
Agent-based Testing of Extended Reality Systems
Rui Prada

INESC-ID and Instituto Superior Técnico, Univ. de Lisboa
Portugal, rui.prada@tecnico.ulisboa.pt

I. S. W. B. Prasetya
Utrecht Univ., Netherlands

Orcid: 0000-0002-3421-4635

Fitsum Kifetew
Fondazione Bruno Kessler

Italy, Orcid: 0000-0003-1860-8666

Frank Dignum
Umea Univ., Sweden

Tanja E. J. Vos
Univ. Politecnica de Valencia, Spain

Jason Lander
Gameware, UK

Jean-yves Donnart
Thales AVS, France

Alexandre Kazmierowski
Thales SIX GTS, France

Joseph Davidson
GoodAI, Czech Rep.

Pedro M. Fernandes
INESC-ID and Instituto Superior Técnico, Univ. de Lisboa, Portugal

Abstract—Testing for quality assurance (QA) is a crucial
step in the development of Extended Reality (XR) systems
that typically follow iterative design and development cycles.
Bringing automation to these testing procedures will increase the
productivity of XR developers. However, given the complexity of
the XR environments and the User Experience (UX) demands,
achieving this is highly challenging. We propose to address this
issue through the creation of autonomous cognitive test agents
that will have the ability to cope with the complexity of the
interaction space by intelligently explore the most prominent
interactions given a test goal and support the assessment of
affective properties of the UX by playing the role of users.

Index Terms—agent-based testing, AI-based testing, testing
computer game, testing virtual reality, user experience testing

I. INTRODUCTION

Extended Reality (XR) systems are advanced interactive
systems such as systems with advanced 3D UI, Virtual Real-
ity (VR), and Augmented Reality (AR) systems. They have
emerged in various domains, ranging from entertainment,
cultural heritage, to combat training and mission critical ap-
plications. Testing is particularly critical to assure functional
correctness and high quality user experience (UX), driving
the typical agile iterative development process. Unfortunately,
the current XR development toolset possesses little technology
beyond rudimentary record and replay tools that only work for
simple test scenarios and furthermore break easily whenever
the XR system is changed. XR testing practice involves
therefore thousands of hours of manual play by human testers.
As one can imagine, this is very costly and difficult to manage.
Worse, such practice impedes the industry’s growth and its
agility to timely market sophisticated virtual and augmented
environments with higher quality user experience.

Challenges. Introducing automation to XR testing would
greatly benefit the industry, but to get there, the following key
challenges need to be addressed first:

1) Fine-grained interaction space. More traditional inter-
active applications such as a webshop or a spreadsheet
give the user a strictly controlled and limited number
of interaction choices. XR systems more accurately

Funded by EU ICT-2018-3 H2020 Programme, grant nr. 856716 and by
national funds through FCT, Fundação para a Ciência e a Tecnologia, under
project UIDB/50021/2020

Fig. 1. A game called Space Engineers as an example of an XR system, fea-
turing advanced 3D worlds and an elaborate system to construct sophisticated
custom objects, from simple solar panels to a complete space station.

reflect the real world, so they allow fine grained, almost
continuous, interactions. XR worlds are also inhabited
by independent and dynamic entities simulating the
corresponding real world entities. They interact with
the user as well as with each other, and often lead to
emerging behavior. These result in an interaction space
far larger than in traditional interactive digital products,
and intractable by existing automated testing approaches
such as model based testing [1], combinatoric [2], or
search-based testing [3]. On the other hand, humans
seem to be relatively unaffected by the immensity of
this interaction space. After just some training they are
immediately able to do, for example, basic navigation
through a virtual world, without having to memorize, or
even be aware of, every micro detail of its interaction
space. This implies that existing automated testing ap-
proaches miss the right abstraction and learning skills to
reduce a huge interaction space to a tractable level.

2) Assessing user experience (UX). For any XR system,
delivering high quality user experience (UX) is very
important. If it is not smooth enough, is too boring, or
too overwhelming, the users become unhappy, or worse
annoyed. Bad user reviews can be detrimental, causing
customers to abandon the product. Business loss is not
the only concern. The history of disasters in the inter-
action between humans and machines highlights human
error as the main cause [4]. Presence of UX issues can
stress a human operator, making him/her more prone



to making mistakes. In mission-critical applications this
is a serious concern. Since manually assessing the UX
quality is very labour intensive, automation would help
a lot, for example, to find scenarios with potential UX
issues on which testers can focus their more refined
manual effort. Unfortunately, existing tools are too sim-
plistic, e.g. they simply check if every screen is not
too crowded. These tools lack deeper models of human
emotion and cognitive capabilities to be able to judge
the different emotional states that an interaction event
might evoke on users. Furthermore, users have consistent
differences that make them react differently to the XR,
e.g. due to personality, individual expertise or different
cultural background. For example, an elderly user might
respond differently than a young user. Current tools are
not able to deal with such diversity nor are they able
to judge the progression of the UX that is built up over
time as users engage in long term interactions.

Vision statement. The Intelligent Verification/Validation
of Extended Reality Systems (IV4XR) project is a recently
started EU project (2019-2022) with partners from academia
and XR industry to deliver an answer to the above challenges,
demonstrable with real world pilots such as shown in Fig. 1.
This paper/poster presents the project’s vision and approach1,
whose main thesis is the following:

A missing key ingredient in the current automated
testing approaches to scalably handle XR systems’
fine grained interaction space is cognition. Its in-
clusion would enable a testing algorithm to gain
insight of what the entities in a virtual or augmented
world represent to human users, hence allowing it
to distinguish the parts of the interaction space that
matter for the test goal at hand from the parts that
can be ignored. Also, functional cognitive inference
can be extended with emotion inference, to open a
way to automated UX assessment.

The IV4XR project seeks to combine advances in cognitive
AI, affective computing, and software testing, in particular
search-based testing to develop a new generation of testing
algorithms with cognitive skills, either where such skills
can be simply derived from a library, or can be modularly
programmed by developers. The project will deliver a proof-
of-concept XR testing technology where developers can attach
their XR systems and get access to the whole range of auto-
mated testing capabilities (implementing the said algorithms).

The next section will present IV4XR approach.

II. AGENT-BASED COGNITIVE APPROACH TO XR TESTING

Software agents have been used for many years to model
human cognitive based behaviour [5]. Over the last decades,
various computational models have been developed. A quite
popular model because of its versatility is the Belief-Desire-
Intent (BDI) agency [6]. In this model, the agent may have
one or more goals (”desires” in the model) and creates plans

1For a working initial implementation see: https://github.com/iv4xr-project

Fig. 2. A 3D game under-development using IV4XR testing.

goal G1 (find doork):
s→ doork ∈ s.visibles

tactic T1

goal G2 (open the door):
s→ s.get(doork).state == Open

tactic T2

goal G3 (test roomk):
s→ s.agentPos ∈ s.get(roomk).tiles

tactic T3⇒

Fig. 3. A testing task specified as BDI-style goals G1;G2 ⇒ G3.

(the intended sequence of actions) that it will try to execute
in the environment towards reaching its goals. Cognition is
programmed as inference rules to infer new knowledge/belief
and to decide best actions or strategies to take. Goals can
be testing related, e.g. to test that certain entities in a virtual
world would interact correctly. Agents can act as automated
programs, let’s call them test agents, that use their cognition
to solve given testing goals.

In comparison, search-based testing, which has been suc-
cessful in other domains, relies on e.g. genetic operators such
as cross-over and mutation [3] to create candidate plans to
solve test goals. However, such operators incorporate very
little domain specific reasoning. For example Fig. 2 shows
a fragment of a 3D virtual world of a game that is under
development. Developers need to verify that all rooms in this
world are reachable, which amounts to checking that all doors
can be opened, which in turn require specific switches to
be turned. The game itself contains many other interactive
objects. Searching the right plan to solve this testing task
without some form of cognition will be extremely difficult.
Direct application of unsupervised machine learning without
the help of cognition would also face the same problem.
Therefore in IV4XR we will be exploring the integration
of artificial cognition, e.g. a la BDI, with existing software
testing techniques such as search-based testing. Using BDI-
like agents facilitates the incorporation of knowledge in the
search process. Some programming will be inevitably needed
to impart the knowledge, but this can be done declaratively.
In return, this allows the agents to concentrate the search on
those aspects that are important for a current test focus. E.g.
in the scenario above we might assume that the switches are
clear for human users. Thus the agents get basic actions to get
to the switch and turn it, rather than finding out which objects
in the room might be switches.

As an illustration, Fig. 3 shows how a testing task for a test

https://github.com/iv4xr-project


Fig. 4. Deploying multiple IV4XR test agents. Agents can form a group by
registering to a communication node, allowing them to exchange messages.

agent can be declaratively expressed as a BDI-style goal2. It
specifies how to test if roomk is reachable. This is specified
as the goal G3. The goal structure in Fig. 3 introduces the
inference G1;G2 ⇒ G3: to solve G3 we would first need
to solve G1 (to find the door to the room, represented by
doork) and then G2 (to open the door). Note that ultimately
what matters is G3. We do not have to introduce the inference
G1;G2 ⇒ G3. However, doing so adds some bit of insight
to the test agent, which results in the reduction of the search
space. Goals are essentially state predicates. To solve them,
planning tactics/heuristics (blue ellipses) are used. E.g. T1 (to
solve G1) can be a search algorithm, whereas for T2 some
reasoning would be needed when the door turns out to be
closed, so that the agent can infer, for example, that it first
needs to generate a new goal to find the corresponding switch.

There are more benefit in using BDI-based test agents:
• By relying on cognition test agents become more adap-

tive towards emerging behavior (often present in XR sys-
tems) and lower level design changes that often happen
during development. E.g. in Fig. 3, the goal G1 does not
restrict which route the agent should take to find the said
door. Provided the planning tactic T1 is smart enough, the
task can still be completed even if some random entity
blocks the test agent’s shortest route to the door.

• All BDI implementation platforms (see e.g. [8], [9]) also
provide constructs for designing multi-agent systems. Fig.
4 shows how multiple IV4XR test agents can be deployed
to an XR system under test [7]. Two or more agents can
form a group, allowing them to communicate within the
group and coordinate their actions. This would provide a
natural instrument to test cooperative or adversarial multi-
user features that are often present in many XR systems.

Combining our approach with recent works on Machine
Learning (ML) based automation e.g. [10] is another inter-
esting direction to explore, e.g. to train certain testing-related
tasks rather than programming them. Additionally, taking a
cognitive agent approach offers a new opportunity to improve
the efficiency of the training, e.g. by using cognitive models to
control ML heuristics to focus their exploration on cognitive
viable strategies rather than just any possible strategy.

A. Testing User Experience

Although software testing is usually thought of as testing
a system for errors, the errors can be of different types.

2This is already supported by the current IV4XR prototype framework [7].

Sometimes the software is performing what it is intended to
do, but the end result is not as expected. E.g. in a game where
the user has to overcome all kinds of obstacles it can happen
that the obstacles are all too easy and the user gets through
the obstacles very quickly without any enjoyment. It leads
to boredom and possibly abandoning the game. In the other
extreme obstacles might theoretically be solvable, but too hard
for most users and thus lead to frustration and abandoning
the game or erratic behavior to alleviate the frustration. It is
also the case that different users experience the software in
different ways. For example, a set of obstacles may be too
easy for an expert player but not so much for a novice player.
The developers may want to test what parts of the interaction
experience are suitable for experts and what parts for novices.
It is also interesting to test what is the path that a user takes
from novice to become and expert. In particular, how long it
takes and what are the barriers that delay such transition.

In order to perform these user experience tests, the best
way is to have test persons testing all aspects of the game.
But this is very time consuming if a game (like e.g. Space
Engineers3, Fig. 1) is very elaborate and can take days to play.
Therefore, we are also exploring how to test user experiences
with software agents. We will use more elaborate cognitive
agents that have not just goal directed behavior but also have
emotions and needs, and different capabilities, knowledge
and limitations. There are variations and extensions of BDI
platforms that would allow emotional process to be modelled
to complement logical thinking. A good example of such an
extension is provided by FAtiMA4 [11], which implements
the so-called OCC model [12] which has been used in various
studies on computational frameworks of emotion. The model
originates from the Psychology, structuring 22 emotion types
(e.g. joy,satisfaction, hope, disappointment, distress and fear)
based on focus of attention.

When emotion-enhanced agents start exploring the environ-
ment (representing an XR system, or any system with UI), the
effects of their interactions will have impact on their mental
state. This can be used as a first approximation of possible
user experience. Hence, the tests will check, on one hand,
properties of the interactions (e.g. the number of wrong actions
they take, or how long they take to learn) and, on the other
hand, will check variables of their internal state (e.g. what
emotions are raised, or what knowledge they build).

B. Maximizing coverage

Beyond solving a particular test goal set out by the hu-
man tester, the test agents in IV4XR will strive to explore
alternative ways of achieving the same test goal, considering
different paths. In doing so, the test agents ensure that the test
scenario is invoked and covered in all the possible ways it
could be, hence the test becomes less susceptible to different
execution contexts of the XR system under test. To achieve
such a diversified coverage of the test goals, we will employ

3https://www.spaceengineersgame.com/
4https://fatima-toolkit.eu/

https://www.spaceengineersgame.com/


advanced search strategies that encourage the test agents to
explore paths that were never explored before. This can be
achieved by embedding self-motivation into the test agents
such that, beyond satisfying a given test goal, they will be
self-driven towards new paths for achieving the same goal and
earn rewards. Such a scheme will be applied in the context of
search-based heuristics that favor the discovery of novel solu-
tions. Our idea is to explore classes of objective-less search
heuristics where, differently from traditional search heuristics
where the focus is on optimizing a given objective function,
candidate solutions are chosen and promoted based on their
diversity with respect to previously seen solutions [13], [14].

Computer generated solutions can easily be too ‘synthetic’
(humans would never produce them). Such solutions should
not be ignored, but we should make sure that we also explore
diversity over ‘natural’ solutions. Again, cognition will be
deployed to characterize the interactions that functionally
matter for the test goal at hand (hence what humans would
try), thus helping the diversity search in generating diversity
that matters (rather than just random diversity).

III. RELATED WORK

Despite its potential, the application of artificial cognition
for software testing has been mostly ignored. Much of the
studies were on the exploitation of machine learning, see the
survey [15]. Supervised learning is often studied for automat-
ing test cases evaluation and prioritization, or to train artificial
test oracles, whereas unsupervised learning is used to improve
coverage [10], [16]. Early work on using cognitive agents,
see e.g. [17], focused mainly on the architecture (providing
implementation templates of BDI concepts for testing) rather
than on how to actually exploit cognition. There were some
works on using cognition to select test cases, but this of course
does not answer the question on how to generate our XR test
cases in the first place. An attempt was made in the context of
GUI testing [16] where Prolog-style inference rules were used
to specify which user action to trigger on which GUI state, but
the approach is not agent-based (hence does not benefit from
the latter either), nor did it not explore its scalability towards
solving complex testing goals.

The realm of UX evaluation still heavily relies on user based
testing with very little automation. A correlation between
heart rate, electrodermal activity and player experience could
be used to automate UX evaluation [18], avoiding the time
consuming Likert scale based questionnaires. However, such
an approach would still rely on user testing. Visual and
behavioural clues have also been used to train models to
predict certain UX characteristics [19]. These can be used to
create player tailored game levels that would invoke a certain
degree of, for example, frustration. Being based on artificial
neural networks, such models are black-box models, having
no intrinsic modelling of human cognition and emotion.

There have been some approaches that use agents with
characteristics of human cognition, e.g. short term memory, to
better understand how users would explore a map. Modelling
personas based on different pruning methods for Monte Carlo

tree search algorithms has also been proposed [20]. However,
to our knowledge, there is no stand-alone model of human
cognition and emotion that could be used to assess UX without
extensive support of user testing.

IV. CONCLUSION AND FUTURE WORK

We believe artificial cognition to be a key enabler for auto-
mated XR testing. This is the direction that the IV4XR project
will take in the coming three years. An initial implementation
of a BDI agency for testing is available for interested readers,
keeping in mind that the development of the agents’ cognitive
skills is still on going. Addressing VR and AR is future work5.

REFERENCES

[1] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-
based testing approaches,” Software Testing, Verification and Reliability,
vol. 22, no. 5, 2012.

[2] D. R. Kuhn, R. N. Kacker, and Y. Lei, Introduction to combinatorial
testing. CRC Press, 2013.

[3] P. McMinn, “Search-based software test data generation: a survey,”
Softw. testing, Verification and reliability, vol. 14, no. 2, 2004.

[4] S. Dekker, The field guide to understanding human error. Aldershot,
2006.

[5] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Pearson Education, 2016.

[6] M. Wooldridge, “Intelligent agents,” Multiagent systems, vol. 35, no. 4,
p. 51, 1999.

[7] I. Prasetya, “Aplib: Tactical programming of intelligent agents,” arXiv
preprint arXiv:1911.04710, 2019.

[8] K. Kravari and N. Bassiliades, “A survey of agent platforms,” Journal
of Artificial Societies and Social Simulation, vol. 18, no. 1, p. 11, 2015.

[9] M. Dastani, “2APL: a practical agent programming language,” Au-
tonomous agents and multi-agent systems, vol. 16, no. 3, 2008.

[10] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,
Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing
using evolutionary deep reinforcement learning,” in 34th Int. Conf. on
Automated Software Engineering (ASE), 2019.

[11] S. Mascarenhas, M. Guimarães, R. Prada, J. Dias, P. A. Santos, K. Star,
B. Hirsh, E. Spice, and R. Kommeren, “Virtual agent toolkit for serious
games developers,” in Proc. of the IEEE Conference on Computational
Intelligence and Games (CIG). IEEE, 2018.

[12] A. Ortony, G. Clore, and A. Collins, “The cognitive structure of
emotions. cam (bridge university press,” Cambridge, England, 1988.

[13] J. Gomes, P. Mariano, and A. L. Christensen, “Devising effective novelty
search algorithms: A comprehensive empirical study,” in Annual Conf.
on Genetic and Evolutionary Computation. ACM, 2015.

[14] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in ICML, 2017.

[15] V. Durelli, R. Durelli, S. Borges, A. Endo, M. Eler, D. Dias, and
M. Guimarães, “Machine learning applied to software testing: A sys-
tematic mapping study,” IEEE Transactions on Reliability, 2019.

[16] S. Bauersfeld and T. E. J. Vos, “User interface level testing with TES-
TAR; what about more sophisticated action specification and selection?”
in Series on Adv. Techniques & Tools for Softw. Evolution, 2014.

[17] V. Lazarou, S. Gardikiotis, and N. Malevris, “Agent systems in software
engineering,” in Tools in Artificial Intelligence. IntechOpen, 2008.

[18] A. Drachen, L. E. Nacke, G. Yannakakis, and A. L. Pedersen, “Correla-
tion between heart rate, electrodermal activity and player experience in
first-person shooter games,” in Proceedings of the 5th ACM SIGGRAPH
Symposium on Video Games. ACM, 2010, pp. 49–54.

[19] N. Shaker, S. Asteriadis, G. N. Yannakakis, and K. Karpouzis, “Fusing
visual and behavioral cues for modeling user experience in games,” IEEE
Transactions on cybernetics, vol. 43, no. 6, pp. 1519–1531, 2013.

[20] C. Holmgard, M. C. Green, A. Liapis, and J. Togelius, “Automated
playtesting with procedural personas with evolved heuristics,” IEEE
Transactions on Games, 2018.

5In principle, VR shares much similarity with a 3D world, and AR can be
made testable if it can be simulated through a virtual world.


	Introduction
	Agent-based Cognitive Approach to XR Testing
	Testing User Experience
	Maximizing coverage

	Related Work
	Conclusion and Future Work
	References

