New limits on neutrino decay from the Glashow resonance of high-energy cosmic neutrinos Based on: arXiv:2004.06844 Mauricio Bustamante Niels Bohr Institute University of Copenhagen ### At a glance - Neutrino decay beyond the Standard Model may affect high-energy cosmic υ - IceCube's detection of the first Glashow resonance candidate reveals that υ_1 , υ_2 survived the trip over Mpc-Gpc - Thus, we set new limits on their lifetimes, assuming the inverted υ mass ordering # Neutrino decay - In the Standard Model (SM), the υ lifetime is » the age of the Universe - But, beyond the SM, υ could decay faster, by emitting a new (pseudo)scalar ϕ , *e.g.*, $$\mathcal{L} = g_{ij}\bar{\nu}_i\nu_j\phi + h_{ij}\bar{\nu}_i\gamma_5\nu_j\phi + \text{h.c.}$$ - We focus on the inverted υ mass ordering, with υ_3 lightest and stable, so $\upsilon_{1,2} \rightarrow \upsilon_3 + \varphi$ - This allows for a powerful test of decay via the Glashow resonance (see below) - Decay reduces the flux of v_i (i = 1,2) by $$e^{-\frac{m_i}{\tau_i}\frac{L}{E}}$$ r_i : mass r_i : distance r_i : lifetime r_i : energy Cosmic neutrinos are ideal probes, due to their traveling for Mpc-Gpc to Earth ### The Glashow resonance - The Glashow resonance (GR), $\overline{\upsilon}_e + e \rightarrow W$, occurs for $\overline{\upsilon}_e$ of 6.3 PeV - The *W* decays mainly into hadrons, *e*, τ, which make "shower" events in IceCube - At 6.3 PeV, the GR cross section is $200 \times$ the υ -nucleon (υN) cross section - IceCube observed the first candidate GR shower in 4.6 years, triggered by cosmic υ - ▶ Partially contained shower with 6 PeV - Most likely υ energy is the GR energy, 6.3 PeV - Many early muons, compatible with W decay # Testing for v decay - ν_3 has a tiny electron content, < 5% - If most v_1 , v_2 decay into v_3 , the few surviving v_e are unlikely to trigger the GR - So the GR shower seen by IceCube reveals that v_1 , v_2 survived the trip to Earth and ... - ... we place lower limits on their lifetimes # Statistical analysis - We vary 11 free parameters: - ϕ_0 : Neutrino flux normalization - $ightharpoonup \gamma$: Spectral index, emitted astrophysical flux $E^{-\gamma}$ - $f_{e,S}$, $f_{\mu,S}$: v_e and v_μ ratios emitted by sources - $f_{\overline{v}}$: Fraction of \overline{v} in the flux - θ_{12} , θ_{23} , θ_{13} , δ_{CP} : Mixing parameters - ▶ $\log_{10}[(\tau_1/m_1)/(\text{s eV}^{-1})]$: Lifetime of υ_1 - ▶ $\log_{10}[(\tau_2/m_2)/(\text{s eV}^{-1})]$: Lifetime of υ_2 - Likelihood: $$\mathcal{L}\left(\phi_{0}, \gamma, f_{e,S}, f_{\mu,S}, f_{\bar{\nu}}, \boldsymbol{\theta}, \frac{\tau_{1}}{m_{1}}, \frac{\tau_{2}}{m_{2}}\right) = \frac{e^{-N_{\rm sh}} N_{\rm sh}^{N_{\rm obs}}}{N_{\rm obs}!}$$ $N_{\rm sh}$: Expected rate of 4–8 PeV showers (GR+ νN) Nobs: Observed rate of 4–8 PeV showers - Bayesian analysis (using MultiNest): - Priors on ϕ_0 , γ informed by IceCube results - ▶ Priors on *θ* from global oscillation fit (NuFit 4.1) - Flat priors on $f_{e,S}$ ([0,1]), $f_{u,S}$ ([0,1- $f_{e,S}$]), $f_{\overline{v}}$ ([0,1]) - Flat priors ([-5,15]) on $\log_{10}(\tau_1/m_1)$, $\log_{10}(\tau_2/m_2)$ # Lower limits on v lifetime ▶ Based on $N_{\text{obs}} = 1$ detected shower in the 4–8 PeV range, we set (90% C.L.) $$\tau_1/m_1 > 2.91 \times 10^{-3} \text{ s eV}^{-1}$$ $\tau_2/m_2 > 1.26 \times 10^{-3} \text{ s eV}^{-1}$ - For υ_{1} , it roughly matches the limit from solar υ - For v_2 , it improves on the limit from solar v - The limit for υ_1 is better because it has more electron-flavor content than υ_2 - In the near future, with $N_{\rm obs}=2$ showers, the limit for $v_{\rm 1}$ will be the best to date - With $N_{\rm obs} = 4$ showers (~18 yr of IceCube), the limit for v_1 will be > 600 s eV⁻¹ Present-day lower limits on lifetimes imply upper limits on the φ coupling: $$(g_{13}^2 + h_{13}^2)^{1/2} > 4.77 \times 10^{-6} \text{ (eV/}m_1)$$ $(g_{23}^2 + h_{23}^2)^{1/2} > 7.24 \times 10^{-6} \text{ (eV/}m_2)$ ### Conclusions With a single Glashow resonance candidate, we improved the lower limit on the υ_2 lifetime and matched the existing limit on υ_1 , under the inverted mass ordering Selected references: Baerwald, Bustamante, Winter, JCAP 1210, 020 (2012) • Bustamante, Beacom, Murase, PRD 95, 063013 (2017) • Beacom et al., PRL 90, 181301 (2003) • Palomares-Ruiz, Vincent, Mena, PRD 91, 103008 (2015) • Shoemaker & Murase, PRD 93, 085004 (2016) • Lu, UHECR 2018 • Lu, PoS ICRC2019, 945 (2019)