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Outline

▪ First, a little economics

▪ Then, a little computer science

▪ And, put them together

▪ Two examples

▪ Thinking about the choice problem for local differential privacy

▪ Thinking about the choice problem for global differential privacy

▪ Now, the challenge for the 2020 Census of Population and Housing
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A Little Economics

▪ Finite resource: information in an existing database
▪ Competing uses:

▪ Accuracy (fitness-for-use) of published statistics
▪ Loss of privacy (information leakage about individuals)

▪ Optimal resource allocation should equate:
▪ Marginal rate of transformation (opportunity cost)
▪ Marginal willingness to pay (marginal rate of substitution)

▪ Both accuracy and privacy are public goods
▪ Private provision will generally produce sub-optimal accuracy or 

privacy loss
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A Little Computer Science

▪ Formally private data publication systems (e.g., differential 
privacy, Dwork et al. 2006, but 2017 is much clearer)

▪ Database definition, including neighboring databases

▪ Query sets

▪ Randomized query response mechanism

▪ Formal privacy definition

▪ Measure of release data accuracy
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Databases and Neighbors

▪ Basic databases are single tables with rows representing entities 
and columns representing fields/variables

▪ Confine attention today to databases where the database schema 
is limited to finite, discrete outcomes for each field

▪ Use the histogram representation
▪ Each row of the histogram is an image of a row in the database schema 

augmented with its count in the database
▪ Statisticians call this the interior cells of the complete contingency table

▪ Neighboring databases are those for which all the database 
constraints are satisfied with the minimum number of changes to 
the records
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Query Sets

▪ Query sets specify the allowable functions relating the 
database to an answer space

▪ Confine attention today to counting queries on the histogram 
representation of the database
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Randomized Query Response Mechanism

▪ This is the heart of differential privacy

▪ Randomized query response mechanism add noise to the 
query responses before releasing the query answer

▪ The database reconstruction theorem (Dinur and Nissim 2003) 
establishes that randomized query response mechanisms are 
necessary, but not sufficient, to prevent arbitrarily accurate 
reconstruction of the confidential database from a sequence of 
counting queries
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Formal Privacy Definition

▪ The formal privacy definition puts conditions on the 
randomized query response mechanism that globally bound 
the information leakage according to a parameter e, that is 
usually called the privacy-loss budget

▪ We will use the basic differential privacy definition today

▪ Differential privacy bounds the Bayes factor associated with 
the worst-case inferential disclosure for all neighboring 
databases of all databases consistent with the schema
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Accuracy of Released Data

▪ Since randomized query response mechanisms add noise to the 
correct answer from the database, an accuracy measure is required 
to compare the protected answer to the true answer

▪ There are many accuracy measures that might be suitable
▪ Most depend on the absolute difference between the true answer 

and the released answer
▪ We will confine attention today to two accuracy measures that 

have this property:
▪ Normalized total variation distance (basically L1 distance)
▪ Statistical precision relative to the precision in the confidential data 

(basically L2 distance) 
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Example 1: Randomized Response

▪ Randomized response is differentially private
▪ Privacy loss is bounded by the maximum Bayes factor

max𝐵𝐹 =

𝑃𝑟 𝑆𝑄 = 𝑌𝑒𝑠|𝐴 = 𝑌𝑒𝑠
𝑃𝑟 𝑆𝑄 = 𝑁𝑜|𝐴 = 𝑌𝑒𝑠

𝑃𝑟 𝑆𝑄 = 𝑌𝑒𝑠
𝑃𝑟 𝑆𝑄 = 𝑁𝑜

=
𝑃𝑟 𝐴 = 𝑌𝑒𝑠|𝑆𝑄 = 𝑌𝑒𝑠

𝑃𝑟 𝐴 = 𝑌𝑒𝑠|𝑆𝑄 = 𝑁𝑜
=

ൗ1 2 + 1 − ൗ1 2 ൗ1 2

1 − ൗ1 2 ൗ1 2

= 3

▪ Bound is the logarithm of the maximum Bayes factor
▪ If 

▪ Sensitive question asked with probability ½ 
▪ And innocuous question is “yes” with probability ½
▪ Then the maximum Bayes factor is 3, and ln 3 = 1.1

▪ The privacy-loss expenditure (𝜀-differential privacy) is 1.1
▪ Sources: Warner (1965) [link] and Greenberg, Abdel-Latif, Simmons, and Horvitz (1969) [link]. SDL 

uses: Fienberg and Steele (1998) [link], Du and Zhan (2003) [link] and Erlingsson, Vasyl and Korolova
(2014) [link].
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What Happens to Data Quality?

▪ Use relative sampling precision

𝑅𝑒𝑙. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑃𝑟 𝐴𝑠𝑘 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑄 2 𝑛

𝜃 1 − 𝜃
𝑛

𝜃 1 − 𝜃

=
1

2

2

= 0.25

▪ If

▪ Privacy loss is ln 3 

▪ Then, relative sampling precision is 25% of the most accurate estimator
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Example 2: Laplace Mechanism for Simple Tables

▪ The simple tables in this example are based on the 2010 
Census of Population PL94-171 release, known popularly as the 
redistricting data

▪ These data are used to redraw every legislative district from 
Congressional all the way down to village councils in every 
state every ten years

▪ They must be released by April 1st of the year following a 
decennial census (for the 2010 Census, April 1, 2011)
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Database

▪ The database is the single-table image of the microdata with 
one record per entity

▪ In this presentation think: person records for occupied housing 
units
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Sample Data Table

27

PID Tract Block GeoID White Black Hispanic Voting Age NH-White Alone NH-Black Alone NH-Both H-White Alone H-Black Alone H-Both

R01 1 1 11 1 0 1 1 0 0 0 1 0 0

R02 1 1 11 1 0 0 1 1 0 0 0 0 0

R03 1 1 11 1 0 0 1 1 0 0 0 0 0

R04 1 1 11 1 0 0 1 1 0 0 0 0 0

R05 1 1 11 0 1 0 1 0 1 0 0 0 0

R06 1 2 12 0 1 0 1 0 1 0 0 0 0

R07 1 2 12 0 1 1 1 0 0 0 0 1 0

R08 2 1 21 1 0 0 1 1 0 0 0 0 0

R09 2 1 21 1 0 0 0 1 0 0 0 0 0

R10 2 1 21 1 0 0 1 1 0 0 0 0 0

R11 2 2 22 1 0 0 0 1 0 0 0 0 0

R12 2 2 22 1 0 0 1 1 0 0 0 0 0

R13 2 2 22 1 0 0 1 1 0 0 0 0 0

R14 2 2 22 1 0 0 1 1 0 0 0 0 0

R15 2 2 22 1 0 0 1 1 0 0 0 0 0

R16 2 2 22 1 0 0 1 1 0 0 0 0 0

R17 2 2 22 1 1 0 1 0 0 1 0 0 0

R18 2 3 23 1 1 1 0 0 0 0 0 0 1

R19 2 3 23 1 0 0 0 1 0 0 0 0 0

R20 3 1 31 1 0 0 0 1 0 0 0 0 0

TOTAL 20 17 5 3 15 14 2 1 1 1 1

This table is the person records only from 
occupied households (simulated data).



Database Schema

▪ To statisticians: sample space

▪ The legal combinations of each of the tabulation variables in 
the database

▪ Image of every legal record in the database

▪ Structural zeros are imposed by deleting rows in this image

▪ Other constraints (e.g., total population counts, group quarters 
types) are represented by linear equalities and inequalities

28



Sample Database Schema

29

SchemaID GeoID White Black Hispanic Voting Age NH-White Alone NH-Black Alone NH-Both H-White Alone H-Black Alone H-Both Sensitivity 1 Sensitivity 2

1 11 0 1 0 0 0 1 0 0 0 0 1 1

2 11 0 1 0 1 0 1 0 0 0 0 1 1

3 11 0 1 1 0 0 0 0 0 1 0 1 1

4 11 0 1 1 1 0 0 0 0 1 0 1 1

5 11 1 0 0 0 1 0 0 0 0 0 1 1

6 11 1 0 0 1 1 0 0 0 0 0 1 1

7 11 1 0 1 0 0 0 0 1 0 0 1 1

8 11 1 0 1 1 0 0 0 1 0 0 1 1

9 11 1 1 0 0 0 0 1 0 0 0 1 2

10 11 1 1 0 1 0 0 1 0 0 0 1 2

11 11 1 1 1 0 0 0 0 0 0 1 1 2

12 11 1 1 1 1 0 0 0 0 0 1 1 2

13 12 0 1 0 0 0 1 0 0 0 0 1 1

14 12 0 1 0 1 0 1 0 0 0 0 1 1

15 12 0 1 1 0 0 0 0 0 1 0 1 1

16 12 0 1 1 1 0 0 0 0 1 0 1 1

17 12 1 0 0 0 1 0 0 0 0 0 1 1

18 12 1 0 0 1 1 0 0 0 0 0 1 1

19 12 1 0 1 0 0 0 0 1 0 0 1 1

20 12 1 0 1 1 0 0 0 1 0 0 1 1

21 12 1 1 0 0 0 0 1 0 0 0 1 2

22 12 1 1 0 1 0 0 1 0 0 0 1 2

23 12 1 1 1 0 0 0 0 0 0 1 1 2

24 12 1 1 1 1 0 0 0 0 0 1 1 2

25 21 0 1 0 0 0 1 0 0 0 0 1 1

26 21 0 1 0 1 0 1 0 0 0 0 1 1This is a portion of the database schema that applies to the example database. The full schema 
has 72 rows. Note that the structural zeros implied by requiring at least one race (either white 
or black in this example) are imposed. Current OMB standards also imposed.



Neighboring Database

▪ Neighboring databases are those that differ from the actual 
database by changing no more than two rows

▪ This definition occurs because the total population in any 
geography is not allowed to change (a constraint)

▪ In this case the linear constraint that total population is exact 
in every block means that neighboring databases must have 
the same number of rows in each block
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Queries and Sensitivity

▪ To statisticians: any well-defined summary statistic computed 
on the database is a query

▪ We restrict attention to counting queries, which everyone 
understands the same way

▪ Sensitivity is the maximum amount any allowable query can 
change (in absolute value) when all neighbors of all possible 
databases are considered
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Queries and Sensitivity

▪ The sensitivity of the query workload for the redistricting data 
is two

▪ If the block population can’t change, then two neighboring 
databases must have a difference in value for exactly two 
persons

▪ Population count: 10

▪ White: 5, Black: 5 and White: 4, Black: 6 are neighboring 
databases

▪ Abs(5-4)+Abs(5-6) = 2
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Randomized Query Mechanism

▪ To statisticians: input or output noise infusion as the disclosure 
limitation technology

▪ Input noise infusion example: randomized response 
mechanism

▪ Output noise infusion example: Laplace mechanism
▪ Add independent Laplace noise to each query

▪ Post process to satisfy nonnegativity and integer constraints

▪ We actually use a discrete version of this called the geometric 
mechanism

33



34

0

100

200

300

400

500

600

-8 -6 -4 -2 0 2 4 6 8

Fr
eq

u
en

cy
 (b

in
w

id
th

 =
 1

, s
ym

m
et

ri
c)

Standard Deviations

Laplace Random Variables Used in the Simulation



Differential Privacy

▪ To statisticians: a global bound on the maximum Bayes factor 
associated with any exact identity or attribute disclosure

▪ The bound, called e in differential privacy, is taken over all 
possible databases with respect to all possible neighbors of 
those databases

▪ The “neighbor” definition makes exact identity and attribute 
disclosures precise
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Disclosure Limitation is Technology

▪ The price of increasing data quality (public “good”) in terms of 
increased privacy loss (public “bad”) is the slope of the 
technology frontier:
▪ Economics: Production Possibilities Frontier (Risk-Return in finance)

▪ Forecasting models: Receiver Operating Characteristics Curve

▪ Statistical Disclosure Limitation: Risk-Utility Curve (with risk on the x-
axis)

▪ All exactly the same thing

▪ None able to select an optimal point

37



38

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

D
at

a 
Q

u
al

it
y 

(R
el

at
iv

e 
P

re
ci

si
o

n
=1

.0
 W

h
en

 T
h

er
e 

Is
 N

o
 P

ri
va

cy
)-

-P
u

b
lic

 "
G

o
o

d
"

Privacy-loss Budget (ln Maximum Bayes Factor)--Public "Bad"

Production Possibilities Frontier/Risk-Utility/Receiver Operation Characteristics
for Statistical Disclosure Limitation via Randomized Response

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

D
at

a 
Q

u
al

it
y 

(R
el

at
iv

e 
P

re
ci

si
o

n
=1

.0
 W

h
en

 T
h

er
e 

Is
 N

o
 P

ri
va

cy
)-

-P
u

b
lic

 "
G

o
o

d
"

Privacy-loss Budget (ln Maximum Bayes Factor)--Public "Bad"

Production Possibilities Frontier/Risk-Utility/Receiver Operation Characteristics
for Statistical Disclosure Limitation via Randomized Response



How Do You Set e?

▪ Dwork (2008): “The parameter e in Definition 1 is public. The 
choice of e is essentially a social question and is beyond the scope 
of this paper.” [link, p. 3]

▪ Dwork (2011): “The parameter e is public, and its selection is a 
social question. We tend to think of e as, say, 0.01, 0.1, or in some 
cases, ln 2 or ln 3.” [link, p. 91]

▪ In OnTheMap, e = 8.9, was required to produce tract-level 
estimates with acceptable accuracy

▪ All these settings are differentially private, but they very different 
global disclosure risk
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Where computer 
scientists act like 
MSC = MSB



How to Think about the 

Social Choice Problem

▪ The marginal social benefit is the sum of all persons’ 
willingness-to-pay for data accuracy with increased privacy loss

▪ Ian and I estimated the choice parameters from survey data

▪ The next slide shows an example for randomized response

▪ This is the problem being addressed by Google in RAPPOR and 
Apple in iOS 11

See Abowd and Schmutte (2017) [link].
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But the Choice Problem for Example 2 is 

More Challenging

▪ In the redistricting application, the fitness-for-use is based on 

▪ Supreme Court one-person one-vote decision

▪ Voting Rights Act: requires majority minority districts at all levels, 
when certain criteria 

▪ The privacy interest is based on 

▪ Title 13 requirement not to publish exact identifying information
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Randomized response: 
most efficient input noise 
infusion mechanism

Parallel-composed geometric 
mechanism: most efficient output 
noise infusion mechanism for a 
workload with sensitivity one

Customized query selection or workload 
management (e.g., matrix mechanism): 
more efficient output noise infusion 
mechanism for a correlated queries
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Randomized Response: 
most efficient input noise 
infusion mechanism

Parallel-composed geometric 
mechanism: most efficient 
output noise infusion 
mechanism for a single query

Customized query selection mechanism 
(e.g., MWEM): more efficient output noise 
infusion mechanism for a correlated 
queries
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Randomized Response: 
most efficient input noise 
infusion mechanism

Parallel-composed geometric 
mechanism: most efficient 
output noise infusion 
mechanism for a single query

Customized query selection mechanism 
(e.g., MWEM): more efficient output noise 
infusion mechanism for correlated queries
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Takeaways

▪ This is new ground for official statisticians: they did not have to 
think explicitly about the social choice problem of competing 
interests on accuracy and privacy using traditional disclosure 
avoidance methods

▪ But, it is not foreign territory, since the invention of sampling 
theory, official statisticians have thought about the tradeoff 
between accuracy and all aspects of the design of surveys
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