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ABSTRACT 

Researchers increasingly wish to test hypotheses concerning the impact of environmental or 

disease exposures on telomere length (TL), and use longitudinal study designs to do so. In 

population studies, TL is usually measured using a qPCR-based method, which has been 

validated by presenting a correlation with a gold standard method such as Southern blotting 

(SB) in cross-sectional datasets. However, in a cross-section, the range of true variation in TL 

is large, and measurement error is introduced only once. In a longitudinal study of an 

environmental effect, the target variation of interest is small, and measurement error is 

introduced both at baseline and follow-up. We present a small dataset (n = 20) where 

leukocyte TL was measured 6.6 years apart by both qPCR and SB. The cross-sectional 

correlations between qPCR and SB were high both at baseline (r = 0.90) and follow-up (r = 

0.85), yet their correlation for TL change was poor (r = 0.48). Moreover, the qPCR but not 

SB data showed strong signatures of measurement error. Through simulation, we show that 

the statistical power gain from performing a longitudinal analysis is much greater for SB than 

qPCR.  We discuss implications for optimal study design and analysis.  
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INTRODUCTION 

Recent decades have witnessed an explosion of telomere epidemiology research. The average 

telomere length (TL), usually measured in leukocytes (hence LTL), has been associated with 

a wide range of environmental exposures, diseases, and psychosocial parameters (see 1 for 

review). The first wave of such studies was almost entirely cross-sectional, but as the field 

has matured, attention has turned to longitudinal studies. As well as being more informative 

about possible causal relationships (see (2,3)), longitudinal studies are potentially more 

statistically powerful for testing hypotheses in telomere epidemiology (4). The key difference 

between a cross-sectional and a longitudinal study, from a purely analytic standpoint, is that 

in the former, the target parameter is average LTL, whereas in the latter, it is the average 

change in LTL within individuals over time. There is a large range of variation between 

individuals in LTL. This variation is stable over time in adulthood and substantially heritable 

(5,6), but it is effectively noise with respect to many of the hypotheses researchers wish to 

investigate. It is controlled for in longitudinal studies by making within-individual 

comparisons.  

 

In telomere epidemiology, LTL is typically measured by a qPCR-based relative TL 

measurement technique (7). This is an inexpensive and high-throughput method allowing for 

large-scale studies.  The method estimates the amount of the telomeric DNA sequence 

present in a sample (T), relative to the amount of a single-copy gene sequence (whose copy 

number in the genome does not vary; S).  Validation of the qPCR method has been 

demonstrated by correlating T/S values for a set of samples with LTL measured by a ‘gold 

standard’ method, usually Southern blotting (SB). When performed in experienced 

laboratories, these correlations can be high (r  ≥ 0.85)  (7–9). Researchers therefore reason 

that qPCR LTL measurement captures substantially the same variation as the gold standard. 

However, demonstrating that qPCR measurements are highly correlated to SB for a cross-

section of individuals does not guarantee that the two methods will capture the same variation 

in a longitudinal analysis, nor that they are equally powerful for testing hypotheses about 

environmental and other effects on LTL. First, in a longitudinal analysis there are at least two 

LTL measurements, baseline and follow-up. Thus, the measurement error is introduced twice. 

As long as these errors are uncorrelated, the spurious variance introduced is twice as large as 

in a cross-sectional analysis. Second, in a cross-section of individuals, the range of true 

biological variation is very large: the standard deviation of LTL across individuals in adult 

humans is about 700 base pairs (bp), with the most extreme individuals differing by 3000-
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4000 bp (10–12). However, much of this variation, reflecting individual differences in 

telomere length already evident at birth, is irrelevant to hypotheses about environmental or 

aging effects on telomere dynamics in adulthood. The change in LTL over time within adult 

individuals is only around 25-30 bp/year on average (10,12). This means that even an 

exposure that doubles the rate of telomere attrition will only change average LTL by a few 

tens of bp/year. This is a very small target relative to the range of variation in LTL. 

Accordingly, the effective precision of qPCR to detect effects of an exposure on telomere 

dynamics may be much lower than the high cross-sectional correlation with SB seems to 

imply.  

 

In two-measurement longitudinal LTL studies where the effect of some exposure or treatment 

X is of interest, researchers have a number of options for data analysis strategy (13,14). One 

strategy is to simply test whether LTL at the final time point differs by X. This ignores the 

baseline information, in effect treating the longitudinal study as a cross-sectional one. We 

henceforth refer to it as the cross-section approach. A second strategy (henceforth difference 

score) is to calculate ΔLTL, the difference in LTL between baseline and follow-up, and test 

whether ΔLTL differs by X. Finally, the analysis of covariance (ANCOVA) strategy tests 

whether LTL at follow-up differs by X, with LTL at baseline included in the model as a 

covariate (though this approach produces biased estimates when baseline LTL is associated 

with X and there is measurement error; see (15,16) and Discussion).  

 

The relative statistical powers of the three approaches depend on the correlation between 

baseline and follow-up LTL (14). If this correlation is close to zero, cross-section is more 

powerful than difference score, and as powerful as ANCOVA, whereas if the correlation is 

high, the power of the cross-section approach is much lower than the other two. The 

correlation between baseline and follow-up LTL is generally lower for qPCR than SB, 

exactly because the measurement error is greater (12,17). Thus, the relative power advantages 

of the different analysis strategies may be different for SB and qPCR data.   

Here, we investigate for the first time the validity of qPCR measurement for capturing 

longitudinal LTL dynamics, and consider the potential implications of the findings for study 

design and analysis. We present a small longitudinal dataset (20 men whose LTL was 

measured twice, 6.6. years apart, by both techniques). We investigate the correlation between 

qPCR and SB not just for LTL at baseline and follow-up, but also for ΔLTL. Further, we 

compare the qPCR  and SB data for known signatures of measurement error, namely a strong 
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apparent dependence of ΔLTL on baseline LTL due to regression to the mean (17,18), and a 

substantial fraction of individuals whose LTL appears to lengthen rather than shorten over 

time (10). We expect these signatures to be much more marked for the qPCR than the SB 

data. We then simulate datasets with the same cross-sectional correlations between qPCR and 

SB at baseline and follow-up as our empirical data have. This allows us to verify that the 

observed features of the qPCR estimates of TL dynamics are not quirks of one small dataset, 

but should be expected more generally. Finally, we use the simulated datasets to investigate 

the implications of qPCR’s lower precision for statistical power to detect an effect on TL 

dynamics.  

 

METHODS 

Empirical dataset 

We used samples from the Stony-Brook-University biorepository. These were collected on 

two occasions, baseline and follow-up, 6.6 ± 0.5 (SD) years apart, for twenty white males, 

aged 53.8 ± 4.3 years at follow-up. Donors consented for IRB-approved studies. LTL was 

measured both at baseline and follow-up by both qPCR and SB independently and blindly in 

different laboratories, qPCR at the National Cancer Institute Cancer Genomics Research 

laboratory, and SB at the laboratory of the Center of Human Development and Aging at 

Rutgers University. Each laboratory followed its standard TL measurement protocol (19,20).  

 

LTL measurements 

DNA was extracted by Gentra Puregene Blood Kit (Qiagen, Valencia, CA) and all samples 

passed DNA integrity tests (19). For SB, a cocktail of the restriction enzymes HinfI (10 U) 

and RsaI (10 U) was used to generate the terminal restriction fragments (TRFs). 

Measurements were carried out in duplicate and resolved on different gels. Digested DNA 

samples and DNA ladders were resolved on 0.5% agarose gels. After 16 h, the DNA was 

depurinated for 15 min in 0.25 N HCl, denatured 30 min in 0.5 M NaOH/1.5 M NaCl and 

neutralized for 30 min in 0.5 M Tris, pH 8/1.5 M NaCl. The DNA was transferred to a 

positively charged nylon membrane (Roche) for 1 h using a vacuum blotter. Membranes were 

hybridized at 65o C with the DIG-labeled telomeric probe as previously described (19). The 

DIG-labeled probe was detected by DIG luminescence and exposure on X-ray film. 

 

For qPCR, we used the monoplex method adopted from (21). Details have been described 

elsewhere (20). Briefly, PCR telomere primers were Telo_FP [5’-
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CGGTTT(GTTTGG)5GTT-3’] and Telo_RP [5’-GGCTTG(CCTTAC)5CCT-3’].  Primers 

for the single-copy gene (36B4) were 36B4_FP [5’-CAGCAAGTGGGAAGGTGTAATCC-

3’] and 36B4_RP [5’-CCCATTCTATCATCAACGGGTACAA-3’]. The ratio of telomere 

signal concentration (T) to that of the single-copy gene (S; 36B4) (T/S) was calculated for 

each sample then divided by the average T/S ratio obtained from the internal QC calibrator 

samples in the same plate.  Final T/S was exponentiated. All telomere and 36B4 reactions 

were run in triplicate and the average of the measurements was used for all calculations.  

 

Simulations 

We created simulation code to produce datasets that shared key properties with our empirical 

one. Simulation code runs in R (22) and is available via the Zenodo repository at: 

https://zenodo.org/record/3929509. In each simulated dataset, baseline (SB) LTL and ΔLTL 

were each drawn from distributions with the mean and standard deviation observed in the 

empirical SB data. We then generated qPCR values at each of baseline and follow-up whose 

correlations with SB were as observed in the empirical data.  

 

Using the simulation code, we first created 1000 datasets of the same sample size as the 

empirical data, to investigate the extent to which the empirical patterns should be expected to 

recur in other samples. Next, we simulated 1000 datasets at each of a range of sample sizes 

(20-1000), where a predictor variable X with a true effect on telomere attrition was applied to 

half the individuals. We assumed there was no effect of X on baseline LTL; thus, X is here 

considered as a post-baseline exposure or treatment. We then analyzed the simulated datasets 

using each of the three data analysis strategies described in the Introduction (cross-section, 

difference score, ANCOVA), to establish the power of each strategy to detect the effect of X 

at P < 0.05. This power analysis was applied both to the simulated SB values and the 

simulated qPCR values.  The effect size of X was set to 0.5 standard deviations, a medium 

effect by conventional criteria (23). We repeated the simulations with smaller effect sizes, 

with no change to the qualitative conclusions.  

 

RESULTS 

 

Empirical dataset 

In the empirical data, the correlations between SB and qPCR LTL were very high at both 

time points: r = 0.90 (P < 0.001) for baseline; r = 0.85 (P < 0.001) for follow-up (Fig 1a, Fig 

https://zenodo.org/record/3929509
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1b). The correlation between SB and qPCR for ΔLTL was r = 0.48 (P = 0.03; Fig 1c). This 

was significantly lower than both the baseline (z = 2.77, P < 0.01) and follow-up (z = 2.25, P 

= 0.02) correlations.  

 

The SB data showed a mean of 0.19 kilobase (kB) LTL shortening between baseline and 

follow-up, equivalent to 0.42 SD of the baseline LTL variation. This would be considered 

significant shortening by conventional criteria, even in this small sample (t-test against 0: t=-

5.05, P <0.001). By contrast, the qPCR data showed average LTL shortening of 0.12 SD of 

the baseline LTL variation. This would be considered non-significant shortening by 

conventional criteria (t-test against 0: t = -1.19, P = 0.25).  

 

In the qPCR data, ΔLTL depended negatively on baseline LTL (r = -0.64, P = 0.03, Fig 2a), 

whilst in the SB data, the correlation between ΔLTL and baseline LTL was weak and not 

significantly different from zero (r = -0.06, P = 0.82, Fig 2b). The difference between these 

two correlations was significant (z = 2.04, P = 0.04). In the qPCR data, those with relatively 

short LTL at baseline tended to show LTL lengthening, whilst only those with relatively long 

LTL at baseline showed shortening. Of those individuals whose baseline LTL by qPCR was 

below the mean, 7 of 11 showed apparent lengthening; whereas of those individuals whose 

baseline LTL by qPCR was above the mean, 8 of 9 showed apparent shortening.  In the SB 

data, by contrast, seventeen individuals showed shortening and only three apparent 

lengthening, with those three having neither particularly long nor particularly short baseline 

LTL.  

 

Simulated datasets 

 

We created 1000 simulated datasets of n=20 with the correlation between qPCR and SB at 

both baseline and follow-up at 0.875 (the mean of the empirically observed baseline and 

follow-up values). We confirmed that in these datasets, the correlation between qPCR and SB 

for ΔLTL was always much lower than at either baseline or follow-up (median correlation 

0.42, interquartile range 0.26 to 0.55). Similarly, the simulated datasets consistently showed 

marked signatures of measurement error in the qPCR but not SB data. There were 

consistently negative correlations between baseline LTL and ΔLTL for qPCR (median 

correlation -0.38, interquartile range -0.50 to -0.25) but not SB (median correlation 0.01, 

interquartile range -0.15 to 0.18). The percentage of apparent lengtheners was higher for 
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qPCR than SB in 99.4% of simulated datasets (qPCR: median 50%, interquartile range 40% 

to 55%; SB: median 15%, interquartile range 10% to 25%). The properties of the empirical 

dataset fell well within the range of simulated datasets in all cases (Fig 3).  

 

We then took a range of sample size from 20 to 1000, and simulated 1000 datasets at each 

one. In these simulations, there was a true effect of a predictor variable on TL attrition (effect 

size d = 0.5). We plotted the power to detect this true effect at P < 0.05 for each of the three 

analysis strategies, for the SB and qPCR data (figure 4). For SB, there was a dramatic power 

gain from incorporating the baseline information (compare the power of cross-section to 

difference score and ANCOVA). For qPCR this power gain was much more modest. Note 

that the power of qPCR and SB for cross-section was similar under these assumptions. 

However, the power for either of the longitudinal analyses was very much greater for SB than 

qPCR. In addition, for SB, the powers of difference score and ANCOVA were almost 

identical, whereas for qPCR, there was a small but consistent power advantage for ANCOVA 

over difference score.  

   

 

DISCUSSION 

We have presented the first dataset in which LTL was measured at two time points in the 

same individuals by both SB and qPCR. The correlations between the two methods at both 

baseline and follow-up were high (0.90 and 0.85); similar correlations in the past have been 

taken as validating that qPCR has sufficient precision for population studies (7–9). However, 

the correlation between SB and qPCR for ΔLTL, the change in LTL over the 6.6 years of the 

study, was only 0.48. Estimating change in LTL involves detecting a smaller range of true 

biological variation than estimating LTL in a cross-section, and introduces twice as much 

measurement error. Thus, the correlation of a technique with substantial measurement error to 

the gold standard is bound to be much lower when the target parameter is LTL change rather 

than LTL. 

 

We also found that the qPCR data showed known signatures of measurement error much 

more strongly than the SB data. By qPCR, apparent change in LTL depended negatively on 

LTL at baseline, and a substantial fraction of individuals showed apparent lengthening. These 

are predictable patterns due to regression to the mean in data sets containing measurement 

error (10,17,18). Again, simulations showed them to be consistently more marked in qPCR 
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datasets where the cross-sectional correlations to SB are high but not perfect. Even with a 

small sample size (n=20), we were able to detect significant LTL shortening over the 6.6 

years of the study by SB. Indeed, the estimated rate (190 bp over 6.6 years implies 29 bp per 

year) accords well with previous estimates (10,12). From the qPCR data, the researcher 

would have concluded telomeres had not shortened on average. Thus, although qPCR LTL 

estimates were highly correlated to SB estimates at both baseline and follow-up, relying on 

the qPCR data alone would have led to radically different conclusions about TL dynamics in 

this sample than the SB data. Validating qPCR against SB cross-sectionally is therefore 

insufficient to infer that its precision is adequate for a longitudinal study of effects on TL 

dynamics.  

 

There are implications of our findings are as follows. First, since qPCR has not been 

validated as a measure of LTL for longitudinal use, only cross-sectionally, some skepticism 

may be in order about some published longitudinal findings by qPCR. Most obviously, 

apparently null effects, like the apparent non-shortening with age in our empirical dataset, 

may reflect false negatives due to low assay precision. However, there are also circumstances 

where the imprecision of qPCR carries substantial risks of false positive findings as well. An 

effect of measurement error in longitudinal data, as we have demonstrated, is to make 

apparent LTL change strongly dependent on initial LTL. Any group of individuals whose 

LTL at baseline is relatively short will appear to lengthen, often quite substantially. For 

example, one study concluded that gastric bypass surgery led to LTL lengthening in most 

cases (24). However, close examination shows that significant LTL lengthening was 

restricted to those individuals whose baseline LTL was the shortest (see (25)). Another study 

concluded that individuals with the greatest exposure to chronic stress showed the least LTL 

shortening over ten years (26). Again, these individuals were also the ones with shortest LTL 

at baseline. We emphasize that our empirical qPCR assays were performed by an experienced 

laboratory in the field, and the cross-sectional correlations with SB were at the high end of 

what has been previously published. There are grounds for believing that many published 

qPCR datasets have much lower precision than observed here (see (12,17)). It is likely, 

therefore, that the issues we document are present and perhaps even more severe in the 

published literature.  

 

Second, researchers using qPCR have a number of options to reduce the effective 

measurement error: increasing the number of technical replicates; specific corrections for 
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plate and well position; consistency of sample storage and DNA extraction and integrity; and 

controlling for variable amplification efficiency. These have been discussed in detail 

elsewhere (7,17,27–30). Since the consequences of a small amount of imprecision are more 

dramatic for TL change than they are for TL itself, the point of diminishing returns in the 

application of these measures may actually be much higher than researchers appreciate. The 

fact that qPCR data correlate to a gold standard at r = 0.90 for a cross-section may appear 

‘good enough’. However, as we have shown, if the goal of the study is to detect subtle 

changes in TL over time, it may not be.  

 

Third, our power simulations have implications for optimal choices of telomere measurement 

method and data analysis strategy. The cross-section analysis strategy used in our simulations 

makes no use of the baseline information, and so captures the statistical power consequences 

of performing a purely cross-sectional study. The other two strategies represent different 

ways of incorporating longitudinal information. Our simulations show that, for SB data, there 

is a dramatic statistical power advantage for performing longitudinal analysis. As argued 

elsewhere (4), for SB, within-individual, longitudinal comparison will provide much 

increased sensitivity for detecting factors that affect TL dynamics, even if the expense is 

considerable and the resulting sample size is smaller.  For qPCR, the statistical power gain 

from longitudinal comparison, though still present, is much more modest, as our simulations 

show. The large gain from performing within-individual comparisons is partially offset by the 

loss of introducing a second set of measurement error. We note, of course, that increasing 

statistical power is not the only motive for choosing a longitudinal analysis. There are others, 

such as eliminating reverse causality (see (2)). 

 

Simply put, the statistical power of qPCR may be nearly as high as SB for a cross-sectional 

study. So, if using qPCR makes a larger sample size possible, it could represent a beneficial 

decision. From the simulated data in Fig. 3, the power of a cross-sectional qPCR study with 

500 individuals is better than the power of the equivalent SB study with 250 individuals. 

However, the researcher planning a longitudinal analysis might usefully consider using SB or 

another precise method, even if that will entail a much smaller achieved sample size. In our 

simulations, for either of the longitudinal analyses, the power of a qPCR study with 1000 

individuals is still worse than the equivalent SB study with 250. Thus, optimal decisions 

about TL measurement method and sample size are linked to those about study design and 

objectives.   
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We also noted some differences between the statistical powers of the two longitudinal data 

analysis strategies, difference score and ANCOVA. For SB, the power of these two is almost 

identical. For this reason, researchers should choose difference score, since ANCOVA 

introduces collider bias if baseline LTL differs by the predictor variable, whereas difference 

score is not vulnerable to such bias (15). The similar power of the two approaches by SB 

accords with previous simulations, which show that the power of difference score and that of 

ANCOVA converge when the correlation of baseline and follow-up measurements is high 

(14). For qPCR, ANCOVA provides a small but consistent power advantage over difference 

score. Thus, ANCOVA should be used as long as there is no association between the 

predictor variable and baseline LTL. If there is, difference score should be selected, in order 

to avoid collider bias (and baseline LTL should not be included as an additional covariate, as 

is sometimes seen) (15). Note that researchers sometimes fit mixed models with LTL as the 

outcome variable, testing whether there is an interaction between time point and the predictor 

variable. This is equivalent to difference score from the standpoint of power and collider bias 

(15).    

 

For our statistical power simulations, we treated SB as if it directly reflected the true TL. This 

makes sense in as much as we were using SB here as a gold standard against which qPCR 

could be validated. In reality, however, SB too involves some measurement error, and the 

true TLs are not known. Thus, our simulation results should be taken as reflecting the relative 

statistical powers of SB and qPCR for different analysis strategies (or, indeed, the statistical 

power of qPCR relative to any gold standard the researcher might use). The absolute values 

of the SB power given may be overestimates. Moreover, effects in telomere epidemiology 

tend to be much weaker than that illustrated in Fig 4 (1). The simulation code provided in 

conjunction with this paper allows users to rerun the simulations for different effect sizes.    

In conclusion, demonstrating that a measurement method captures much of the same 

variation in TL as the gold standard method in a cross-section does not entail it will capture 

the same variation in TL change in a longitudinal one. We have shown empirically that, in a 

dataset where the cross-sectional correlations between qPCR and SB are high at both baseline 

and follow-up, the agreement between the two methods for TL change over time is fairly 

poor, and the qPCR data show stronger signatures of measurement error than the SB data. As 

we have shown, this has implications for researchers choosing how to allocate their research 
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resources to a suitable combination of study design, measurement method, sample size, and 

data analysis strategy.  
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Figures 

 

 

Figure 1. Relationships between leukocyte telomere length (LTL) parameters as measured by 

qPCR and SB in the empirical dataset: (a) Cross-sectional correlation at baseline. (b) Cross-

sectional correlation at follow-up. (c) Change in LTL from baseline to follow-up.  
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Figure 2. Relationship between change in leukocyte telomere length (ΔLTL) and LTL at 

baseline in the empirical dataset: (a) qPCR data (b) SB data. In each case, the horizontal 

dashed line indicates the boundary between shortening (below the line) and lengthening 

(above the line).   
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Figure 3. Properties of 1000 simulated datasets (n=20 for each one) drawn from distributions 

whose parameters matched those inferred from the empirical data. Boxplots indicate means 

and interquartile ranges. Small symbols indicate individual simulated datasets. Larger red 

symbols indicate observed values from the empirical data. (a) Correlations between qPCR 

and SB for baseline LTL (LTLb), follow-up LTL (LTLfu), and LTL change (ΔLTL). (b) 

Correlations between LTLb and ΔLTL for SB and qPCR. (c) Proportion of apparent 

lengtheners for SB and qPCR. 
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Figure 4. Statistical power to detect a true effect on telomere attrition (effect size d = 0.5) at P 

< 0.05 in SB and qPCR data, by sample size and analysis approach. Cross-section ignores the 

baseline information and performs a cross-sectional analysis at the follow-up time point. 

Difference score treats ΔLTL, the difference in LTL between baseline and follow-up, as the 

outcome variable, whereas ANCOVA treats LTL at follow-up as the outcome variable and 

includes baseline LTL as a covariate.  


