \
-—-candidate_file candidates_1990s.bin \
—-—track_file tracks_1990s.bin

the file tracks_1990s.bin will contain the list of storm tracks.

2.3 TC Wind Radii

The wind radii application can be used to compute wind radii from track data in parallel. For each point
on each track a radial profile is computed over a number of angular intervals. The radial profiles are used
to compute distance from the storm center to the first downward crossing of given wind speeds. The
default wind speeds are the3 Saffir-Simpson transitions. Additionally distance to the peak wind speed
and peak wind speed are recorded. A new table is produced containing the data. The TC trajectory
scalars application, TC stats application and ParaView plugin can be used to further analyze the data.

2.3.1 Command Line Arguments

The most commonly used command liine arguments are:

—track_file file path to read the cyclone from (tracks.bin)

—wind_files regex matching simulation files containing wind fields ()
—track_file_out file path to write cyclone tracks with size (tracks_size.bin)
—wind_u_var name of variable with wind x-component (UBOT)
—wind_v_var name of variable with wind y-component (VBOT)
—track_mask expression to filter tracks by ()

—n_theta number of points in the wind profile in the theta direction (32)
—n_r number cells in the wind profile in radial direction (32)
—profile_type radial wind profile type. max or avg (avg)

—search_radius size of search window in deg lat (6)

see —help and —full_help for more information.

11

2.3.2 Example

The following examples shows computation of wind radii for a decades worth of tracks using 128 cores
on NERSC Cori.

module load teca
sbatch wind_radii_1990s.sh

where the contents of wind_radii_1990s.sh are as follows

#!/bin/bash -1
#SBATCH -p debug
#SBATCH -N 4
#SBATCH -t 00:30:00
#SBATCH -C haswell

data_dir=/global/cscratchl/sd/mwehner/cylones_ensemble/camb_1_amip_run2/ncfiles
files_regex=${data_dir}/camb_1_amip_run2’\.cam2\.h2\.199[0-9].*\.nc$’
track_file=tracks_1990s_3hr_mdd_4800.bin
track_file_out=wind_radii_1990s_3hr_mdd_4800_co.bin

srun -n 4 --ntasks-per-node=1 \
teca_tc_wind_radii --n_threads 32 --first_track 0 \
--last_track -1 --wind_files ${files_regex} --track_file ${track_file} \
-—-track_file_out ${track_file_out}

2.4 Tropical Cyclone Statistics

The statistics stage can be used to compute a variety of statistics on detected cyclones. It generates a
number of plots and tables and it can be ran on the login nodes. The most common options are the
input file and output prefix.

2.4.1 Command Line Arguments

The command line arguments to the stats stage are:

tracks_file A required positional argument pointing to the file containing TC storm tracks.
output_prefix Required positional argument declaring the prefix that is prepended to all output files.
—help prints documentation for the command line options.

-d, —dpi Sets the resolution of the output images.

-i, —interactive Causes the figures to open immediately in a pop-up window.

-a, —ind_axes Normalize y axes in the subplots allowing for easier inter-plot comparison.

2.4.2 Analysis
The following analysis are performed by the stats stage:

Classification Table Produces a table containing cyclogenisis information, Saphir-Simpson category,
and the min/max of a number of detection parameters.

Categorical Distribution Produces a histogram containing counts of each class of storm on the Saphir-
Simpson scale. See figure 2.2b.

12

Categorical Monthly Breakdown Produces histogram for each year that shows the breakdown by
month and Saphir-Simpson category. See figure 2.2c.

Categorical Regional Breakdown Produces a histogram for each year that shows breakdown by region

and Saphir-Simpson category. See figure 2.2d.

Categorical Regional Trend Produces a histogram for each geographic region that shows trend of storm
count and Saphir-Simpson category over time. See figure 2.2e

Parameter Distributions Produces box and whisker plots for each year for a number of detector pa-

rameters. See figure 2.2f.

2.4.3 Example

An example of running the stats stage is:

teca_tc_stats tracks_1990s.bin stats/stats_1990s

2.5 TC Trajectory Scalars

The trajectory scalars application can be used to
plot detection parameters for each storm in time.
The application can be run in parallel.

2.5.1 Command Line Arguments

tracks_file A required positional argument point-
ing to the file containing TC storm tracks.

output_prefix A required positional argument
declaring the prefix that is prepended to all
output files.

-h, —help prints documentation for the command
line options.

-d, —dpi Sets the resolution of the output images.

-i, —interactive Causes the figures to open imme-
diately in a pop-up window.

—first_track Id of the first track to process
—last_track Id of the last track to process
—texture An image containing a map of the Earth

to plot the tracks on.

2.5.2 Example

Track 280, cat 4, steps 10441 - 10524
1993/7/30 6:0:00 - 1993/8/9 15:0:00

+les Sea Level Pressure

millibars.

2 4 6 8 10
time (days)
Surface Wind

275 280 285 290 295 300 305 0 2 4 6
deg lon time (days)

ion Speed Vorticity

a 6 4 6
time (days) time (days)

+1.2e4 Thickness Core Temperature

2 4 6 8 10 0 2 4 6 8 10
time (days) time (days)

Storm Size

RO mmm R4
Rl mmm RS
—R2 mmm RP

A~ N - R3

time (days)

IS

radius (deg lat)

°

°
-

Figure 2.3: The trajectory scalars application plots
cyclone properties over time.

mpiexec -np 10 ./bin/teca_tc_trajectory_scalars \
--texture ../../TECA_data/earthmap4k.png \

tracks_1990s_3hr_mdd_4800.bin
traj_scalars_1990s_3hr_mdd_4800

2.6 TC Wind Radii Stats

13

The wind radii stats application can be used to Wind Radii 1/1/1990 - 12/31/1990
generate summary statistics describing the wind e I S I
radii distributions. 2007, 5 3000 3000 -

E 20001 2000

w
=1
S

wind speed (kmyhr)

2
100 4 1000 1000 4

2'6'1 Command Line Arguments o 200 400 600 0-0 200 400 600 o 200 400 600

R1 (119.0 km/hr) R2 (154.0 km/hr) R3 (178.0 km/hr)
400 A

tracks_file A required positional argument point-
ing to the file containing TC storm tracks.

300 1

]

&

£ 200 4
g 1

2

output_prefix Required positional argument declar- | .
. . 100 200 300 100 200 100 150
mg the preﬁX that is prepended to all Output R4 (209.0 km/hr) R5 (252.0 km/hr) Radius (km)
RO
files.] ’ m
g R2
. . 5 5 - R3
—help prints documentation for the command 220 =
EEE RS

line options. o 0
50 1lo0 60 80

Radius (km} Radius (km}

-d, —dpi Sets the resolution of the output images.
Figure 2.4: The wind radii stats application plots

-i, —interactive Causes the figures to open imme- distribution of wind radii.
diately in a pop-up window.

—wind_column Name of the column to load in-
stantaneous max wind speeds from.

2.6.2 Example

teca_tc_wind_radii_stats \
wind_radii_1990s_3hr_mdd_4800_ed.bin wind_radii_stats_ed/

2.7 Event Filter

The event filter application lets one remove rows from an input table that do not fall within specified
geographic and/or temporal bounds. This gives one the capability to zoom into a specific storm, time
period, or geographic region for detailed analysis.

2.7.1 Command Line Arguments

in_file A required positional argument pointing to the input file.

out_file A required positional argument pointing where the output should be written.
-h, —help prints documentation for the command line options.

—time_column name of column containing time axis

—start_time filter out events occurring before this time

—end_time filter out events occurring after this time

—step_column name of column containing time steps

—step_interval filter out time steps modulo this interval

—x_coordinate_column name of column containing event x coordinates
—y_coordinate_column name of column containing event y coordinates

—region_x_coords x coordinates defining region to filter

14

—region_y_coords y coordinates defining region to filter

—region_sizes sizes of each of the regions

2.7.2 Example

teca_event_filter --start_time=1750 --end_time=1850 \
--region_x_coords 260 320 320 260 --region_y_coords 10 10 50 50 \
--region_sizes 4 --x_coordinate_column lon --y_coordinate_column lat \

candidates_1990s_3hr.bin filtered.bin

15

3 Python

TECA includes a diverse collection of I/O and analysis algorithms specific to climate science and
extreme event detection. It’s pipeline design allows these component algorithms to be quickly coupled
together to construct complex data processing and analysis pipelines with minimal effort. TECA
is written primarily in C++11 in order to deliver the highest possible performance and scalability.
However, for non-computer scientists c+11 development can be intimidating, error prone, and time
consuming. TECA’s Python bindings offer a more approachable path for custom application and
algorithm development.

Python can be viewed as glue for connecting optimized C++11 components. Using Python as glue
gives one all of the convenience and flexibility of Python scripting with all of the performance of the
native C+411 code. TECA also includes a path for fully Python based algorithm development where
the programmer provides Python callables that implement the desired analysis. In this scenario the
use of technologies such as NumPy provide reasonable performance while allowing the programmer to
focus on the algorithm itself rather than the technical details of C+411 development.

Report Execute

reIier O>@

st oXojeole
T 5

ol ®,

2 0

Figure 3.1: execution path through a simple 4 stage pipeline on any given process in an MPI parallel run. Time
progresses from al to c4 through the three execution phases report (a), request (b), and execute
(c). The sequence of thread parallel execution is shown inside gray boxes, each path represents the
processing of a single request.

3.1 Pipeline Construction, Configuration and Execution

Building pipelines in TECA is as simple as creating and connecting TECA algorithms together in the de-
sired order. Data will flow and be processed sequentially from the top of the pipeline to the bottom, and
in parallel where parallel algorithms are used. All algorithms are created by their static New() method.
The connections between algorithms are made by calling one algorithm’s set_input_connection() method
with the return of another algorithm’s get_output_port() method. Arbitrarily branchy pipelines are
supported. The only limitation on pipeline complexity is that cycles are not allowed. Each algorithm
represents a stage in the pipeline and has a set of properties that configure its run time behavior.

16

Properties are accessed by set_jprop name;, and get_jprop name; methods. Once a pipeline is created
and configured it can be run by calling update() on its last algorithm.

1 from mpidpy import *

2 rank = MPI.COMM_WORLD.Get_rank()

3 n_ranks = MPI.COMM_WORLD.Get_size()
4 from teca import *

5 import sys

6 import stats_callbacks

7

8 if len(sys.argv) < 7:

9 sys.stderr.write(’global_stats.py [dataset regex] ’> \

10 ’[out file name] [first step] [last step] [n threads]’ \
11 ’[array 1] .. [array n]l\n’)

12 sys.exit(-1)

14 data_regex = sys.argv[i]

15 out_file = sys.argv[2]

16 first_step = int(sys.argv[3])
17 last_step = int(sys.argv([4])
18 n_threads = int(sys.argv[5])
19 var_names = sys.argv[6:]

21 if (rank == 0):
22 sys.stderr.write(’Testing on %d MPI processes\n’(n_ranks))

24 cfr = teca_cf_reader.New()
25 cfr.set_files_regex(data_regex)

27 alg = teca_programmable_algorithm.New()

28 alg.set_input_connection(cfr.get_output_port())

20 alg.set_request_callback(stats_callbacks.get_request_callback(rank, var_names))
30 alg.set_execute_callback(stats_callbacks.get_execute_callback(rank, var_names))

32 mr = teca_table_reduce.New()

33 mr.set_input_connection(alg.get_output_port())
34 mr.set_first_step(first_step)

35 mr.set_last_step(last_step)

36 mr.set_thread_pool_size(n_threads)

38 tw = teca_table_writer.New()
39 tw.set_input_connection(mr.get_output_port())
40 tw.set_file_name(out_file)

42 tw.update()

Listing 3.1: Command line application written in Python. The application constructs,
configures, and executes a 4 stage pipeline that computes basic descriptive
statistics over the entire lat-lon mesh for a set of variables passed on the
command line. The statistic computations have been written in Python,
and are shown in listing 3.2. When run in parallel, the map-reduce pattern
is applied over the time steps in the input dataset. A graphical representation
of the pipeline is shown in figure 3.1.

For example, listing 3.1 shows a command line application written in Python. The application
computes a set of descriptive statistics over a list of arrays for each time step in the dataset. The results
at each time step are stored in a row of a table. teca_table_reduce is a map-reduce implementation that
processes time steps in parallel and reduces the the tables produced at each time step into a single result.
One use potential use of this code would be to compute a time series of average global temperature.
The application loads modules and initializes MPI (lines 1-6), parses the command line options (lines
8-19), constructs and configures the pipeline (lines 24-40), and finally executes the pipeline (line 42).

17

The pipeline constructed is shown in figure 3.1 next to a time line of the pipeline’s parallel execution
on an arbitrary MPI process.

3.2 Algorithm Development

While TECA is is written in C++11, it can be extended at run time using Python. However, before
we explain how this is done one must know a little about the three phases of execution and what is
expected to happen during each.

The heart of TECA’s pipeline implementation is the teca_algorithm. This is an abstract class that
contains all of the control and execution logic. All pipelines in TECA are built by connecting concrete
implementations of teca_algorithm together to form execution networks. TECA’s pipeline model is
based on a report-request scheme that minimizes I/O and computation. The role of reports are to
make known to down stream consumers what data is available. Requests then are used to pull only the
data that is needed through the pipeline. Requests enable subsetting and streaming of data and can be
acted upon in parallel and are used as keys in the pipeline’s internal cache. The pipeline has 3 phases
of execution, report phase, the request phase, and finally the execute phase.

Report Phase The report phase kicks off a pipeline’s execution and is initiated when the user calls
update() or update_metadata() on a teca_algorithm. In the report phase, starting at the top of the
pipeline working sequentially down, each algorithm examines the incoming report and generates out-
going report about what it will produce. Implementing the report phase can be as simple as adding
an array name to the list of arrays or as complex as building metadata describing a dataset on disk.
The report phase should always be light and fast. In cases where it is not, cache the report for re-use.
Where metadata generation would create a scalability issue, for instance parsing data on disk, the report
should be generated on rank 0 and broadcast to the other ranks.

Request Phase The request phase begins when report the report phase reaches the bottom of the
pipeline. In the request phase, starting at the bottom of the pipeline working sequentially up, each
algorithm examines the incoming request, and the report of what’s available on its inputs, and from this
information generates a request for the data it will need during its execution phase. Implementing the
request phase can be as simple as adding a list of arrays required to compute a derived quantity or as
complex as requesting data from multiple time steps for a temporal computation. The returned requests
are propagated up after mapping them round robin onto the algorithm’s inputs. Thus, it’s possible to
request data from each of the algorithm’s inputs and to make multiple requests per execution. Note that
when a threaded algorithm is in the pipeline, requests are dispatched by the thread pool and request
phase code must be thread safe.

Execute The execute phase begins when requests reach the top of the pipeline. In the execute phase,
starting at the top of the pipeline and working sequentially down, each algorithm handles the incoming
request, typically by taking some action or generating data. The datasets passed into the execute phase
should never be modified. When a threaded algorithm is in the pipeline, execute code must be thread
safe.

In the TECA pipeline the report and request execution phases handle communication in between
various stages of the pipeline. The medium for these exchanges of information is the teca_metadata
object, an associative containers mapping strings(keys) to arrays(values). For the stages of a pipeline
to communicate all that is required is that they agree on a key naming convention. This is both the
strength and weakness of this approach. On the one hand, it’s trivial to extend by adding keys and
arbitrarily complex information may be exchanged. On the other hand, key naming conventions can’t
be easily enforced leaving it up to developers to ensure that algorithms play nicely together. In practice
the majority of the metadata conventions are defined by the reader. All algorithms sitting down stream
must be aware of and adopt the reader’s metadata convention. For most use cases the reader will

18

from teca import *
import numpy as np
import sys

def get_request_callback(rank, var_names):
def request(port, md_in, req_in):
sys.stderr.write(’descriptive_stats::request MPI %d\n’%(rank))
req = teca_metadata(req_in)
req[’arrays’] = var_names
return [req]
return request

© 0 N o U oA W N e

e e
w N = O

def get_execute_callback(rank, var_names):
def execute(port, data_in, req):
sys.stderr.write(’descriptive_stats::execute MPI %d\n’%(rank))

e
N o oo

mesh = as_teca_cartesian_mesh(data_in[0])

-
3

table = teca_table.New()
table.declare_columns([’step’,’time’], [’ul’,’d’])
table << mesh.get_time_step() << mesh.get_time()

[CIR I VR
N = O ©

for var_name in var_names:

[CER N
[X

table.declare_columns([’min ’+var_name, ’avg ’+var_name, \
’max ’+var_name, ’std ’+var_name, ’low_q ’+var_name, \
’med ’+var_name, ’up_q ’+var_name], [’d’]1xT7)

NN NN
© ® N o

var = mesh.get_point_arrays().get(var_name).as_array()

w W
= o

table << float(np.min(var)) << float(np.average(var)) \
<< float(np.max(var)) << float(mp.std(var)) \
<< map(float, np.percentile(var, [25.,50.,75.1))

W W w
IR

return table
return execute

w W
o o

Listing 3.2: Callbacks implementing the calculation of descriptive statistics over a set of
variables laid out on a Cartesian lat-lon mesh. The request callback requests
the variables, the execute callback makes the computations and constructs
a table to store them in.

be TECA’s NetCDF CF 2.0 reader, teca_cf_reader. The convention adopted by the CF reader are
documented in its header file and in section 3.2.2.

In C++411 polymorphism is used to provide customized behavior for each of the three pipeline phases.
In Python we use the teca_programmable_algorithm, an adapter class that calls user provided callback
functions at the appropriate times during each phase of pipeline execution. Hence writing a TECA
algorithm purely in Python amounts to providing three appropriate callbacks.

The Report Callback The report callback will report the universe of what the algorithm could produce.

def report_callback(o_port, reports_in) -> report_out

19

o_port integer. the output port number to report for. can be ignored for single
output algorithms.

reports_in teca_metadata list. reports describing available data from the next up-
stream algorithm, one per input connection.

report_out teca_metadata. the report describing what you could potentially pro-
duce given the data described by reports_in.

Report stage should be fast and light. Typically the incoming report is passed through with metadata
describing new data that could be produced appended as needed. This allows upstream data producers
to advertise their capabilities.

The Request Callback The request callback generates an up stream request requesting the minimum
amount of data actually needed to fulfill the incoming request .

def request(o_port, reports_in, request_in) -> requests_out

o_port integer. the output port number to report for. can be ignored for single
output algorithms.

reports_in teca_metadata list. reports describing available data from the next up-
stream algorithm, one per input connection.

request_in teca_metadata. the request being made of you.

report_out teca_metadata list. requests describing data that you need to fulfill the
request made of you.

Typically the incoming request is passed through appending the necessary metadata as needed. This
allows down stream data consumers to request data that is produced upstream.

The Execute Callback The execute callback is where the computations or I/O necessary to produce
the requested data are handled.

def execute(o_port, data_in, request_in) -> data_out

o_port integer. the output port number to report for. can be ignored for single
output algorithms.

data_in teca_dataset list. a dataset for each request you made in the request call-
back in the same order.

request_in teca_metadata. the request being made of you.

data_out teca_dataset. the dataset containing the requested data or the result of
the requested action, if any.

A simple strategy for generating derived quantities having the same data layout, for example on a
Cartesian mesh or in a table, is to pass the incoming data through appending the new arrays. This
allows down stream data consumers to receive data that is produced upstream. Because TECA caches
data it is important that incoming data is not modified, this convention enables shallow copy of large
data which saves memory.

Lines 27-30 of listing 3.1 illustrate the use of teca_programmable_algorithm. In this example the
callbacks implementing the computation of descriptive statistics over a set of variables laid out on a
Cartesian lat-lon mesh are in a separate file, stats_callbacks.py (listing 3.2) imported on line 6 and
passed into the programmable algorithm on lines 29 and 30. Note, that we did not need to provide a
report callback as the default implementation, which simply passes the report through was all that was
needed. In both our request and execute callbacks we used a closure to pass list of variables from the

20

command line into the function. Our request callback (lines 6-9 of listing 3.2) simply adds the list of
variables we need into the incoming request which it then forwards up stream. The execute callback
(lines 14-35) gets the input dataset (line 17), creates the output table adding columns and values of time
and time step (lines 19-21), then for each variable we add columns to the table for each computation
(line 25), get the array from the input dataset (line 29), compute statistics and add them to the table
(lines 31-33), and returns the table containing the results (line 35). This data can then be processed
by the next stage in the pipeline.

3.2.1 Working with TECA’s Data Structures

Arrays TODO: illustrate use of teca_variant_array, and role numpy plays

Metadata TOOD: illustrate use of teca_metadata
The Python API for teca_metadata models the standard Python dictionary. Metadata objects are
one of the few cases in TECA where stack based allocation and deep copying are always used.

md = teca_metadata()
md[’name’] = ’Land Mask’
md[’bounds’] = [-90, 90, 0, 360]

md2 = teca_metadata(md)
md2[’bounds’] = [-20, 20, 0, 360]

Array Collections TODO: illustrate teca_array_collection, tabular and mesh based datasets are imple-
mented in terms of collections of arrays

Tables TODO: illustrate use of teca_table

Cartesian Meshes TODO: illustrate use of teca_cartesian_mesh

3.2.2 NetCDF CF Reader Metadata

TODO: document metadata conventions employed by the reader

21

	Installation
	Install the Binary Distribution
	Build and Install from Sources
	Installing from Source
	Installing from a Package Manager
	Validating the Install

	TECA Applications
	Tropical Cyclone Detector
	Command Line Arguments
	Example

	Tropical Cyclone Trajectories
	Command Line Arguments
	Example

	TC Wind Radii
	Command Line Arguments
	Example

	Tropical Cyclone Statistics
	Command Line Arguments
	Analysis
	Example

	TC Trajectory Scalars
	Command Line Arguments
	Example

	TC Wind Radii Stats
	Command Line Arguments
	Example

	Event Filter
	Command Line Arguments
	Example

	Python
	Pipeline Construction, Configuration and Execution
	Algorithm Development
	Working with TECA's Data Structures
	NetCDF CF Reader Metadata

