

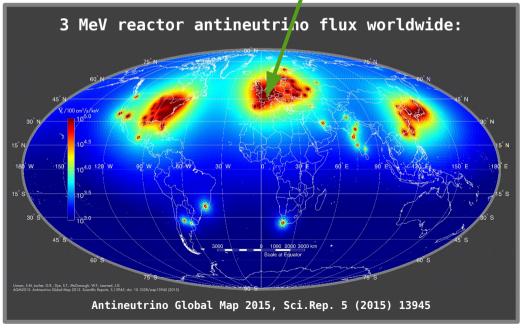
Accurate Measurement of Electron Antineutrinos of U-235 Fissions from the STEREO Experiment

Stefan Schoppmann

on behalf of the STEREO collaboration

MAX-PLANCK-INS FÜR KERNPHY HEIDELBERG

GRENOBLE | MODANE


FÜR KERNPHYSIK

MAX-PLANCK-INSTITUT

Outline

- Experimental Setup JINST 13, P07009 / arXiv:1804.09052
- Oscillation Analysis arXiv:1912.06582 / HEPdata.92323
- Absolute Rate Analysis arXiv:2004.04075
- Spectral Shape Analysis
- Summary/Outlook

Motivation

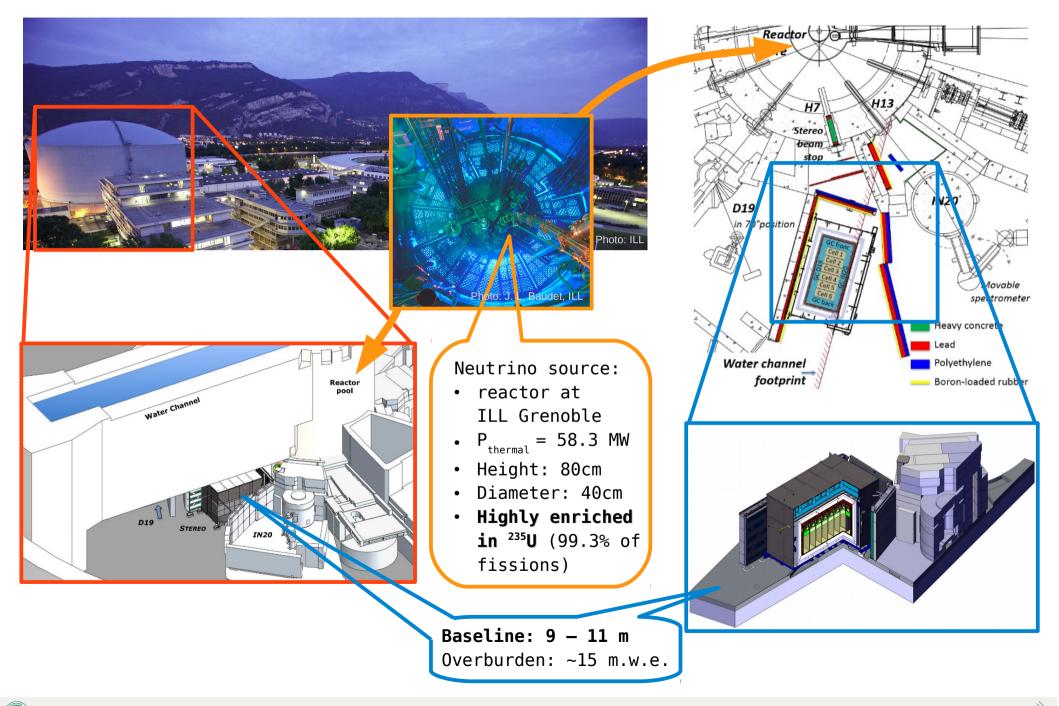
flux predictions: 1.1 \rightarrow deficit in measured fluxes N_{OBS}/(N_{EXP})_{pred,new} 6.0 One possible explanation: \rightarrow light sterile neutrinos • Sterile neutrinos: \rightarrow new oscillation channel visible at small L/E 0.5 Phys. Rev. D 83, 073006 (2011) 0.4└ 10⁻¹ 10⁰ 10^{3} 10⁴ 104 10 Reactor To Detector Distance (m) Reactor Antineutrino Anomaly (RAA) • Energy spectral distortion w.r.t. model $sin^{2}(2\theta_{new})=0.14, \Delta m^{2}_{new}=2.4eV^{2}$ → up to $\sim 10\%$ between 4 and 6 MeV 1 dof $\Delta \chi^2$ profile 10 90.00 % ctor Prediction Model ${}^{\Delta}\!\chi^2$ 95.00 % 1.2 RENO 2016 (Modified Average R = 1 99.00 % 10^{2} NEOS 2016 (Modified Average R = 1) Data / MC (Shape-Only) 2 dof $\Delta \chi^2$ contour Dava Bay 2016 Double Chooz IV - N 1.1 10 ∆m²_{new} (eV²) 1.0 10 Phys. Rev. D 83, 073006 (2011) 0.9 10 5 Δχ² 10⁻² ິ10^⁰ 10 10 10 sin²(20_{new}) Nature Phys. 16, 558 (2020)

Improved reactor neutrino

6

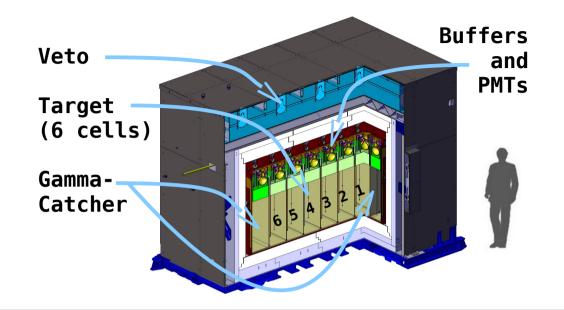
5

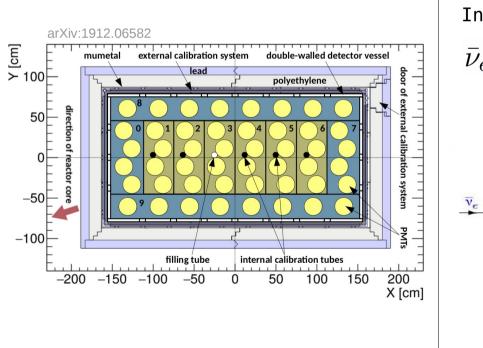
Visible Energy (MeV)


3 Active Flavors

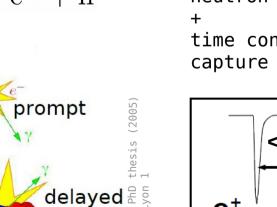
3 Active Flavors + 1 Sterile

10⁵

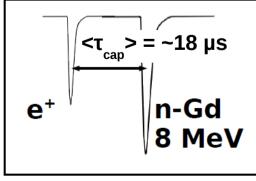

10[°]


Experiment Site

Detector / Measurement Principle


- Target **segmented in 6 cells**
 - → 1800 l of Gd-loaded liquid scintillator
- Surrounding Gamma-Catcher to convert escaping gammas
- 48 PMTs of 8 inch diameter
- Layers of acrylic and oil as buffer
- Water Cherenkov veto on top
- About 90 tons of shielding material
 - \rightarrow lead, polyethylene, $B_{4}C$, iron

Inverse beta-decay (IBD):

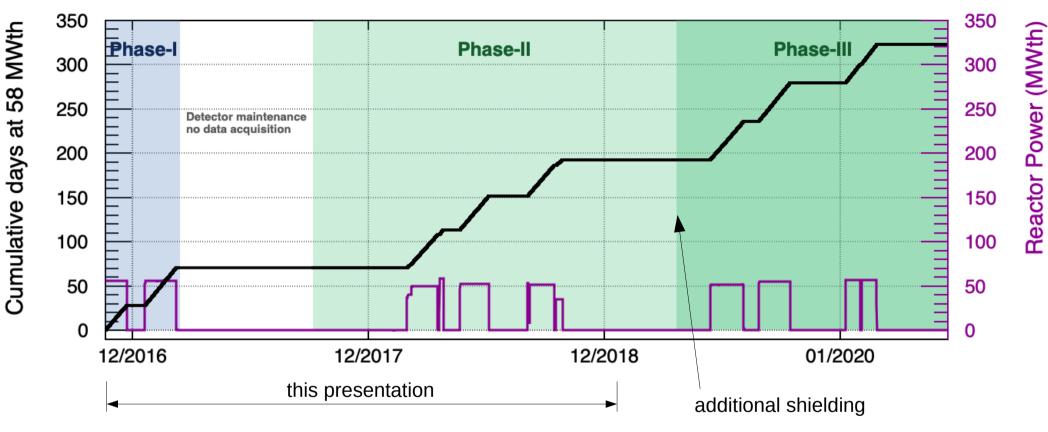

$$\bar{\nu}_e + \mathrm{p}^+ \to \mathrm{e}^+ + \mathrm{n}$$

Gd

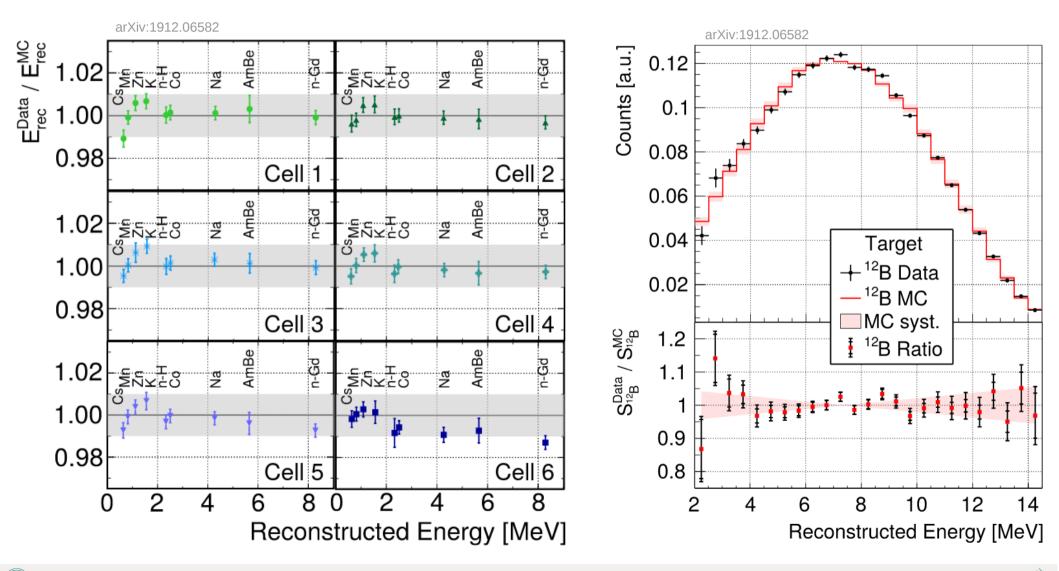
Delay due to: thermalisation of neutron before capture + time constant of the

capture process

Event Selection and Systematics

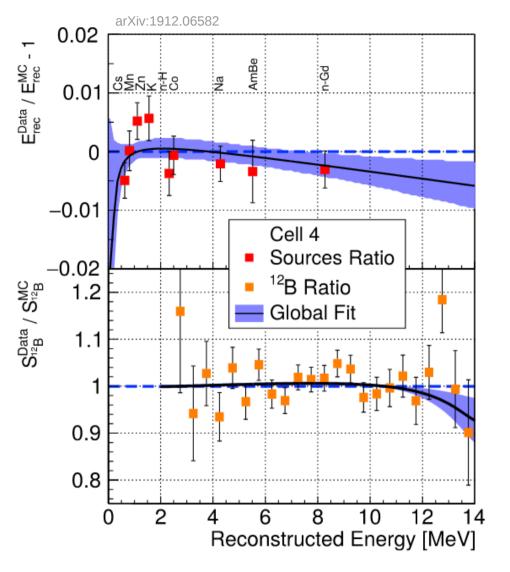


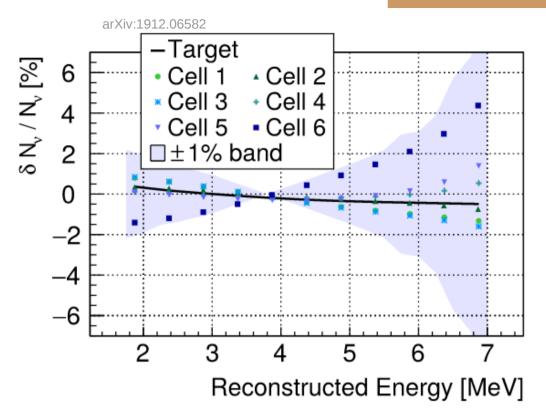
Accurate Measurement of Electron Antineutrinos of U-235 Fissions from the STEREO Experiment


Dataset

- Factor 2.9 increase in reactor-on dataset since Neutrino2018
- Data acquisition continuing further
- Better background understanding due to increased reactor-off dataset
- Cell-to-cell relative oscillation analysis:
 → phase-I+II (179 days reactor-on / 235 days reactor-off)
- Absolute rate and spectral shape analysis:
 - \rightarrow phase-II (119 days reactor-on / 211 days reactor-off)
 - \rightarrow more stable dataset

Energy Calibration


- weekly calibrations with Mn-54
- regular data from various other isotopes and cosmic-induced neutron captures
- continuous spectrum from B-12



Energy Scale Model

Poster #142 Session #3

- polynomials at different degrees as well as general KDE approach with Gaussian kernel fitted to all data
- following formalism of Phys. Lett. B 773, 307 (2017) / arXiv:1705.09434

- cell-to-cell uncorrelated deviations always contained within a 1% deviation of a simple linear energy scale model
- reduced uncertainty at Target level enters spectral shape analysis

Improved Gd Gamma-Cascade

Poster #142 Session #3

dE

S

Flimit

FRIPL

levels

Theoretical

discrete levels

Experimental

Initial state (E,,J,,π)

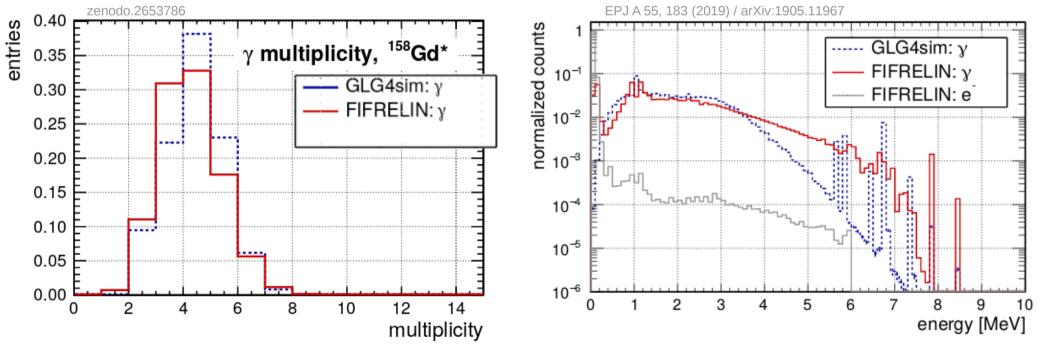
(E₁,J₁,π₁)

(E,J,π)

(E₂,J₂,π₂)

G.S.

¢Χ

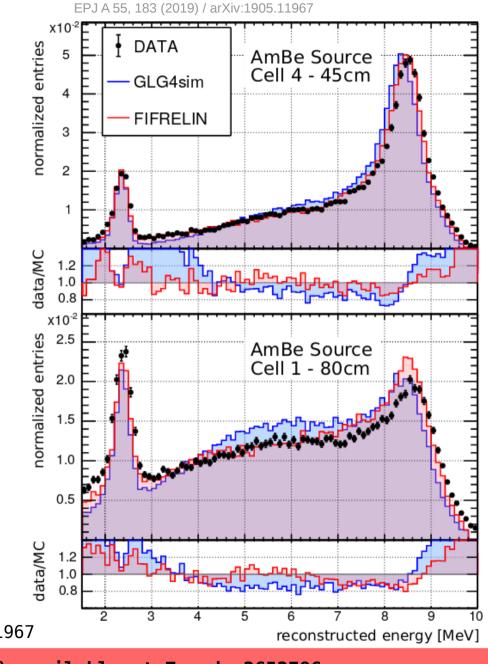

Theoretical

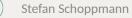
levels gathered in energy bins

- Improved model of gamma cascade after neutron capture by Gd via dedicated nuclear simulation tool FIFRELIN
- Useful especially for smaller detectors with less containment of gammas and Cherenkov detectors
- FIFRELIN tool models deexcitation of Gd-nuclei using all available experimental data plus nuclear models (RIPL-3, CGCM, CTM, FGM)
- FIFRELIN yields gammas of higher energy compared to Geant4-based GLG4sim simulation

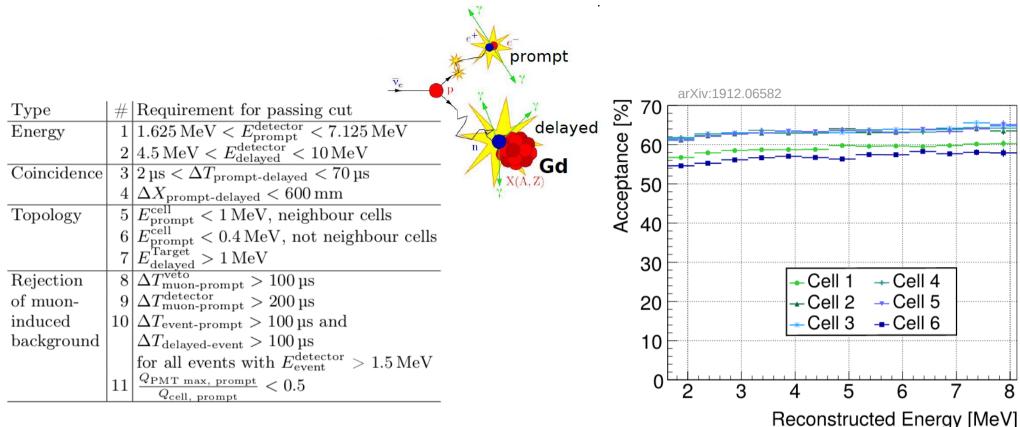
 \rightarrow also including conversion electrons

Improved Uncertainty of Neutron Efficiency


- Clear improvement in description of the tail between 3 and 7 MeV
- At centre position (cell 4, 45cm)
 → >5σ discrepancy with GLG4sim
 - \rightarrow 1.6\sigma agreement with FIFRELIN
 - → no indication for remaining systematic effect between data and FIFRELIN
- Also improvement at corner position


 → Remaining effect due to neutron mobility
 → corrected by map
- Improved description of neutron efficiency

Cell	$\sigma_{_{uncorrelated}}$	$\sigma_{_{correlated}}$
1	0.0084	0.0041
2	0.0084	0.0015
3	0.0084	0.0013
4	0.0084	0.0013
5	0.0084	0.0015
6	0.0084	0.0040


• More information: EPJ A 55, 183 / arXiv:1905.11967

2*10⁷ MC events (¹⁵⁶Gd and ¹⁵⁸Gd) available at Zenodo.2653786

Event Selection

- Cut-based approach selecting delayed coincidence (IBD pair search)
- Background rejection by event topology, isolation of IBD, and after-muon rejection
- Mean cut efficiency
 - → (61.4 ± 0.9) %
 - \rightarrow small energy dependence
 - \rightarrow edge cells (1 and 6) show only few percent smaller efficiency

Neutrino Rate Extraction by PSD

 \rightarrow Accidental background measured with high statistics by off-time method

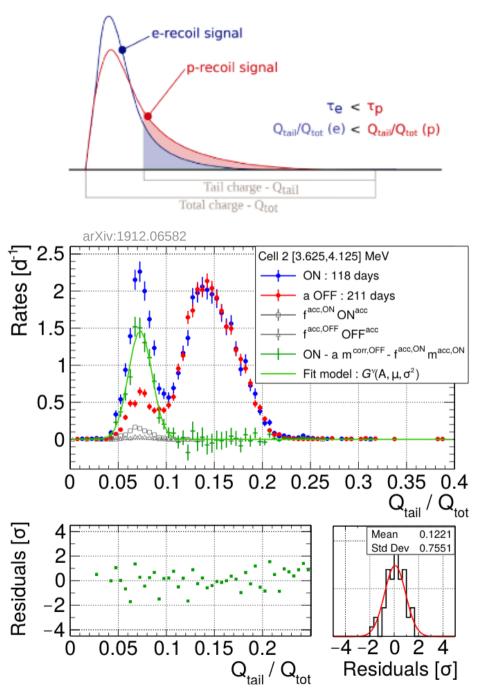
→ Background model measured in-situ from reactor-off data

→ simultaneous fit of reactor-on and reactor-off spectra

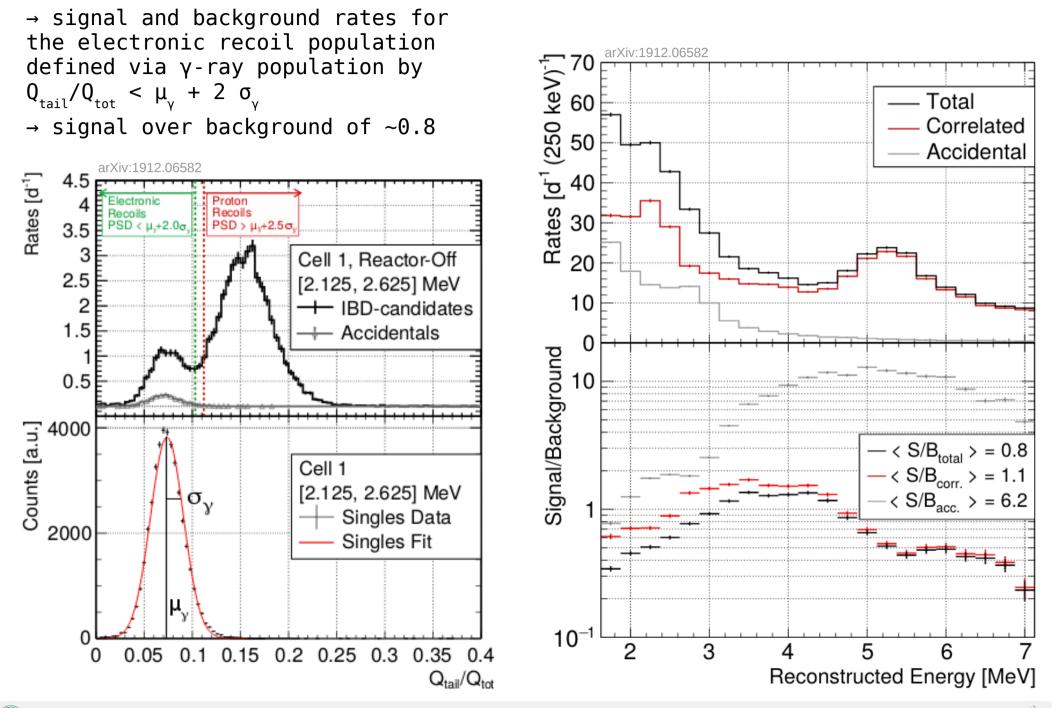
 \rightarrow Neutrino rates extracted per cell and energy bin using Gaussian function to fit neutrino spectrum

$$\begin{aligned} \mathbf{ON}_{l,i;p} &= a_{l,i} m_{l,i;p}^{\text{corr,OFF}} + f^{\text{acc,ON}} m_{l,i;p}^{\text{acc,ON}} \\ &+ G_p^{\nu}(A_{l,i}, \mu_{l,i}, \sigma_{l,i}^2), \end{aligned}$$
$$\mathbf{OFF}_{l,i;p} &= m_{l,i;p}^{\text{corr,OFF}} + f^{\text{acc,OFF}} m_{l,i;p}^{\text{acc,OFF}}, \end{aligned}$$

 \rightarrow fit based on pulse shape of scintillator pulses (PSD)


 \rightarrow electronic recoils have low $\mathrm{Q}_{_{\mathrm{tail}}}/\mathrm{Q}_{_{\mathrm{tot}}}$

 \rightarrow proton recoils have large $\mathrm{Q}_{_{\mathrm{tail}}}/\mathrm{Q}_{_{\mathrm{tot}}}$


→ **free normalisation parameter** $a_{l,i}$ between reactor-on and reactor-off spectra

 \rightarrow mainly driven by proton recoil population

 \rightarrow also compensates the atmospheric pressure dependency

Signal and Background Rates

Results

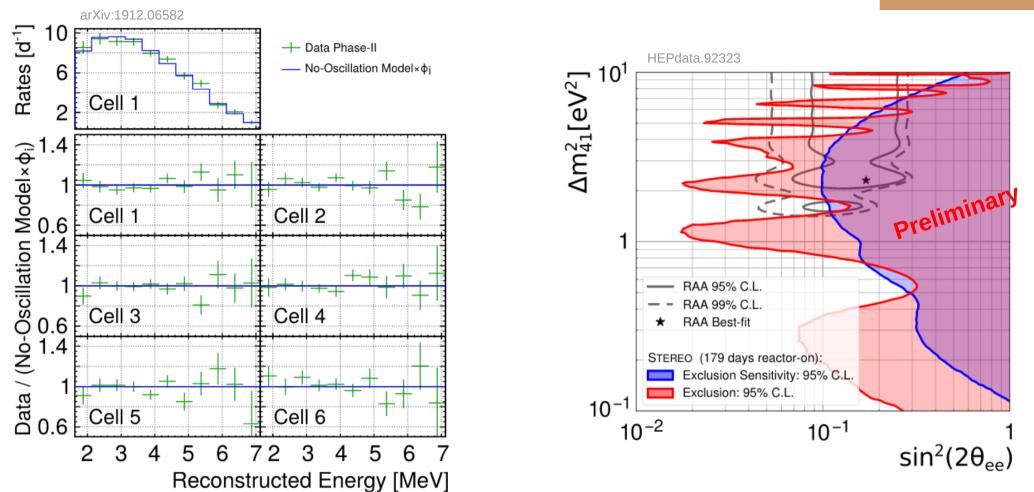
Accurate Measurement of Electron Antineutrinos of U-235 Fissions from the STEREO Experiment

Oscillation Analysis – Method

- Prediction independent comparison between cells and energy bins only taking into account spectrum shape, no absolute rate information
- Each energy bin is normalised by a free parameter ϕ_i common to all cells
 - \rightarrow causes analysis to be independent from the absolute rate in each energy bin
 - \rightarrow decouples energy bins, comparison only along the six Target cells
 - → method is only sensitive to relative changes in the expected rates $M_{I,i}(\mu, \sigma, \vec{\alpha})$ which are due to oscillations

$$\chi^{2} = \sum_{l}^{N_{\text{Cells}}} \sum_{i}^{N_{\text{Ebins}}} \left(\frac{D_{l,i} - \phi_{i} M_{l,i}(\mu, \sigma, \vec{\alpha})}{\sigma_{l,i}} \right)^{2} + \sum_{l}^{N_{\text{Cells}}} \left(\frac{\alpha_{l}^{\text{NormU}}}{\sigma_{l}^{\text{NormU}}} \right)^{2} + \left(\frac{\alpha_{l}^{\text{EscaleC}}}{\sigma_{l}^{\text{EscaleC}}} \right)^{2} + \sum_{l}^{N_{\text{Cells}}} \left(\frac{\alpha_{l}^{\text{EscaleU}}}{\sigma_{l}^{\text{EscaleU}}} \right)^{2}$$

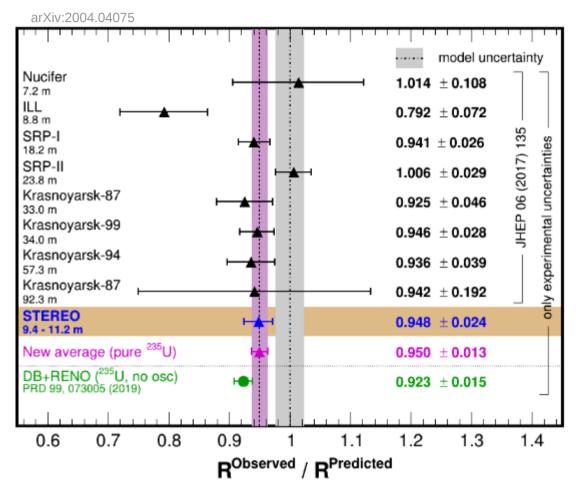
$$M_{l,i}(\mu, \sigma, \vec{lpha}) = M_{l,i}(\mu, \sigma) imes (1 + \alpha_l^{NormU} + (\alpha^{EscaleC} + \alpha^{EscaleU}) imes S_{l,i}^{Escale}(\mu))$$


• Systematic effects parameterised by nuisance parameters $ec{lpha}$

Type	Relat. uncert.
Normalisation (uncorrelated)	
Cell volume	0.83%
Neutron efficiency correction	0.84%
Energy scale (uncorrelated)	
Mn anchor point	0.2%
Cell-to-cell deviations	1.0%
Energy scale (correlated)	
Time stability	0.3%

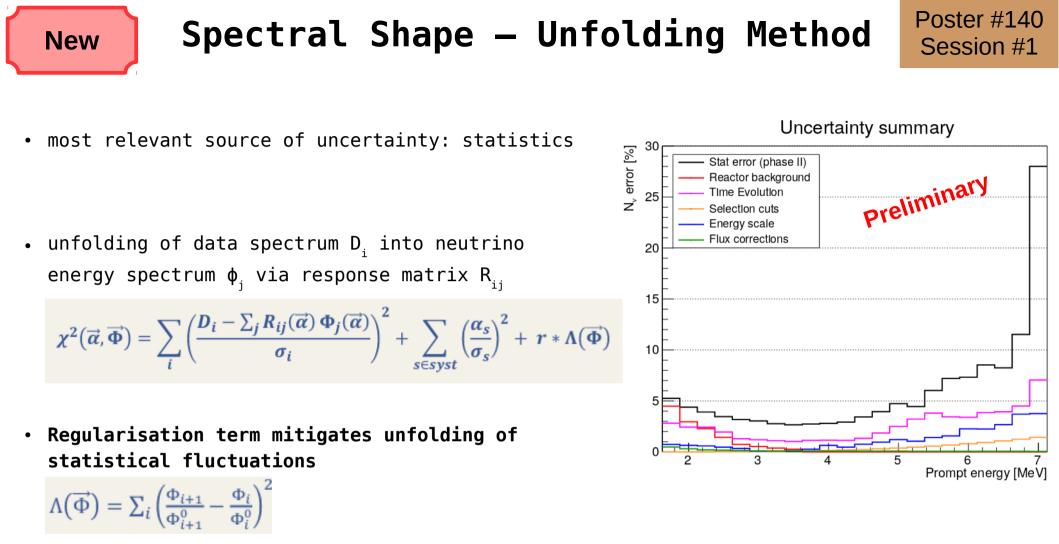
• Complementary analysis by including all systematic effects into global covariance matrix gives consistent results

Oscillation Analysis – Results


- No-oscillation hypothesis (p-value = 0.09) not rejected
- Pull terms show no tension beyond 1 standard deviation
- Exclusion contour rendered from two-dimensional method
- Non-standard $\Delta\chi^2$ distributions from MC pseudo-experiments used
- Best-fit point of RAA rejected at more than 99.9% C.L.
- more information: arXiv:1912.06582 / HEPdata.92323

Poster #78

Session #3

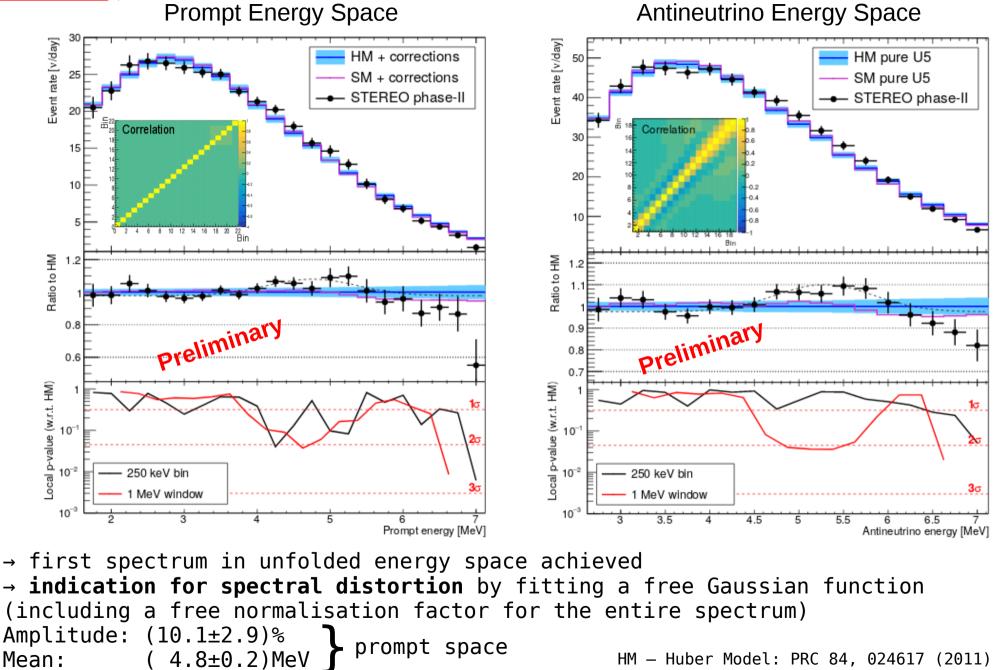

Absolute Rate - Results

Quantity	Symbol	Value	Uncert./ $\%$
Number of ν /fission	$N_{\nu}^{[2,8]\text{MeV}}$	1.846	2.40
Huber prediction		1.722	2.40
Correction factors		1.072	0.10
Number of fissions/day		$1.30 \cdot 10^{23}$	1.44
Thermal power	$\langle P_{\rm th} \rangle$	$49.2\mathrm{MW}$	1.44
Energy/fission	$\langle E_f \rangle$	$203.4{ m MeV}$	0.13
Fract. of interacting ν	$ au_{\rm int}$	$8.10 \cdot 10^{-21}$	0.56
Solid angle			0.50
IBD cross-section	$\sigma_{ m IBD}$		0.22
MC statistics			0.12
Correc. of <i>p</i> -number	$c_p^{\mathrm{Data}/\mathrm{MC}}$	0.983	1.00
Detection efficiency	$\epsilon_{\rm d}$	0.2049	0.54
Selection cuts			0.41
Energy Scale			0.30
MC statistics			0.19
Correc. of delayed effi.	$c_n^{ m Data/MC}$	0.9774	0.86
Predicted IBD yield		$383.7\mathrm{d^{-1}}$	$2.10 \oplus 2.40$
Observed IBD yield		$363.8\mathrm{d}^{-1}$	$0.88 \oplus 1.06$
Statistics			0.88
ν extrac. method			0.65
Reactor-induced bkg.			0.83
Off-time method			0.14

- Dedicated study for an accurate rate prediction carried out
- Observed rate of $(364 \pm 3 \text{ [stat.]} \pm 4 \text{ [sys.]}) v/day$ compared to predicted rate
- Achieved a good control of the uncertainties
 - \rightarrow reactor power, neutron detection efficiency, proton number
- Among the leading measurements of the neutrino flux from pure ²³⁵U nuclear fuel
- **In agreement with world average**, improvement from (0.950±0.015) to (0.950±0.013)
- more information: arXiv.2004.04075

- Using Huber's 235 U spectrum as prior φ^{0}
- Regularisation strength r chosen a-priori by requiring negligible prior-dependence
- Independent validation by covariance matrix approach yields same results and regularisation strength

New


Spectral Shape - Result

Poster #140 Session #1

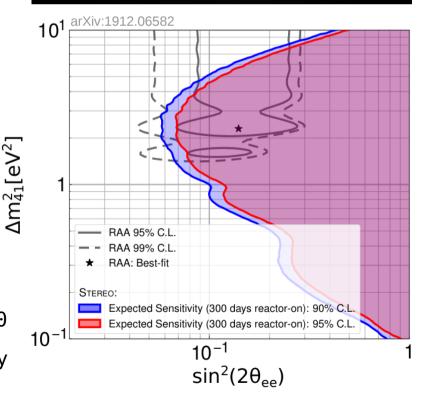
SM - Summation Model: PRL 123, 022502 (2019)

20/22

Prompt Energy Space

Stefan Schoppmann

Summary/Outlook


Accurate Measurement of Electron Antineutrinos of U-235 Fissions from the STEREO Experiment

Summary/Outlook

- → data taking phase-I+II completed (65k neutrinos)
- → improved background description by in-situ measurements during reactor-off periods and pulse shape discrimination
- → improved description of gamma-cascade after neutron capture by gadolinium → EPJA 55, 183 / arXiv:1905.11967 / Zenodo.2653786
- → large fraction of RAA parameter-space excluded → RAA best-fit point rejected at >99.9% C.L. → arXiv:1912.06582 / HEPdata.92323
- \rightarrow rate deficit consistent with RAA found
- → result among the world leading measurements for pure ²³⁵U reactors → arXiv:2004.04075
- → first spectral shape in unfolded energy space achieved
- → spectral distortion of ~10% between 4.0 and 5.5 MeV (prompt space) found
- \rightarrow publication under preparation
- \rightarrow further data taking until end of 2020:
 - \rightarrow final dataset of >300 days expected
 - → **factor** ~2 **increase** with respect to Neutrino2020
- → joint analysis with PROSPECT and Daya Bay underway (poster #556)

Spokesperson: David Lhuillier (CEA) Contact: david.lhuillier@cea.fr Website: www.stereo-experiment.org

Photo: S. Schoppmann