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Abstract 

 

            In this review, a formula that determines the curvature-dependent surface tension in a 

droplet with two phases has been discussed. Taking into account the dependence of the surface 

tension on the system size, nonlinear differential equations describing the droplet profile have 

been derived. It has been shown that, if the droplet size is not too large compared with the 

thickness of the surface layer (micro- or nanodroplets), the dependence of the surface tension on 

the curvature is extremely important. 

Keywords: nanodroplet, surface tension, Gibbs adsorption, Tolman length. 

 

Rezumat 

 

În această lucrare se examinează formula care determină dependența tensiunii superficiale 

de curbură într-o picătură cu două faze. Ținând cont de  dependența tensiunii superficiale de  

dimensiunile  sistemelor, au fost obținute  ecuațiile diferențiale neliniare care descriu profilul 

picăturii. S-a demonstrat că, atunci când dimensiunea picăturii nu este prea mare în comparație cu 

grosimea stratului de suprafață (micro- sau nanopicături), dependența tensiunii superficiale de 

curbură este foarte importantă. 

Cuvinte cheie: nanopicătură, tensiune superficială, adsorbție Gibbs, lungime Tolman. 

 

 

1. Introduction 

 

         A nonwetting liquid takes the form of a drop on the surface of a body. Young suggested 

measuring contact angle θ between the liquid and the surface. The mechanical equilibrium of a 

droplet lying on a flat hard surface under the constraints of three surface tensions is referred to as 

the Young equation. The surface tension (Young's equation) for large droplets (see Fig. 1) is 

determined as follows [1–9]:  

 cos
21


 ,                                                   
(1a)    
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where σ1  is the tension at the solid–liquid interface, σ2 is the tension at the solid–vapor interface, 

and σ  is the tension at the liquid–vapor interface. 

The drop volume is determined from angle θ from the formula [1–9] 

                                           
)(

3
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(1b) 

                                                                                                                                   

where rs  is equilibrium radius of the drop,  and 

   
)cos2()cos1(

4

1
)( 2  

.     

(1c) 

                                                                         

 

Fig. 1. Dimensionless profiles of a sessile microdrop.  

 

Let us consider an isolated system in thermodynamic equilibrium, which consists of two 

bulk phases with different densities—steam and liquid—and the interface between them.  

Here, the surface tension acts as a separating surface with a minimum value [1–3]. Excess 

pressure is provided by the Laplace equation [4–10] 

  p ,       (2a) 

where  is the surface tension and  determines the mean curvature of the surface. Differential of 

excess pressure is as follows:  

 ddpd  )( .      (2b) 

To determine the surface tension, let us apply the Gibbs equation written in the following 

form: 

)( pddd   ,     (3) 

where   is the Gibbs adsorption,  is the chemical potential, 0  is a non-negative parameter 

characterizing the interfacial layer thickness. In surface thermodynamics, the Tolman length is 

used as a parameter , which is equal to the distance between the surface of tension and the 

equimolar surface. The numerical values of parameter  lie in a range of 0.1–1 nm far from the 

critical boiling point. While writing equation (3), we took into account that the differential for the 

chemical potential and the Gibbs adsorption are npdd  /)(  and n  , where n  is the 

substance concentration difference in interfacial phases. Equation (3) holds for any smooth 

interfacial phase regardless of its geometrical shape. Hereinafter, we assume that  does not 

depend on the curvature radii. This assumption is considered acceptable, if the surface curvature 

is not too large compared with 1/δ [1, 2]; analysis of the size dependence of the surface tension 

for the spherical surface show that this assumption is acceptable at  /1.0||  . Substituting (2) 

into (3), we can obtain the equation 
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     





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d
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1
.     (4) 

Having integrated (4), we can find 











1

)(

,      (5) 

where )(  is a flat surface tension as 0 . For an arbitrarily curved surface, 21 /1/1 rr  , 

where 1r  and 2r  are the principal radii of curvature of the surface [9]; therefore, from (5) we 

finally obtain 














21

)(

11
1

rr



 .      (6) 

It is reasonable to expect that, at 21 rr   the well-known Tolman formula for small spherical 

droplets is derived from (6) [3].  

In [9], comparison of simple size dependences for spherical and cylindrical surfaces 

resulted in the following interpolation formula [9, 10]:: 

 


















 

21

)( 11
1

rr
 .     (7) 

It is easy to verify that formula (7) can be derived using the expansion of (5) into series of   in 

view of zero and considering the first member only. 

 

 

2. Theoretical Remarks for the Rekhviashvili–Sokurov`s Model 

 

Let us consider the problem of a sessile droplet as the most important application of the 

above results from a practical point of view. The droplet lies on a poorly wettable substrate, for 

example, on an atomically smooth graphite surface. 
 

 

Fig. 2. Sessile drop profile corresponding to the surface of tension. 
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The dotted line denotes the equimolar surface with the zero Gibbs adsorption ( 0 ). 

 

 

We use the Bashforth–Adams approximation (see [6–9]); according to it, the effect of the 

substrate is not taken into account. From the standpoint of thermodynamics, a droplet is a 

macroscopic object. The solid–liquid interface is flat; therefore, the size dependence of surface 

tension is not considered here. The origin is superimposed with the droplet vertex, which is 

localized on the surface of tension. The equilibrium droplet profile is determined in terms of the 

constancy of the sum of hydrostatic and capillary pressure. In this case, the Laplace equation is as 

follows [9, 10]:: 

 

  zgp
rr

 







 0

21

11
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
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2

 ,  ],0[   , 

where 0p  is the pressure of the droplet measured at the top ( 0,0  zx ),  is the slope of the 

tangent at a point of the meridian, s is the arc length, x and z are the coordinates that define the 

droplet cross-section, nm  is the difference in density between the liquid and gaseous 

phases, g  is the gravitational acceleration, m is the mass of a single particle (atom or molecule). 

In this case, the surface tension depends on the local curvature of radii 1r  and 2r . Substituting (6) 

into (8) we obtain [9, 10]: 

 

)]2(2[)2(
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cos
ds
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,    sin

ds

dz
,       (10) 

0)0()0()0(  sszsx  ,      (11) 

where r is the radius of curvature of the droplet vertices. While deriving equation (9) we took into 

account that, owing to the axial symmetry of the droplet on its top, the following condition is 

hold [9]: 0

)(

21 /2 prrr   .  Since 0 , the surface tension does not depend on the 

curvature. In this case, exactly the well-known Bashforth–Adams equation follows from (9)  

[9, 10]. The Bashforth–Adams equation is reduced to various differential equations for the 

droplet profile or volume, which can be solved numerically. 

If we introduce the dimensionless (related to r) variables x and z, then (9)–(11) are 

reduced to the Cauchy problem for a system of two nonlinear differential equations [9, 10]: 





 sin])(1[)(

cos])(1[

zxz
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d

dx
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Serghei  A. Baranov  
 

49 

 

0)0()0(   zx ,      (14) 

         0 ,  0 ,  20   , 

where r/  , )(2 /   rg  and )21/(2    are dimensionless parameters that define 

the physical properties for the droplet. These equations contain only two independent parameters 

 and  that depend on the specific experimental conditions: the  parameter determines the 

dependence of the surface tension on the surface curvature; the  parameter is linked to the 

capillary constant /2rc  . 

Equations (12) and (13) with initial conditions (14) were solved numerically by the 4th 

order Runge–Kutta method with a fixed step size. Graphs of the resulting solutions are shown in 

Figs. 2a and 2b. For clarity, in these figures, the origin is shifted to the droplets bottom. The 

algorithm was verified at  = 0 using the Bashforth–Adams table data partly presented in [9]. 

This approach reveals that the coincidence of the solutions is provided at four significant digits. 

Since the error in experimental measurements within the sessile drop method is typically higher 

than 0.1%, the achieved accuracy can be considered satisfactory for the solution of the equations. 

Figure 3a shows that, with an increase in the  parameter, the droplet on the substrate 

surface becomes flatter. This effect can be attributed to a decrease in surface tension )(  and/or 

an increase in the droplet density. Here, the size effect of surface tension that corresponds to the 

parameter values of  = 0, )( , and 2  is not considered.  

         However, it follows from the above models that, under certain conditions, the dependence 

of the surface tension of the radii of curvature affects the equilibrium shape of the droplet; it is 

shown in Fig. 3b. With an increase in the  parameter, the droplet flattened. This effect is 

attributed to a general decrease in the surface tension and an increase in the interface layer 

thickness. In view of the above reasons, the change in the profile is not visible for larger drops. 

However, for micro- and nanosized droplets, it can play a significant role at higher temperatures. 

It should be noted that the nanodroplets, which are common modern nanotechnology objects, are 

studied by transmission electron microscopy providing a high resolution for studying the droplet 

shape. 

If the droplet profile is known, it is possible to calculate the droplets equilibrium volume. 

In general, it is equal to [9, 10]: 



0

0

23

z

dzxrV  ,      (15) 

where 0z  is the dimensionless meniscus height defined as a maximum value in the coordinate 

system. 

         Our calculations show that the sessile droplet volume can be well approximated by the 

following empirical formulas [9, 10]:   

 

3
0.4

0,9

4,7
~ exp( 2,5β α)
β 1,03

r
V 


  ,               (16a) 
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3 2

1,1 1,1

9 β
~
α 0,2β 0,2

r
V


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       .                     (16b) 

 

(a) 

 

(b) 

Fig. 3. Dimensionless profiles of sessile drops at various values of the  and  parameters [9]. 

 

 

For small values of the parameter ( ~ 0.1), according to formula (16a), the calculated error in the 
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sessile droplet volume does not exceed 5%. An increase in the  parameter leads to a rapid 

decrease in this error. The size effect of the surface tension can be neglected at 0 , and 

formula (16a) remains valid. We use formula (16b), if   >1.   

 

3. Computational Experiment for the Rekhviashvili–Sokurov`s Model 

 

Let us briefly discuss the possible application of the system of equations (12) and (13). To 

determine the surface tension by the sessile drop method taking into account the curvature 

dependence of surface tension, we can use an independent assessment of the surface layer 

thickness and the radius of curvature at the droplet apex determined, for example, by 

transmission electron microscopy.  

We show the calculated nanodroplet models.  
 

 

 

Fig. 4a. Model image of a sessile nanodrop ( 2.0 , 10 ) [9]. 
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Fig. 4b. Model image of a sessile nanodrop at   = 0:1, = 5  [10]. 

 
Fig. 4c. Model of a sessile nanodrop at   = 0:1, = 5 [10].. 

 

 

The thickness of the surface layer is taken as the maximum  value [1]. Once the  and r 

parameters are determined, the numerical solution of equations (12) and (13) is required along 

with its correlation with the sessile droplet profile to determine the  parameter.  

This method is easier to implement; however, generally speaking, it requires a 

mathematical foundation: by correlation of the droplet profile and the numerical solution of 

equations (12) and (13) two parameters  and  are extricated by this or that method. 

            We will develop new algorithms and computing experiments. 

Methods for a detailed determination of the surface tension without considering size 

effects are studied in [5–8]. For the above approximation, these techniques are quite constructive.  

The next step in the theoretical studies will be modification of equations (12) and (13) 

taking into account the van der Waals forces between the droplet and the substrate. 

 

4. Analytical Remark  
 

From formulas (10), (12), and (13), the following asymptotic dependence can be obtained: 

                                                       
1

tan ~ ,
ρr

                                                           (17) 

where  
r

ρ ~
r

z
r

x

   (see Fig. 2). Radius rz is an analog of r1,  and rx is an analog of r2. 

 

On the other hand, we got the following formula (see formula (22) in [9]): 

 

                                   
θ 1

tan ,
2 ρ

 
 

 
                                                     (18) 

 

 

              These formulas have the same analytic structures. 
 

 



Serghei  A. Baranov  
 

53 

 

5. Conclusions  
 

(a) With a decrease in the condensed phase in size, the proportion of surface atoms 

increases thus increasing the effect of the interphase boundaries. At the same time, the size 

dependence of surface tension is determined by the Tolman length, i.e., the actual thickness of the 

interfacial (transition) layer. 

(b) In this study, a formula for the dependence of the surface tension on the principal radii 

of curvature on an arbitrary surface (equation (6)) has been correctly deduced. It has been shown 

that the curvature dependence of surface tension leads to a noticeable change in the equilibrium 

profile of sessile droplets on a flat non-wetting substrate. Note that the consequence of the 

dependence of the surface tension on the surface curvature can be attributed to the capillary effect 

of the second kind [9, 10]. 
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