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INTRODUCTION
From the experimental observation of neutrino oscillations, lepton flavor violation
(LFV) in the neutrino sector has been observed. However, that violation has not yet
been observed in the charged-lepton sector and it is not quite certain where it is most
likely to be observed first. After discovery of Higgs boson it is pertinent to ask if
there could be a connection or mixing between the Higgs sector and the mechanism
responsible for the nonconservation of lepton number, and to find out whether some
remnant effect could show up in lepton decays, which may be detectable at present
or future colliders.
In this investigation we numerically compute the processes `±1 → `±2 γ, Z → `±1 `

∓
2 ,

and h → `±1 `
∓
2 , where `1 and `2 are charged leptons with different flavours, in a

simple extension of the Standard Model (SM). That extension is a particular case
of the scheme proposed in ref. [1]: a multi-Higgs-doublet model where all the
Yukawa-coupling matrices are diagonal in lepton-flavour space (because of the in-
variance of the dimension-four terms in the Lagrangian under the lepton-flavour
symmetries) and the violation of those symmetries arises only softly through the
dimension-three Majorana mass terms of three right-handed neutrinos. In ref. [1]
the above-mentioned processes have been computed analytically within that gen-
eral scheme. We check that analytical computation but express the amplitudes
through Passarino–Veltman (PV) functions. That allows us to use the formulas in
high-precision numerical computations and to establish the impact of the separate
amplitudes on the branching ratios (BRs) of the LFV decays. Although the analytical
results allow one to study the LFV processes in a model with an arbitrary number of
scalar doublets, in this analysis we only perform the numerical computation in the
context of a simple version of the two Higgs doublet model (2HDM).

SCALAR SECTOR
In our numerical computations, we work in the context of a 2HDM without scalar
SU(2) singlets. We use, without loss of generality, the ‘Higgs basis’, wherein only
the first scalar doublet has a vacuum expectation value:

Φ1 =

(
G±(

v +X1 + iG0
) /√

2

)
, Φ2 =

(
H±

(X2 + iX3)
/√

2

)
. (1)

In Φ1, v ≈ 246 GeV is real, G0 is the neutral Goldstone boson, and G± is the charged
Goldstone boson. In Φ2, H± is a physical charged scalar with mass mH± . The fields
X1,2,3 are real. We write X1

X2

X3

 =

 T11 T12 T13

T21 T22 T23

T31 T32 T33


 S0

2

S0
3

S0
4

 , (2)

where the matrix T is orthogonal and S0
2,3,4 are physical (i.e. eigenstate of mass)

neutral scalars. In our notation, S0
1 ≡ G0.

Let H ≡ h be the neutral scalar with mass mh ≈ 125 GeV observed at the LHC then,
for definiteness, we take h ≡ S0

2 .
Feynman diagrams in which the neutral scalar h couples to a pair of either charged
scalars or charged gauge bosons do arise in the computation of the decay h→ `±1 `

∓
2 .

The relevant vertices are given by ref. [1, 2].

LEPTONIC SECTOR
Our model has three right-handed neutrinos νRe, νRµ, and νRτ . Their Majorana
mass terms are given by the 3× 3 symmetric matrix MR as

LνR mass = −1

2

∑
`,`′=e,µ,τ

(MR)``′ ν̄R` C ν̄
T
R`′ + H.c., (3)

where C is the charge-conjugation matrix in Dirac space. The flavour-space matrix
MR is non-diagonal. Indeed, LνR mass is the only source of breaking of the family
lepton numbers in our model; that breaking is thus soft. Because of our assumption
that the family lepton numbers are symmetries of the dimension-four part of the
Lagrangian, the lepton Yukawa Lagrangian conserves flavour:

LYukawa = −
2∑
k=1

∑
`=e,µ,τ

[
(Γk)`

¯̀
R

(
Φ−
k νL` + Φ0

k
∗
`L

)
+ (∆k)` ν̄R`

(
Φ0
kνL` − Φ+

k `L
)]

+ H.c., (4)

where the diagonal matrices (Γ1,2)` and (∆1,2)` are the Yukawa coupling constants.
Note that (Γ1)` =

(√
2
/
v
)
m`, where the m` are the charged-lepton masses. For the

other Yukawa couplings appearing in equation (4) we employ the notation

(Γ2)` = γ`, (∆1)` = d`, (∆2)` = δ`. (5)

These coupling constants in general are complex and dimensionless.
The neutrino Dirac mass matrix is diagonal, with (MD)`` =

(
v
/√

2
)
d`. The 6 × 6

neutrino Majorana mass matrix

M =

(
03×3 MD

MD MR

)
(6)

is symmetric; it is diagonalized by the 6× 6 unitary matrix

U =

(
UL

U∗
R

)
(7)

as UTMU = m̂ ≡ diag (m1, . . . ,m6). The mi (i = 1, . . . , 6) are the neutrino masses;
they are real and positive. In equation (7), the submatrices UL and UR are both 3×6.
The leptonic charged-current, neutral-current Lagrangians and the interactions of
the charged and neutral scalars with the charged leptons and with the neutrinos are
given in ref. [1].
We connect the lepton mixing matrix UL with the usual PMNS matrix through the
seesaw approximation. The 3× 3 symmetric matrix

M = −MDM
−1
R MD (8)

is diagonalized by an unitary matrix V as

V TMV = n̂ = diag (n1, n2, n3) , (9)

where the np (p = 1, 2, 3) are real and positive. In the seesaw approximation, V is
the PMNS matrix. Now, it follows from equations (8) and (9) that

MR = −MDV n̂
−1V TMD. (10)

We use as input the matrix V , the matrix MD in notations of parameters used for
calculations, and the matrix n̂. We determine MR through equation (10). We then
use MR, together with the MD, to construct the 6× 6 matrixM of equation (6).
Finally, we diagonalize M through the unitary matrix U of equation (7). We thus
find both UL and the neutrino masses mi. Because the seesaw approximation is
very good, for p = 1, 2, 3 the mp turn out approximately equal to the np, and the left
3×3 submatrix of UL turn out approximately equal to the matrix V . For the n1,2,3 we
use the light-neutrino masses. The squared-mass differences ∆solar = n22 − n21 and
∆atmospheric =

∣∣n23 − n21∣∣ are taken from the phenomenological fit [4]. The lightest-
neutrino mass is kept free; we let it vary in between 10−5 eV and ∼ 0.03 eV for
normal ordering (n1 < n3), and in between 10−5 eV and ∼ 0.015 eV for inverted or-
dering (n3 < n1). The smallest np cannot be allowed to be zero because n̂−1 appears
in equation (10). The upper bound on the mass of the lightest neutrino arises from
the cosmological bound of Planck 2018 results. Since the np are many orders of mag-
nitude below the Fermi scale, the matrix elements of MR are much above the Fermi
scale unless the d` are extremely small. Thus, when we want to lower the seesaw
scale, we lower the d`.
We use usual PMNS matrix parametrization of ref. [3] including Majorana phases
α21 and α31. The ranges for the mixing angles are taken from the phenomenological
fit of ref. [4].

DETAILS OF THE COMPUTATIONS
We generated the complete set of diagrams with the Feynman gauge using Feyn-
Master package, with a modified version of the FeynRules SM file to account neutri-
nos, lepton flavour mixing and additional Higgs doublets. The automatically gen-
erated amplitudes of FeynMaster were expressed by Passarino-Veltman functions
using package FeynCalc and specific functions of FeynMaster. Finally all the am-
plitudes was independently checked by performing computations manually. The
detail expressions off the all amplitudes and formulas of decay rates are given in the
ref. [2].
For numerical calculations we made two separate programs with Mathematica and
with Fortran. The numerical instabilities or cancellations in the calculations have
been solved with the high precision numbers for what Mathematica and lets do.
The program written with Fortran allows to apply the minimization procedure to
find the BRs within the ranges available in the experiment. The data is fitted by
minimizing χ2 with respect to the model parameters like the Yukawa couplings d`,
δ` and γ`, the PMNS matrix parameters, mass of additional charged scalar mH± and
the parameter T11.
We include various constraints in the computations which could potentially restrict
decay rates of the processes. For the limitation of neutrino masses we take into
account the latest experimental limits of total mass of the light neutrinos, mass rele-
vant for neutrinoless double-beta decay and the mass relevant for standard β decay.
We check compatibility of our parameters with the invisible decay of the Z boson
and constraints on mass of the charged scalar mH± . Moduli of coupling constants
are restricted from bellow with bound Ymin = 10−6 and they should not be larger
than perturbativity bound Ymax =

√
4π.

NUMERICAL ANALYSIS
To estimate the influence of Yukawa coupling constants to branching ratios in the
general case we fix couplings as ratio dµ/de = dτ/dµ = 1.1, δµ/δe = δτ/δµ = 1.1 and
γµ/γe = γτ/γµ = 1.1 therefore, only one coupling can be varied while the others
remain fixed. The mass of the lightest neutrino is fixed to m1 = 0.01 eV while the
other neutrino masses and the oscillation parameters are fixed to the central values
of ref. [4] for normal ordering of the light neutrinos. The mass of the charged scalar
is fixed to mH± = 750 GeV. The 2HDM parameters are fixed following λ3 = λ7 = 1
and T11 = 0.99999.
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Figure 1: The branching ratios as a functions of the Yukawa coupling dτ . The couplings
δτ = γτ = Ymax and the other couplings are fixed through the rates described above. Full
lines represent the contribution of all amplitudes while dashed lines represent the contribu-
tion of amplitudes without additional charged scalar H±. The shadowed bands in the plots
are excluded by present experimental data but dashed and dotted lines shows future experi-
mental sensitivities.
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Figure 2: The branching ratios as a functions of the Yukawa coupling δτ . The couplings
dτ = 10−6, γτ = Ymax and the other couplings are fixed through the rates described above.
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Figure 3: The left plot shows the dependence of Higgs decay rates from Yukawa coupling
γτ . The right plot shows the dependence of the Higgs decay rates from the parameter T11. In
these two plots, the other parameters are fixed as described above. The right plot shows the
distribution of the parameter T11 for four cases described bellow.

In order to find adequate numerical values for the parameters we perform global
minimization procedure. We compute all nine decays and collect only the points
that are within the current experimental bounds and future sensitivities for all the
lepton and the Higgs decays simultaneously. These statistical data allow to elucidate
which are the relevant and the less relevant parameters of that model for the LFV
decays.
In the figures bellow we compare four different cases of computations. In the first
case (labelled by ‘IO’) is assumed inverted ordering of the light neutrinos while in
the second case (labelled by ‘NO’) is assumed normal ordering of the light neutrinos.
In the third cases the lower bound of the Yukawa couplings is expanded to Ymin =
10−7 and in the fourth case is assumed that Majorana phases α21 = α31 = 0. In
all cases the oscillation parameters are varied in the 3σ experimental ranges and
the mass of H± is fixed at mH± = 750 GeV. There are assumed the real Yukawa
couplings.
To see the behaviour of the separate parameters we choose benchmark point with
m1 = 16.5 meV, mH± = 750 GeV, T11 = 0.9999, de = dτ = 10−6, dµ = 4 × 10−6,
δe = δµ = δτ = 3.5, γe = 0, γµ = 1, γτ = 3, α21 = 3.515 and α31 = 1.06. The other
oscillation parameters are fixed to the central values of ref. [4] for NO.

Figure 4: The scatter plots of the branching ratios of LFV decays for four different cases. The
black star indicate the benchmark point. The shadowed bands in the plots are excluded by
present experimental data but dashed and dotted lines shows future experimental sensitivi-
ties.

Figure 5: Correlation plots for the charged lepton and the Z boson decays for four different
cases. The shadowed bands in the plots are excluded by present experimental data but dashed
and dotted lines shows future experimental sensitivities.

NUMERICAL ANALYSIS

0.01 0.10 1 10
0.0

0.2

0.4

0.6

0.8

1.0

m1 [meV]

R
e

la
ti

v
e

fr
e

q
u

e
n

c
y IO

NO
Ymin=10-7

α21=α31=0

case

10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

m2 [meV]

R
e

la
ti

v
e

fr
e

q
u

e
n

c
y IO

NO
Ymin=10-7

α21=α31=0

case

0.01 0.10 1 10
0.0

0.2

0.4

0.6

0.8

1.0

m3 [meV]

R
e

la
ti

v
e

fr
e

q
u

e
n

c
y IO

NO
Ymin=10-7

α21=α31=0

case

50 100 500 1000
0.0

0.1

0.2

0.3

0.4

0.5

m4 [GeV]

R
e

la
ti

v
e

fr
e

q
u

e
n

c
y IO

NO
Ymin=10-7

α21=α31=0

case

500 1000 5000 104
0.0

0.1

0.2

0.3

0.4

m5 [GeV]

R
e

la
ti

v
e

fr
e

q
u

e
n

c
y IO

NO
Ymin=10-7

α21=α31=0

case

104 105 106 107
0.00

0.05

0.10

0.15

0.20

0.25

0.30

m6 [GeV]

R
e

la
ti

v
e

fr
e

q
u

e
n

c
y IO

NO
Ymin=10-7

α21=α31=0

case

Figure 6: The distributions of the neutrino masses for four different cases.
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Figure 7: The distributions of the Yukawa couplings for four different cases.
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Figure 8: The decay rates as a functions of the Dirac phase δCP and of the Majorana phases
α21 and α31. The other parameters are taken from the benchmark point. Vertical dashed line
indicate fixed parameters of the benchmark point. Notice that the similar fine-tuning for the
other oscillation parameters is needed for the decays with `1 = µ and `2 = e.
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Figure 9: The decay rates as a functions of the mass of the charged scalar mH± and of the
mass of the lightest neutrino m1. The other parameters are taken from the benchmark point.
Vertical dashed line indicate fixed parameters of the benchmark point.

CONCLUSIONS
• The amplitudes with the additional charged scalar gives the main impact and

allows to get decay rates for the lepton and Higgs processes close to the expe-
rimental bounds as illustrated in fig. 1.
• The decays `±1 → `±2 γ require small values of Yukawa couplings d` (with very

light right-handed neutrinos) and large values of couplings δ` in order to be
visible.
• The decays Z → `±1 `

∓
2 correlate with the decays `±1 → `±2 γ and have similar

behaviour, unfortunately due to the large total decay width of Z boson, these
decays are invisible in all the planned experiments.
• The decays h → `±1 `

∓
2 have different behaviour than the other decays and

prefers larger values of d` but thanks to the freedom to adjust γ` and T11 they
are visible for future experiments.
• The Majorana phases have significant impact to the branching ratios for all

processes.
• The case of the complex Yukawa couplings vs. the real Yukawa couplings or

the case of the 3σ vs. 1σ of experimental ranges of the oscillation parameters
do not have significant influence to the decay rates.
• The case of normal ordering of the light neutrinos and the case of inverted

ordering of the light neutrinos gives the similar decay rates.
• As the mass of the charged scalar increases, the values of BRs decrease, but for
mH± < 1000 GeV the lepton and Higgs decays are visible for future experi-
ments.
• Fine-tuning is needed in order that BR(µ± → e±γ) and BR(h → µ±e∓)

does not become too large when all other four branching ratios are simulta-
neously close to their experimental limits. The minimization procedure helps
to achieve this perfectly as shown in fig. 8 and fig. 9.
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[2] D. Jurčiukonis and L. Lavoura, in preparation (2020).

[3] Particle Data Group Collaboration, M. Tanabashi et al., Review of Particle Physics, Phys.
Rev. D98 (2018), no. 3 030001.

[4] P. F. de Salas, D. V. Forero, C. A. Ternes, M. Tórtola, and J. W. F. Valle, Phys. Lett. B782
(2018), arXiv:1708.01186.

ACKNOWLEDGEMENTS
Thanks the Lithuanian Academy of Sciences for support through project DaFi2019.


