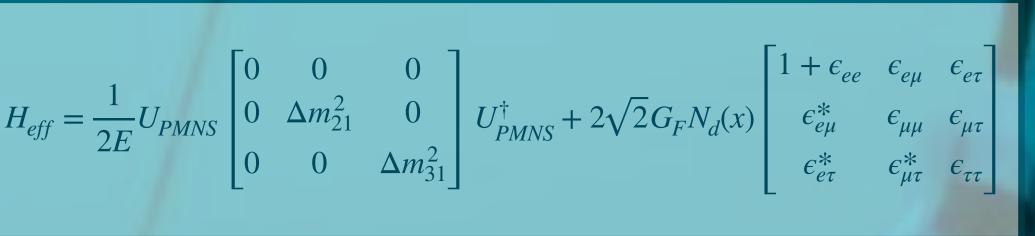
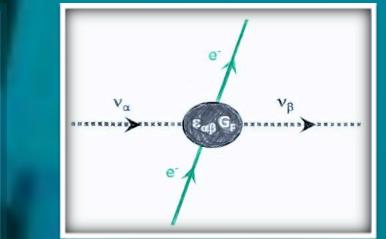


Non-standard Neutrino Interactions in with Mediterranean Neutrino Telescopes

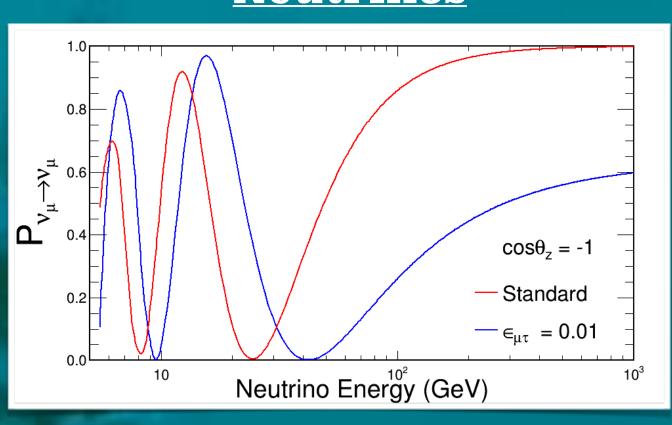
N. R. Khan Chowdhury^{1*} and T. Thakore² for the ANTARES & KM3NeT Collaborations

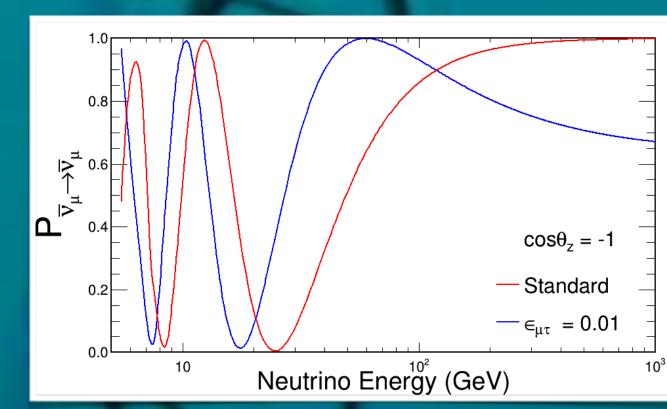
¹nafis.chowdhury@ific.uv.es; IFIC (UV-CSIC), Parque Científico, C/Catedrático José Beltrán, 2, E-46980 Paterna, Spain.


²tarak.thakore@uc.edu; University of Cincinnati, 2600 Clifton Avenue, Cincinnati, OH 45221, United States.


*Presenter.

Non-standard Interactions:


Neutral-current non-standard interactions (NSI) [1] of neutrinos of all flavours with matter fermions (e and u or d-quarks) modify the oscillation probabilities [2] while propagation.



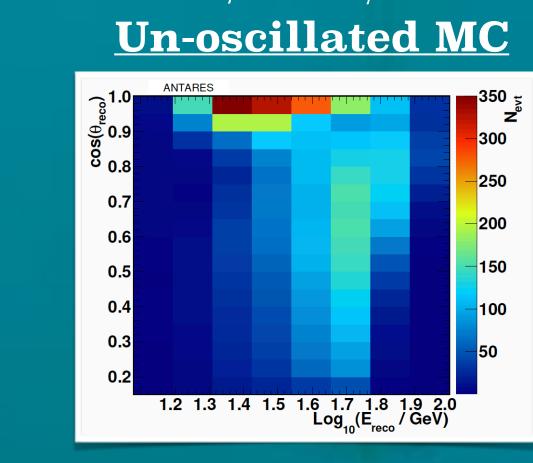
Non-standard flavour transitions distort the standard MSW effects, thereby modifying the atmospheric oscillation signals at detectors w.r.t. Standard Model (SM) predictions.

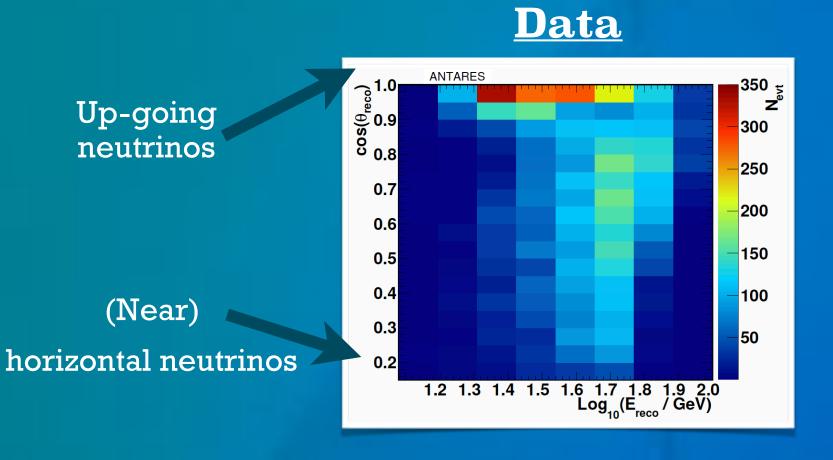
Neutrinos

Anti-Neutrinos

Statistical excess/deficit of $\nu + \bar{\nu}$ events discernible at "iso-scalar charge-blind" Cherenkov detectors gives a handle to constrain NSI model parameters.

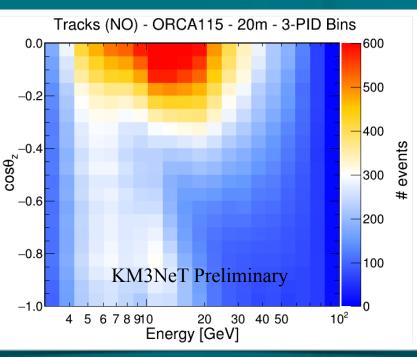
Neutrino Telescopes in sea:

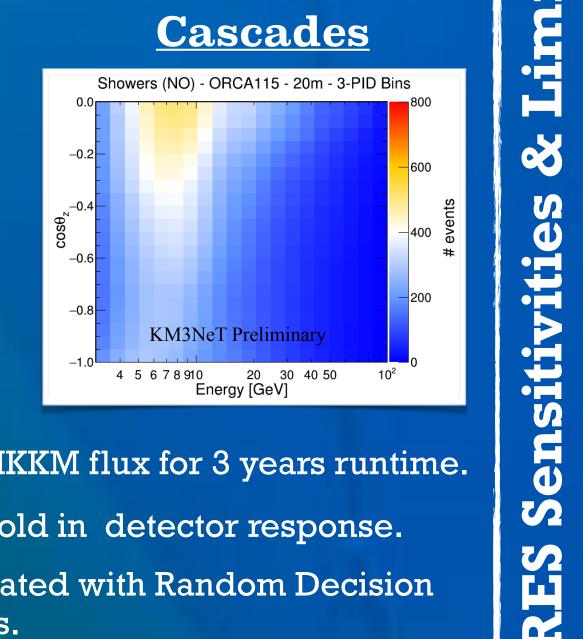

Energy threshold ~15 GeV.


12 strings (~10 Mton) live since 2008. Strings apart by ~ 65 m horizontal separation. 25 storeys placed at ~14.5 m vertical spacings. 3 10" PMTs per storey amounting to 885 in total. Median muon angular resolution: 3° at 20 GeV. Energy resolution: $\sim 50\% \pm 22\%$.

Denser array [3] of 64k PMTs across 115 strings. Strings (DUs) placed 20 m apart horizontally. 18 DOMs/string placed 9 m apart vertically. 31 3" PMTs per storey facing multiple directions. Direction resolution: 10° at 10 GeV. Energy resolution: $\sim 25\% \pm 5\%$. Access to wide range of energies \in [3-100] GeV.

Event Spectra at Detectors:


Two event topologies depending on the Cherenkov signature of outgoing lepton: Tracks [mostly ν_{μ}^{CC} and $\bar{\nu}_{\mu}^{CC}$] and Cascades [ν_{α}^{CC} , $\bar{\nu}_{\alpha}^{CC}$, (α = e, τ) and, ν_{β}^{NC} , $\bar{\nu}_{\beta}^{NC}$, (β = e, μ , τ)].



ANTARES dataset of 7710 (track-like) events corresponding to data acquisition time from 2007 to 2016. Live time of 2830 days. ν_{μ} -disappearance results published in [4]. l log bin in reconstructed E_{ν} \in [10^{-0.5}, 10^{1.2}] GeV & 7 for E_{ν} \in [10^{1.2}, 10²]. 17 bins in $cos\theta_{\tau}$. True E_{ν} spans a few TeV. Reco. E_{ν} till 100 GeV based on reconstructed muon track length. Partially contained high energy neutrinos brings enhanced sensitivity to NSI effects.

Tracks

Middles

Simulated event rates at KM3NeT-ORCA with atmospheric HKKM flux for 3 years runtime.

 20×20 binning in reconstructed $log_{10}(E_{\nu})$ and $cos\theta_{\tau}$ to fold in detector response.

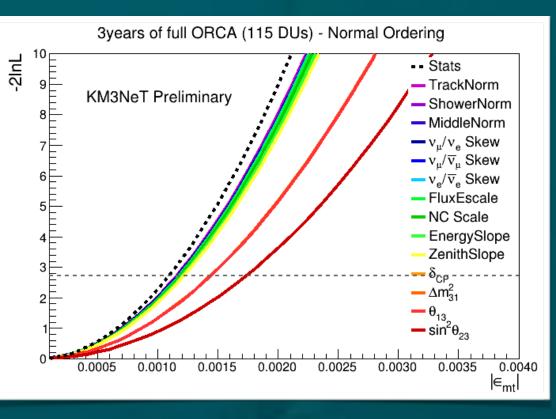
Three event classes based on track probability (PID) estimated with Random Decision Forest of reconstructed heuristics.

Tracks: [1, 0.7); Middles: [0.7, 0.3); Cascades: [0.3, 0].

Systematic Uncertainties:

Asimov

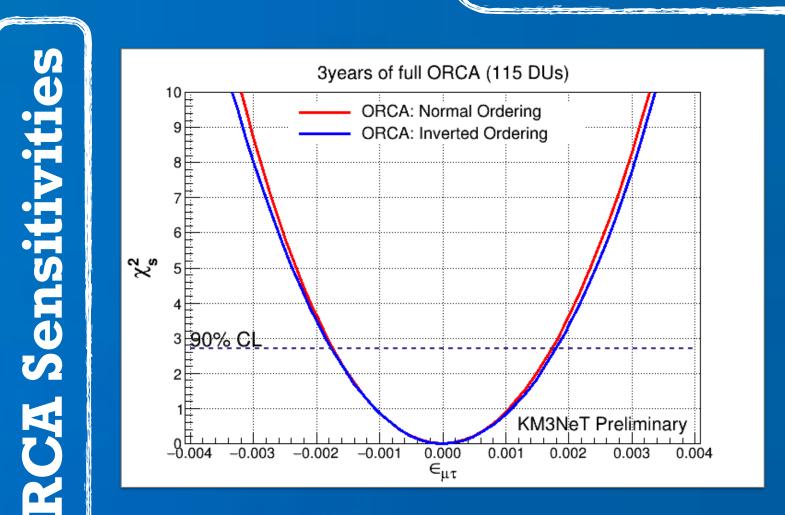
approach

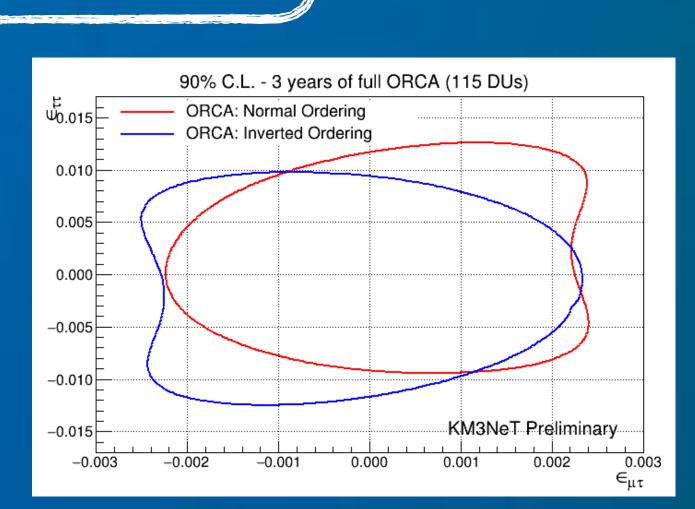

including

systematic

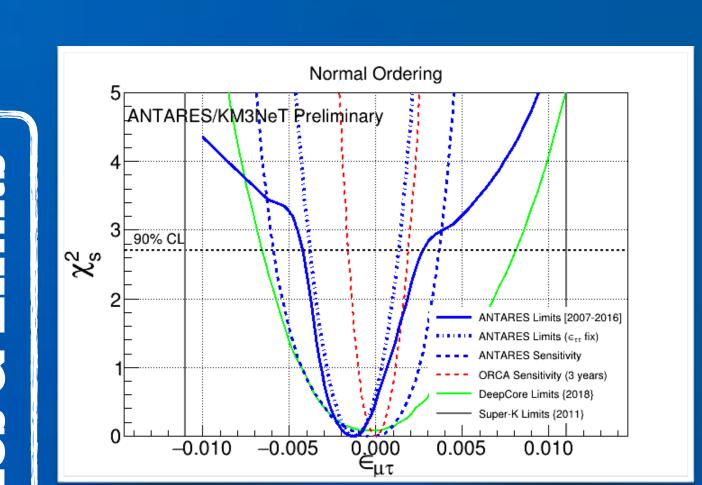
to calculate i

sensitivities/


Effect of cumulative addition of nuisance parameters (from violet to red, as in legends) in the fit for a test NSI hypothesis at **ORCA**.


List of nuisance parameters along with their injected central values and prior (if any) for **ANTARES**.

	Parameter	Central value	Prio
	Oscillation		
	$\Delta m_{31}^2/10^{-3} (\mathrm{eV}^2)$	2.494	none
. ,	$ heta_{23}(^{\circ})$	47.2	none
inal	$ heta_{13}(^{\circ})$	8.54	0.28
imits	$\delta_{CP}(^{\circ})$	234	none
	Flux		
s.	$\overline{N_{ u}}$	1	none
	$\Delta\gamma$	0	0.05
	$ u/\bar{ u}\ (\sigma)$	0	1.0
	Cross section		
	$\Delta M_A(\sigma)$	0	1

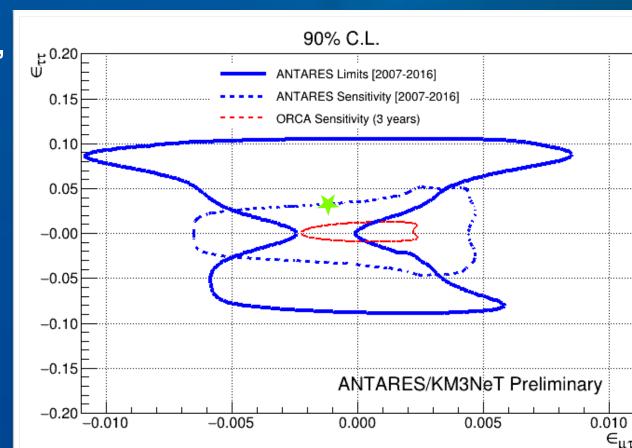

Results:

Projected sensitivity (left) for **ORCA** towards $\epsilon_{\mu\tau}$ and $\epsilon_{\tau\tau}$ after 3 years.

Allowed region in the $\epsilon_{\mu\tau}$ - $\epsilon_{\tau\tau}$ space for both assumed orderings at 90% CL.

 $\epsilon_{\mu\tau} \& \Delta m_{32}^2$ strongly anti-correlated.

In one-NSI approximation (only $\epsilon_{\mu\tau} \neq 0$), ANTARES puts world's best limits on $\epsilon_{\mu\tau}$.


When $\epsilon_{\tau\tau}$ is fitted, at 90% C.L

 $-4.0 \times 10^{-3} \le \epsilon_{\mu\tau} \le 3.0 \times 10^{-3}$.

With 10 years of atmospheric neutrino data, ANTARES finds mild hint for nonstandard interactions at 90% CL.

The SM hypothesis (0,0) is discarded at $\chi^2 = 4.75$, away from best fit (**BF**) point. **NSI BF** (\checkmark) in the μ - τ sector:

 $\epsilon_{\mu\tau} = -1.3 \times 10^{-3}; \ \epsilon_{\tau\tau} = 3.2 \times 10^{-1}.$

For joint estimation, contours using Wilks' theorem resulted in limits at 90% (99%) C.L.

 $-4.0 \times 10^{-3} (-7.0 \times 10^{-3}) \le \epsilon_{\mu\tau} \le 2.5 \times 10^{-3} (3.5 \times 10^{-3});$ $-0.6 \times 10^{-1} (-1.2 \times 10^{-1}) \le \epsilon_{\tau\tau} \le 0.6 \times 10^{-1} (1.2 \times 10^{-1}).$

References:

AN

- 1) Front.in Phys. 6 (2018), Y. Farzan and M. Tortola.
- 2) https://github.com/joaoabcoelho/OscProb, J. Coelho
- 3) J.Phys.G 43 (2016) 8, 084001 Letter of Intent for KM3NeT 2.0 [KM3NeT Coll.]
- 4) JHEP 06 (2019) 113, A. Albert et. al [ANTARES Coll.].
- 5) Phys.Rev.D 84 (2011) 113008, G. Mitsuka et. al.[Super Kamiokande I and II] 6) Phys.Rev.D 97 (2018) 7, 072009, M. G. Aartsen et. al. [IceCube Coll.]

Acknowledgements:

We thank M. Tortola for useful discussions and acknowledge the financial support of Programa Estatal de Generación de Conocmiento (ref. PGC2018-096663-B-C41, Spanish MCIU and FEDER).

