
EU H2020 Center of Excellence (CoE) 1 December 2018 – 30 November 2021

Grant Agreement No 824080

POP2_AR_065: HemeLB_GPU on JUWELS
performance assessment report
Brian Wylie, Jülich Supercomputing Centre (JSC)

b.wylie@fz-juelich.de, July 2020

● Applicant: Ioannis Zacharoudiou, UC London, UK (developer) [HPC CoE CompBioMed]

● Code: HemeLB_GPU (3D macroscopic blood flow simulation) C++ & MPI & CUDA

● Platform: JUWELS (@ JSC)

– 56 dual 20-core Intel Xeon Platinum 6148 ‘Skylake’ compute
nodes each accelerated with 4 Nvidia V100 ‘Volta’ GPUs

– GCC/8.3.0 & CUDA/10.1.105 & ParaStationMPI/5.4

● Testcase: 1.78 GiB CBM2019_Arteries_patched geometry

– 66,401,494 lattice sites; 1+38 iolets; simulation of 2,000 time-steps (of 100µs)

● Scale: up to 128+1 processes (32 compute nodes, each with 4 MPI ranks)

● Scalasca/Score-P summary and trace measurements

– using selective instrumentation filter

2

 Background

3

 HemeLB lattice-Boltzmann method for haemodynamic simulation

● Fluid particles tracked at macroscopic level on a lattice grid

– discrete set of permissible velocities

– only nearest-neighbour interactions

● Comparable accuracy to conventional continuum CFD

– relatively straightforward implementation of
complex boundary conditions

– exhibit superior parallel performance

● less communication between computational subdomains

www.2020science.net/software/hemelb.html www.hemelb.org

http://www.2020science.net/software/hemelb.html
http://www.hemelb.org/

● JUWELS (GPU nodes): 46 (+10 reserved for development)

– 192 GiB compute nodes; Dual EDR-Infiniband (Connect-X4)

– IBM Spectrum Scale (GPFS) parallel filesystem; CentOS Linux 7.8.2003

● Execution configuration:

– gres=gpu:4, ntasks-per-node=4 (plus one extra for monitor on first node)

– all GPUs used, but only 10% of CPU cores

● HemeLB: GPU development version (using BasicDecomposition scheme)

– configured to offload kernels from each MPI process to associated GPU

– MPI File writing of intermediate properties state every 1000 steps

– 2 variants (reordered ‘a’ & original ‘b’) order of actions within each timestep

4

 Details

● Score-P/6.0 (GCC+ParaStationMPI) instrumenter used when building code

– CMake: CUDACXX=scorep-nvcc (no instrumentation of CXX)

● workaround replace “-dc” with “--relocatable-device=true -c”

– set SCOREP_WRAPPER_INSTRUMENTER_FLAGS=
“--mpp=mpi --thread=none --cuda --instrument-filter=hemelb.filt”

● Scalasca/2.5 runtime measurement configuration

– SCAN_TRACE_ANALYZER=none
SCOREP_MPI_ENABLE_GROUPS='coll','env','io','p2p','rma','topo','xnonblock' # 'cg'
SCOREP_CUDA_ENABLE=runtime,memcpy,kernel,sync,flushatexit
SCOREP_CUDA_BUFFER=10M
SCOREP_TOTAL_MEMORY=64M

● Profiles explored with CUBE/4.4.4, execution traces examined with Vampir/9.8.0

5

 Method

6

 HemeLB_GPU execution timeline (v1.20a with file writing)

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry,
then participate in simulation

7

 HemeLB_GPU execution timeline: Focus of Analysis (FOA) DoTimeStep

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry,
then participate in simulation

● SimulationMaster class constructor/destructor methods
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

8

 HemeLB_GPU execution timeline: FOA zoom

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry,
then participate in simulation

● SimulationMaster class constructor/destructor methods
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

– property file writing after each 1000 steps

● MPI_File_write_at by each process

9

 HemeLB_GPU execution timeline: FOA zoom (1000 steps incl. writing)

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry,
then participate in simulation

● SimulationMaster class constructor/destructor methods
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

– property file writing after each 1000 steps

● MPI_File_write_at by each process,
very imbalanced

● amount written varies 27-84MB

10

 HemeLB_GPU execution timeline: FOA zoom (1000 steps)

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry,
then participate in simulation

● SimulationMaster class constructor/destructor methods
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

– property file writing after each 1000 steps

– IncompressibilityChecker each 200 steps (mostly)

● only lowest 10 simulation ranks

● or highest 14 simulation ranks (32 nodes)

11

 HemeLB_GPU execution timeline: FOA zoom (250 steps)

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry,
then participate in simulation

● SimulationMaster class constructor/destructor methods
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

– property file writing after each 1000 steps

– IncompressibilityChecker each 200 steps (mostly)

● only lowest 10 simulation ranks

● or highest 14 simulation ranks (32 nodes)

12

 HemeLB_GPU execution timeline: FOA zoom (20 steps)

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry,
then participate in simulation

● SimulationMaster class constructor/destructor methods
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

– property file writing after each 1000 steps

– IncompressibilityChecker each 200 steps (mostly)

– interior ranks (54-76) have “uniform” steps

● others blocked every 6 steps,
waiting for communication

13

 HemeLB_GPU execution timeline: FOA zoom (8 steps)

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry,
then participate in simulation

● SimulationMaster class constructor/destructor methods
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

– property file writing after each 1000 steps

– IncompressibilityChecker each 200 steps (mostly)

● interior ranks (54-76) have “uniform” steps

● others blocked every 6 steps,
waiting for communication

14

 HemeLB_GPU execution timeline: FOA zoom (3 steps)

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry,
then participate in simulation

● SimulationMaster class constructor/destructor methods
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

– property file writing after each 1000 steps

– IncompressibilityChecker each 200 steps (mostly)

● interior ranks (54-76) have “uniform” steps

● others blocked every 6 steps,
waiting for communication

15

 HemeLB_GPU execution timeline: FOA zoom (3 steps) showing CUDA streams

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry,
then participate in simulation

● SimulationMaster class constructor/destructor methods
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

● some ranks/GPUs have additional kernels
(to process iolets) executed concurrently

● critical PostReceive cuMemcpyDtoHAsync in
Read_DistrFunctions_CPU_to_GPU_totalSharedFs

– no longer overlapped with kernels

DtoHHtoD

16

 HemeLB_GPU profile

● 32 nodes: 129 MPI processes driving 128 GPUs

● Extensive tree hierarchy of performance metrics

– selected metric applied to routines in call-tree

– CUDA kernels listed separately at bottom

● POP efficiencies inaccurate for CPU+GPU hybrid!

17

 HemeLB_GPU code structure and Focus of Analysis (FOA) DoTimeStep

● 32 nodes: 129 MPI processes driving 128 GPUs

– v1.20a with file writing, 2000 time-steps

● SimulationMaster class constructor/destructor methods
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– loops through key actions

● PreSend, PreReceive, Send, PostReceive, EndIteration

– (a) Send after PreReceive
– (b) Send before PreReceive

● plus periodic MPI file writing by all processes

● and occasional IncompressibilityChecker by subset

– launches CUDA kernels on GPUs

● execute asynchronously on specific CUDA streams

● 4 distinct CUDA kernels

18

 Simulation loop: 20a 20b

● PreSend
– cudaStreamSynchronize [31]
– [17] GPU_CollideStream_mMidFluidCollision_mWallCollision_sBB
– 2x cudaMemcpyAsync / cuMemcpyHtoDAsync_v2 + cudaStreamSynchronize [29,30]
– [19,20] GPU_CollideStream_Iolets_NashZerothOrderPressure
– [21,22] GPU_CollideStream_wall_sBB_iolet_Nash

● PreReceive
– [23] GPU_CollideStream_mMidFluidCollision_mWallCollision_sBB
– cudaStreamSynchronize [17,18,19,20,21,22]
– Read_DistrFunctions_GPU_to_CPU_totalSharedFs / cuMemcpyDtoHAsync_v2 [35]
– cudaStreamSynchronize [35]
– [25,26] GPU_CollideStream_Iolets_NashZerothOrderPressure
– [27,28] GPU_CollideStream_wall_sBB_iolet_Nash

● PostReceive
– Read_DistrFunctions_CPU_to_GPU_totalSharedFs / cuMemcpyHtoDAsync_v2 [33]
– cudaStreamSynchronize [33]
– [31] GPU_StreamReceivedDistr

● EndIteration
– cudaStreamSynchronize [23,24,25,26,27,28]
– cudaMemcpyAsync / cuMemcpyDtoDAsync_v2 [31]
– Read_Macrovariables_GPU_to_CPU / cuMemcpyDtoHAsync_v2 + cudaStreamSynchronize [34]

19

 HemeLB_GPU Simulation CUDA kernels/streams

local partition edge

local partition interior

Stream 7: Memcpy HtoD [sync]
Stream 17: PreSend kernel1 hemelb::GPU_CollideStream_mMidFluidCollision_mWallCollision_sBB
Stream 19: PreSend kernel2 hemelb::GPU_CollideStream_Iolets_NashZerothOrderPressure (inlet)
Stream 20: PreSend kernel2 hemelb::GPU_CollideStream_Iolets_NashZerothOrderPressure (outlet)
Stream 21: PreSend kernel3 hemelb::GPU_CollideStream_wall_sBB_iolet_Nash (inlet)
Stream 22: PreSend kernel3 hemelb::GPU_CollideStream_wall_sBB_iolet_Nash (outlet)
Stream 23: PreReceive kernel1 hemelb::GPU_CollideStream_mMidFluidCollision_mWallCollision_sBB
Stream 25: PreReceive kernel2 hemelb::GPU_CollideStream_Iolets_NashZerothOrderPressure (inlet)
Stream 26: PreReceive kernel2 hemelb::GPU_CollideStream_Iolets_NashZerothOrderPressure (outlet)
Stream 27: PreReceive kernel3 hemelb::GPU_CollideStream_wall_sBB_iolet_Nash (inlet)
Stream 28: PreReceive kernel3 hemelb::GPU_CollideStream_wall_sBB_iolet_Nash (outlet)
Stream 29: Memcpy HtoD [async] (stream_ghost_dens_inlet)
Stream 30: Memcpy HtoD [async] (stream_ghost_dens_outlet)
Stream 31: Memcpy DtoD [async] + PostReceive kernel4 hemelb::GPU_StreamReceivedDistr
Stream 33: Memcpy HtoD [async] (stream_memCpy_CPU_GPU_domainEdge)
Stream 34: Memcpy DtoH [async] (stream_Read_Data_GPU_Dens)
Stream 35: Memcpy DtoH [async] (mNet_cuda_stream)

20

 HemeLB_GPU CUDA kernels/streams

21

 HemeLB_GPU Simulation strong scaling (with intermediate file writing)

● Reference execution v1.18 with 8ppn

– multiple processes offloading GPU
kernels generally unproductive

● Comparison of v1.20a & v1.20b (4ppn)

– v1.20a generally better

● CUDA kernels on GPUs

– less than half of Simulation time
(therefore GPUs mostly idle)

– total kernel time scales very well
(0.93 scaling efficiency)

– load balance deteriorates
(0.95 for 1 node, 0.50 for 32 nodes)

– similar for both versions

22

 HemeLB_GPU Simulation strong scaling (w/o file writing)

● File writing disabled during Simulation

– previously every 1000 steps

● Scaling greatly improved

– particularly beyond 8 nodes

● CUDA kernels on GPUs

– essentially unaffected

23

 HemeLB_GPU Simulation strong scaling (w/o file writing) speed-up

● File writing disabled during Simulation

– previously every 1000 steps

● Speed-up improved

– 21x for v1.20a on 32 nodes
(65% scaling efficiency)

– 80% scaling efficiency retained to 16
nodes

– most of the loss of scaling occurs
moving from shared-memory MPI
within a single node to off-node
communication via interconnect

● Only considering GPUs (ignoring all CPU cores, 90% of which are completely unused)

● Parallel efficiency determined by load balance and communication (including file I/O)

● Single (quad-GPU) node already suffers significant communication inefficiency

– but doesn’t degrade much as additional nodes are included

● Load balance of GPUs deteriorates progressively

● GPU computation scaling remains reasonably good

24

 HemeLB_GPU Simulation strong scaling efficiency (v1.20a with file writing)

25

 HemeLB_GPU Simulation time breakdown (v1.20a)

● CUDA kernels on GPUs

– less than half of Simulation time
(therefore GPUs mostly idle)

– total kernel time scales very well
(0.87 scaling efficiency)

● MPI processes on CPUs

– computation time decreases

– CUDA synchronization time fairly
constant, but time for memory
management increases somewhat

– MPI communication time dominates,
with much more time for file writing
with 16 or more nodes

26

 HemeLB_GPU Simulation time breakdown (v1.20a w/o file writing)

● Disabled Simulation file writing

– no impact on GPU kernels,
nor CUDA operations on CPU

– reduced CPU computation & MPI
communication (and no MPI file I/O)

● CUDA kernels on GPUs

– reduced GPU idle time, but still
significant (roughly half)

● MPI processes on CPUs

– computation time decreases

– MPI communication time dominates,
at all scales but growing with scale

27

 HemeLB_GPU Simulation time breakdown (v1.20b)

● CUDA kernels on GPUs

– less than half of Simulation time
(therefore GPUs mostly idle)

– total kernel time scales very well
(0.94 scaling efficiency)

● MPI processes on CPUs

– computation time roughly constant

– CUDA synchronization time fairly
constant, but time for memory
management increases somewhat

– MPI communication time dominates,
with much more time for file writing
with 16 or more nodes

28

 HemeLB_GPU Simulation time breakdown (v1.20b w/o file writing)

● Disabled Simulation file writing

– no impact on GPU kernels,
nor CUDA operations on CPU

– reduced CPU computation & MPI
communication (and no MPI file I/O)

● CUDA kernels on GPUs

– reduced GPU idle time, but still
significant (more than half)

● MPI processes on CPUs

– computation time roughly constant

– MPI communication time dominates,
at all scales but growing with scale

29

 HemeLB_GPU Simulation GPU time balance (v1.20a w/o file writing)

● 32 nodes: 128 MPI processes/GPUs

– disabled Simulation file writing

● Considerable variations by rank/GPU

– mid-range ranks 49-80 take longer,
partially due to PreSend 17_k1

– PreReceive 23_k1 dominates, but
PreSend 17_k1 also significant

– rank 65 most heavily overloaded,
along with ranks 66 & 60

● apparently due to processing
for iolets at partition edges
(kernels k2 & k3)

30

 HemeLB_GPU Simulation GPU time balance (v1.20a w/o file writing)

● 32 nodes: 128 MPI processes/GPUs

– disabled Simulation file writing

● Considerable variations by rank/GPU

– mid-range ranks 52-76 take longer,
partially due to PreSend 17_k1

– PreReceive 23_k1 dominates, but
PreSend 17_k1 also significant

– rank 65 most heavily overloaded,
along with ranks 66 & 60

● apparently due to processing
for iolets at partition edges
(kernels k2 & k3)

– most GPUs idle half of the time!

31

 HemeLB_GPU Simulation GPU time balance (v1.20a w/o file writing)

● 32 nodes: 128 MPI processes/GPUs

– disabled Simulation file writing

● Considerable variations by rank

– GPU global memory correlates with
number of fluid sites

– CUDA kernel processing time
correlates with number of blocks?

– what about iolets?

32

 HemeLB_GPU Simulation CPU file writing balance (v1.20a)

● 32 nodes: 128 MPI processes/GPUs

– 4 writes per rank: MPI_File_write_at

– 6.93 GiB written in total (to 2 files)

– 174s total writing time (0.01-3.75)

● 4 procs: 3.55s (0.89-1.05)

● 8 procs: 3.50s (0.44-0.71)

● 16 procs: 3.76s (0.24-0.47)

● Considerable variations by rank

– erratic writing time

● varies from run to run

– time for writing not particularly
correlated with amount written

● Also results in additional MPI waiting
before starting next simulation time step

33

 HemeLB_GPU Simulation CPU time balance (v1.20a w/o file writing)

● 32 nodes: 128 MPI processes/GPUs

– disabled Simulation file writing

● Considerable variations by rank

– computation time roughly constant,
but noticably higher for highest and
lowest ranks

– CUDA memory management much
higher for processes in the middle

– CUDA synchronization time varies
significantly

– MPI communication time dominates

● however, almost all waiting time
while GPUs compute kernels

34

 HemeLB_GPU Simulation CPU cudaMemcpyAsync

● 32 nodes: 128 MPI processes/GPUs

● Considerable variations by rank

– CUDA memory management time
much higher for processes in the
middle

● Some copies require much longer than
others to initiate

– 51% PreReceive DtoH
(Read_DistrFunctions_GPU_to_CPU_total
SharedFs)

– 41% PostReceive HtoD
(Read_DistrFunctions_CPU_to_GPU_total
SharedFs)

– 4% EndIteration DtoD

35

 HemeLB_GPU Simulation MPI communication imbalance

● 32 nodes: 128 MPI processes/GPUs

● Considerable variations by rank

– ranks 63 & 75 have 12 partners,
whereas several have only one

– most mid-range ranks 57-76 have at
least 6 partners, and also exchange
twice as much data as the others

– however, these mid-range ranks
spend less time (waiting) in MPI
communication

36

 HemeLB_GPU Simulation MPI communication matrix

● 32 nodes: 128 MPI processes/GPUs

– 4000 MPI_Waitall calls by each rank

– 2334-24334 MPI_Isend/Irecv calls (messages)

● max for ranks 63 & 75

– 0.03 - 5.19 GB sent/received

● max for rank 65

● Considerable variations by rank

– heaviest communication for interior processes

37

 Timeline detail of 3 time-steps

● 2 nodes: 9 MPI processes driving 8 GPUs

– monitor rank 0 not executing simulation

● One MPI process (#5) mostly doing CUDA synchronization
in EndIteration & next PreSend actions

– others mostly in MPI_Waitall

– neighbours waiting for return messages from rank 5
(and their neighbours waiting for them)

● Additional CUDA kernels executed by that process/GPU

– iolet processing both for domain edge and interior
(both PreSend and PreReceive actions)

● Time for CUDA kernels from each GPU aggregated

– ignores concurrent execution on GPU!

– more v1.20a concurrency results in more kernel execution time dilation?

● GPUs assumed to idle when no kernels executing

– don’t see asynchronous memory transfers on GPU!

● IncompressibilityChecker only executed by (diminishing) subset of processes on CPUs?

– and not every 200 steps?

● MPI File I/O writing time & bytes by CPUs is imbalanced (particularly at growing scale)

– associated with additional CPU computation and MPI communication time

– but otherwise no apparent impact on CUDA kernels (since GPUs idle)

38

 Notes

● v1.20a Simulation is faster, particularly with more nodes

– but v1.20b CUDA kernels execute faster and scale better

– however, in both cases they execute less than half of the total Simulation time,
and suffer from progressively worsening load balance (0.5 efficiency with 32 nodes)

● GPU_CollideStream_mMidFluidCollision_mWallCollision_sBB kernel constitutes most
GPU (non-idle) time: 99% on 1 node decreasing progressively to 92% on 32 nodes
(load balance efficiency of 0.7)

– further load imbalance originates from (less time consuming) iolet kernels

● Simulation is dominated by MPI communication (waiting) time,
with MPI file writing becoming most significant for 16 or more nodes

– v1.20a significantly reduces MPI communication time (particularly without file
writing), despite slightly increasing CUDA overheads

39

 Comparison

● Good GPU computation scaling, however, ...

● GPU kernel load imbalance is significant

– use alternative decomposition scheme? (such as Zoltan+ParMETIS or ALL)

● likely to require more host memory and longer initialisation time

– revise weighting used by BasicDecomposition?

● currently default is unweighted, but weighted GMY+ should be used instead
● cudaMemcpyAsync becomes expensive when not overlapped with kernels

– particularly Read_DistrFunctions_CPU_to_GPU_totalSharedFs cuMemcpyDtoHAsync

– CUDA-aware MPI should avoid need for these copies between CPU and GPU,
and generally be much more efficient for data transfers between GPUs

40

 Summary (GPU)

● Major inefficiencies arise from file I/O and non-GPU computation

● GPUs are idle much of the time with CPU-only activities during Simulation DoTimeStep

– periodic property file writing with MPI File I/O (by all ranks)

● possible to do asynchronously (with dedicated processes/threads)
● or non-blocking MPI_File_iwrite_at (+ MPI_Wait)

– periodic incompressibility check (only by some ranks): may be better done on GPUs?

● Additional ‘monitor’ process is extra complication

– necessary for future coupled codes

● Initialisation of simulation takes a significant time and warrants detailed investigation

– time grows with size of geometry, but not specifically file reading

● investigate additional reader ranks (possibly all simulation ranks)?

41

 Summary (CPU)

11/23/2016

Contact:
 https://www.pop-coe.eu

 mailto:pop@bsc.es

This project has received funding from the European Union Horizon 2020 research and innovation programme under grant agreements No 676553 & 824080.

Performance Optimisation and Productivity
A Centre of Excellence in Computing Applications & HPC

● Only considering GPUs (ignoring all CPU cores, 90% of which are completely unused)

● Parallel efficiency determined by load balance

● Single (quad-GPU) node already suffers significant communication inefficiency

– but improves as additional nodes are included?

● Load balance of GPUs deteriorates progressively

● GPU computation scaling remains reasonably good

43

 HemeLB_GPU Simulation strong scaling efficiency (v1.20a w/o file writing)

44

 HemeLB_GPU Simulation strong scaling efficiency (v1.20a) hybrid CPU+GPU

GPU only

CPU+GPU

CPU only

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Contact: https://www.pop-coe.eu
	Slide 43
	Slide 44

