New limits on neutrino decay from the Glashow resonance of high-energy cosmic neutrinos

Based on: arXiv:2004.06844

Mauricio Bustamante

Niels Bohr Institute
University of Copenhagen

At a glance

- Neutrino decay beyond the Standard
 Model may affect high-energy cosmic υ
- IceCube's detection of the first Glashow resonance candidate reveals that υ_1 , υ_2 survived the trip over Mpc-Gpc
- Thus, we set new limits on their lifetimes, assuming the inverted υ mass ordering

Neutrino decay

- In the Standard Model (SM), the υ lifetime is » the age of the Universe
- But, beyond the SM, υ could decay faster, by emitting a new (pseudo)scalar ϕ , *e.g.*,

$$\mathcal{L} = g_{ij}\bar{\nu}_i\nu_j\phi + h_{ij}\bar{\nu}_i\gamma_5\nu_j\phi + \text{h.c.}$$

- We focus on the inverted υ mass ordering, with υ_3 lightest and stable, so $\upsilon_{1,2} \rightarrow \upsilon_3 + \varphi$
- This allows for a powerful test of decay via the Glashow resonance (see below)
- Decay reduces the flux of v_i (i = 1,2) by

$$e^{-\frac{m_i}{\tau_i}\frac{L}{E}}$$
 r_i : mass r_i : distance r_i : lifetime r_i : energy

Cosmic neutrinos are ideal probes, due to their traveling for Mpc-Gpc to Earth

The Glashow resonance

- The Glashow resonance (GR), $\overline{\upsilon}_e + e \rightarrow W$, occurs for $\overline{\upsilon}_e$ of 6.3 PeV
- The *W* decays mainly into hadrons, *e*, τ, which make "shower" events in IceCube
- At 6.3 PeV, the GR cross section is $200 \times$ the υ -nucleon (υN) cross section
- IceCube observed the first candidate GR shower in 4.6 years, triggered by cosmic υ
- ▶ Partially contained shower with 6 PeV
- Most likely υ energy is the GR energy, 6.3 PeV
- Many early muons, compatible with W decay

Testing for v decay

- ν_3 has a tiny electron content, < 5%
- If most v_1 , v_2 decay into v_3 , the few surviving v_e are unlikely to trigger the GR
- So the GR shower seen by IceCube reveals that v_1 , v_2 survived the trip to Earth and ...
- ... we place lower limits on their lifetimes

Statistical analysis

- We vary 11 free parameters:
- ϕ_0 : Neutrino flux normalization
- $ightharpoonup \gamma$: Spectral index, emitted astrophysical flux $E^{-\gamma}$
- $f_{e,S}$, $f_{\mu,S}$: v_e and v_μ ratios emitted by sources
- $f_{\overline{v}}$: Fraction of \overline{v} in the flux
- θ_{12} , θ_{23} , θ_{13} , δ_{CP} : Mixing parameters
- ▶ $\log_{10}[(\tau_1/m_1)/(\text{s eV}^{-1})]$: Lifetime of υ_1
- ▶ $\log_{10}[(\tau_2/m_2)/(\text{s eV}^{-1})]$: Lifetime of υ_2
- Likelihood:

$$\mathcal{L}\left(\phi_{0}, \gamma, f_{e,S}, f_{\mu,S}, f_{\bar{\nu}}, \boldsymbol{\theta}, \frac{\tau_{1}}{m_{1}}, \frac{\tau_{2}}{m_{2}}\right) = \frac{e^{-N_{\rm sh}} N_{\rm sh}^{N_{\rm obs}}}{N_{\rm obs}!}$$

 $N_{\rm sh}$: Expected rate of 4–8 PeV showers (GR+ νN) Nobs: Observed rate of 4–8 PeV showers

- Bayesian analysis (using MultiNest):
 - Priors on ϕ_0 , γ informed by IceCube results
 - ▶ Priors on *θ* from global oscillation fit (NuFit 4.1)
- Flat priors on $f_{e,S}$ ([0,1]), $f_{u,S}$ ([0,1- $f_{e,S}$]), $f_{\overline{v}}$ ([0,1])
- Flat priors ([-5,15]) on $\log_{10}(\tau_1/m_1)$, $\log_{10}(\tau_2/m_2)$

Lower limits on v lifetime

▶ Based on $N_{\text{obs}} = 1$ detected shower in the 4–8 PeV range, we set (90% C.L.)

$$\tau_1/m_1 > 2.91 \times 10^{-3} \text{ s eV}^{-1}$$
 $\tau_2/m_2 > 1.26 \times 10^{-3} \text{ s eV}^{-1}$

- For υ_{1} , it roughly matches the limit from solar υ
- For v_2 , it improves on the limit from solar v
- The limit for υ_1 is better because it has more electron-flavor content than υ_2
- In the near future, with $N_{\rm obs}=2$ showers, the limit for $v_{\rm 1}$ will be the best to date
- With $N_{\rm obs} = 4$ showers (~18 yr of IceCube), the limit for v_1 will be > 600 s eV⁻¹

Present-day lower limits on lifetimes imply upper limits on the φ coupling:

$$(g_{13}^2 + h_{13}^2)^{1/2} > 4.77 \times 10^{-6} \text{ (eV/}m_1)$$

 $(g_{23}^2 + h_{23}^2)^{1/2} > 7.24 \times 10^{-6} \text{ (eV/}m_2)$

Conclusions

With a single Glashow resonance candidate, we improved the lower limit on the υ_2 lifetime and matched the existing limit on υ_1 , under the inverted mass ordering

Selected references: Baerwald, Bustamante, Winter, JCAP 1210, 020 (2012) • Bustamante, Beacom, Murase, PRD 95, 063013 (2017) • Beacom et al., PRL 90, 181301 (2003) • Palomares-Ruiz, Vincent, Mena, PRD 91, 103008 (2015) • Shoemaker & Murase, PRD 93, 085004 (2016) • Lu, UHECR 2018 • Lu, PoS ICRC2019, 945 (2019)