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● Applicant: Ioannis Zacharoudiou, UC London, UK (developer)  [HPC CoE CompBioMed]

● Code: HemeLB_GPU (3D macroscopic blood flow simulation) C++ & MPI & CUDA

● Platform: JUWELS (@ JSC)

– 56 dual 20-core Intel Xeon Platinum 6148 ‘Skylake’ compute 
nodes each accelerated with 4 Nvidia V100 ‘Volta’ GPUs

– GCC/8.3.0 & CUDA/10.1.105 & ParaStationMPI/5.4

● Testcase: 1.78 GiB CBM2019_Arteries_patched geometry

– 66,401,494 lattice sites; 1+38 iolets; simulation of 2,000 time-steps (of 100µs)

● Scale: up to 128+1 processes (32 compute nodes, each with 4 MPI ranks)

● Scalasca/Score-P summary and trace measurements

– using selective instrumentation filter
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                                      Background
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                                      HemeLB lattice-Boltzmann method for haemodynamic simulation

● Fluid particles tracked at macroscopic level on a lattice grid

– discrete set of permissible velocities

– only nearest-neighbour interactions

● Comparable accuracy to conventional continuum CFD

– relatively straightforward implementation of
complex boundary conditions

– exhibit superior parallel performance

● less communication between computational subdomains

www.2020science.net/software/hemelb.html                                                               www.hemelb.org 

http://www.2020science.net/software/hemelb.html
http://www.hemelb.org/


● JUWELS (GPU nodes): 46 (+10 reserved for development)

– 192 GiB compute nodes; Dual EDR-Infiniband (Connect-X4)

– IBM Spectrum Scale (GPFS) parallel filesystem; CentOS Linux 7.8.2003

● Execution configuration:

– gres=gpu:4, ntasks-per-node=4 (plus one extra for monitor on first node)

– all GPUs used, but only 10% of CPU cores

● HemeLB: GPU development version (using BasicDecomposition scheme)

– configured to offload kernels from each MPI process to associated GPU

– MPI File writing of intermediate properties state every 1000 steps

– 2 variants (reordered ‘a’ & original ‘b’) order of actions within each timestep
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                                      Details



● Score-P/6.0 (GCC+ParaStationMPI) instrumenter used when building code

– CMake: CUDACXX=scorep-nvcc (no instrumentation of CXX)

● workaround replace “-dc” with “--relocatable-device=true -c”

– set SCOREP_WRAPPER_INSTRUMENTER_FLAGS=
“--mpp=mpi --thread=none --cuda --instrument-filter=hemelb.filt”

● Scalasca/2.5 runtime measurement configuration

– SCAN_TRACE_ANALYZER=none
SCOREP_MPI_ENABLE_GROUPS='coll','env','io','p2p','rma','topo','xnonblock' # 'cg'
SCOREP_CUDA_ENABLE=runtime,memcpy,kernel,sync,flushatexit
SCOREP_CUDA_BUFFER=10M
SCOREP_TOTAL_MEMORY=64M

● Profiles explored with CUBE/4.4.4, execution traces examined with Vampir/9.8.0
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                                      Method
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                                      HemeLB_GPU execution timeline (v1.20a with file writing)

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry, 
then participate in simulation
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                                      HemeLB_GPU execution timeline: Focus of Analysis (FOA) DoTimeStep

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry, 
then participate in simulation

● SimulationMaster class constructor/destructor methods 
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU
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                                      HemeLB_GPU execution timeline: FOA zoom

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry, 
then participate in simulation

● SimulationMaster class constructor/destructor methods 
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

– property file writing after each 1000 steps

● MPI_File_write_at by each process
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                                      HemeLB_GPU execution timeline: FOA zoom (1000 steps incl. writing)

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry, 
then participate in simulation

● SimulationMaster class constructor/destructor methods 
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

– property file writing after each 1000 steps

● MPI_File_write_at by each process,
very imbalanced

● amount written varies 27-84MB
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                                      HemeLB_GPU execution timeline: FOA zoom (1000 steps)

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry, 
then participate in simulation

● SimulationMaster class constructor/destructor methods 
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

– property file writing after each 1000 steps

– IncompressibilityChecker each 200 steps (mostly)

● only lowest 10 simulation ranks

● or highest 14 simulation ranks (32 nodes)
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                                      HemeLB_GPU execution timeline: FOA zoom (250 steps)

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry, 
then participate in simulation

● SimulationMaster class constructor/destructor methods 
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

– property file writing after each 1000 steps

– IncompressibilityChecker each 200 steps (mostly)

● only lowest 10 simulation ranks

● or highest 14 simulation ranks (32 nodes)
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                                      HemeLB_GPU execution timeline: FOA zoom (20 steps)

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry, 
then participate in simulation

● SimulationMaster class constructor/destructor methods 
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

– property file writing after each 1000 steps

– IncompressibilityChecker each 200 steps (mostly)

– interior ranks (54-76) have “uniform” steps

● others blocked every 6 steps,
waiting for communication
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                                      HemeLB_GPU execution timeline: FOA zoom (8 steps)

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry, 
then participate in simulation

● SimulationMaster class constructor/destructor methods 
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

– property file writing after each 1000 steps

– IncompressibilityChecker each 200 steps (mostly)

● interior ranks (54-76) have “uniform” steps

● others blocked every 6 steps,
waiting for communication
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                                      HemeLB_GPU execution timeline: FOA zoom (3 steps)

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry, 
then participate in simulation

● SimulationMaster class constructor/destructor methods 
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

– property file writing after each 1000 steps

– IncompressibilityChecker each 200 steps (mostly)

● interior ranks (54-76) have “uniform” steps

● others blocked every 6 steps,
waiting for communication
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                                      HemeLB_GPU execution timeline: FOA zoom (3 steps) showing CUDA streams

● 32 nodes: 129 MPI processes driving 128 GPUs

– monitor rank 0 not participating in simulation

– reader ranks 1 &2 distribute simulation geometry, 
then participate in simulation

● SimulationMaster class constructor/destructor methods 
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– 2000 simulation steps: approx. 101-113 seconds

– CUDA kernel offloads to dedicated GPU

● some ranks/GPUs have additional kernels
(to process iolets) executed concurrently

● critical PostReceive cuMemcpyDtoHAsync in 
Read_DistrFunctions_CPU_to_GPU_totalSharedFs

– no longer overlapped with kernels

DtoHHtoD
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                                      HemeLB_GPU profile

● 32 nodes: 129 MPI processes driving 128 GPUs

● Extensive tree hierarchy of performance metrics

– selected metric applied to routines in call-tree

– CUDA kernels listed separately at bottom

● POP efficiencies inaccurate for CPU+GPU hybrid!
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                                      HemeLB_GPU code structure and Focus of Analysis (FOA) DoTimeStep

● 32 nodes: 129 MPI processes driving 128 GPUs

– v1.20a with file writing, 2000 time-steps

● SimulationMaster class constructor/destructor methods 
initialisation and finalisation

● FOA is RunSimulation DoTimeStep routine

– loops through key actions

● PreSend, PreReceive, Send, PostReceive, EndIteration

– (a) Send after PreReceive
– (b) Send before PreReceive

● plus periodic MPI file writing by all processes

● and occasional IncompressibilityChecker by subset

– launches CUDA kernels on GPUs

● execute asynchronously on specific CUDA streams

● 4 distinct CUDA kernels
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                                      Simulation loop:    20a                                                                 20b



● PreSend
– cudaStreamSynchronize [31]
– [17] GPU_CollideStream_mMidFluidCollision_mWallCollision_sBB
– 2x cudaMemcpyAsync / cuMemcpyHtoDAsync_v2 + cudaStreamSynchronize [29,30]
– [19,20] GPU_CollideStream_Iolets_NashZerothOrderPressure
– [21,22] GPU_CollideStream_wall_sBB_iolet_Nash

● PreReceive
– [23] GPU_CollideStream_mMidFluidCollision_mWallCollision_sBB
– cudaStreamSynchronize [17,18,19,20,21,22]
– Read_DistrFunctions_GPU_to_CPU_totalSharedFs / cuMemcpyDtoHAsync_v2 [35]
– cudaStreamSynchronize [35]
– [25,26] GPU_CollideStream_Iolets_NashZerothOrderPressure
– [27,28] GPU_CollideStream_wall_sBB_iolet_Nash

● PostReceive
– Read_DistrFunctions_CPU_to_GPU_totalSharedFs / cuMemcpyHtoDAsync_v2 [33]
– cudaStreamSynchronize [33]
– [31] GPU_StreamReceivedDistr

● EndIteration
– cudaStreamSynchronize [23,24,25,26,27,28]
– cudaMemcpyAsync / cuMemcpyDtoDAsync_v2 [31]
– Read_Macrovariables_GPU_to_CPU / cuMemcpyDtoHAsync_v2 + cudaStreamSynchronize [34]
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                                      HemeLB_GPU Simulation CUDA kernels/streams

local partition edge

local partition interior



Stream   7: Memcpy HtoD [sync]
Stream 17: PreSend kernel1 hemelb::GPU_CollideStream_mMidFluidCollision_mWallCollision_sBB
Stream 19: PreSend kernel2 hemelb::GPU_CollideStream_Iolets_NashZerothOrderPressure (inlet)
Stream 20: PreSend kernel2 hemelb::GPU_CollideStream_Iolets_NashZerothOrderPressure (outlet)
Stream 21: PreSend kernel3 hemelb::GPU_CollideStream_wall_sBB_iolet_Nash (inlet)
Stream 22: PreSend kernel3 hemelb::GPU_CollideStream_wall_sBB_iolet_Nash (outlet)
Stream 23: PreReceive kernel1 hemelb::GPU_CollideStream_mMidFluidCollision_mWallCollision_sBB
Stream 25: PreReceive kernel2 hemelb::GPU_CollideStream_Iolets_NashZerothOrderPressure (inlet)
Stream 26: PreReceive kernel2 hemelb::GPU_CollideStream_Iolets_NashZerothOrderPressure (outlet)
Stream 27: PreReceive kernel3 hemelb::GPU_CollideStream_wall_sBB_iolet_Nash (inlet)
Stream 28: PreReceive kernel3 hemelb::GPU_CollideStream_wall_sBB_iolet_Nash (outlet)
Stream 29: Memcpy HtoD [async] (stream_ghost_dens_inlet)
Stream 30: Memcpy HtoD [async] (stream_ghost_dens_outlet)
Stream 31: Memcpy DtoD [async] + PostReceive kernel4 hemelb::GPU_StreamReceivedDistr
Stream 33: Memcpy HtoD [async] (stream_memCpy_CPU_GPU_domainEdge)
Stream 34: Memcpy DtoH [async] (stream_Read_Data_GPU_Dens)
Stream 35: Memcpy DtoH [async] (mNet_cuda_stream)
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                                      HemeLB_GPU CUDA kernels/streams
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                                      HemeLB_GPU Simulation strong scaling (with intermediate file writing)

● Reference execution v1.18 with 8ppn

– multiple processes offloading GPU 
kernels generally unproductive

● Comparison of v1.20a & v1.20b (4ppn)

– v1.20a generally better

● CUDA kernels on GPUs

– less than half of Simulation time 
(therefore GPUs mostly idle)

– total kernel time scales very well
(0.93 scaling efficiency)

– load balance deteriorates
(0.95 for 1 node, 0.50 for 32 nodes)

– similar for both versions
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                                      HemeLB_GPU Simulation strong scaling (w/o file writing)

● File writing disabled during Simulation

– previously every 1000 steps

● Scaling greatly improved

– particularly beyond 8 nodes

● CUDA kernels on GPUs

– essentially unaffected
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                                      HemeLB_GPU Simulation strong scaling (w/o file writing) speed-up

● File writing disabled during Simulation

– previously every 1000 steps

● Speed-up improved

– 21x for v1.20a on 32 nodes
(65% scaling efficiency)

– 80% scaling efficiency retained to 16 
nodes

– most of the loss of scaling occurs 
moving from shared-memory MPI 
within a single node to off-node 
communication via interconnect



● Only considering GPUs (ignoring all CPU cores, 90% of which are completely unused)

● Parallel efficiency determined by load balance and communication (including file I/O)

● Single (quad-GPU) node already suffers significant communication inefficiency

– but doesn’t degrade much as additional nodes are included

● Load balance of GPUs deteriorates progressively

● GPU computation scaling remains reasonably good
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                                      HemeLB_GPU Simulation strong scaling efficiency (v1.20a with file writing)
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                                      HemeLB_GPU Simulation time breakdown (v1.20a)

● CUDA kernels on GPUs

– less than half of Simulation time 
(therefore GPUs mostly idle)

– total kernel time scales very well
(0.87 scaling efficiency)

● MPI processes on CPUs

– computation time decreases

– CUDA synchronization time fairly 
constant, but time for memory 
management increases somewhat

– MPI communication time dominates, 
with much more time for file writing 
with 16 or more nodes
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                                      HemeLB_GPU Simulation time breakdown (v1.20a w/o file writing)

● Disabled Simulation file writing

– no impact on GPU kernels, 
nor CUDA operations on CPU

– reduced CPU computation & MPI 
communication (and no MPI file I/O)

● CUDA kernels on GPUs

– reduced GPU idle time, but still 
significant (roughly half)

● MPI processes on CPUs

– computation time decreases

– MPI communication time dominates, 
at all scales but growing with scale
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                                      HemeLB_GPU Simulation time breakdown (v1.20b)

● CUDA kernels on GPUs

– less than half of Simulation time 
(therefore GPUs mostly idle)

– total kernel time scales very well
(0.94 scaling efficiency)

● MPI processes on CPUs

– computation time roughly constant

– CUDA synchronization time fairly 
constant, but time for memory 
management increases somewhat

– MPI communication time dominates, 
with much more time for file writing 
with 16 or more nodes
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                                      HemeLB_GPU Simulation time breakdown (v1.20b w/o file writing)

● Disabled Simulation file writing

– no impact on GPU kernels, 
nor CUDA operations on CPU

– reduced CPU computation & MPI 
communication (and no MPI file I/O)

● CUDA kernels on GPUs

– reduced GPU idle time, but still 
significant (more than half)

● MPI processes on CPUs

– computation time roughly constant

– MPI communication time dominates, 
at all scales but growing with scale
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                                      HemeLB_GPU Simulation GPU time balance (v1.20a w/o file writing)

● 32 nodes: 128 MPI processes/GPUs

– disabled Simulation file writing

● Considerable variations by rank/GPU

– mid-range ranks 49-80 take longer, 
partially due to PreSend 17_k1

– PreReceive 23_k1 dominates, but 
PreSend 17_k1 also significant

– rank 65 most heavily overloaded, 
along with ranks 66 & 60

● apparently due to processing 
for iolets at partition edges 
(kernels k2 & k3)
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                                      HemeLB_GPU Simulation GPU time balance (v1.20a w/o file writing)

● 32 nodes: 128 MPI processes/GPUs

– disabled Simulation file writing

● Considerable variations by rank/GPU

– mid-range ranks 52-76 take longer, 
partially due to PreSend 17_k1

– PreReceive 23_k1 dominates, but 
PreSend 17_k1 also significant

– rank 65 most heavily overloaded, 
along with ranks 66 & 60

● apparently due to processing 
for iolets at partition edges 
(kernels k2 & k3)

– most GPUs idle half of the time!



31

                                      HemeLB_GPU Simulation GPU time balance (v1.20a w/o file writing)

● 32 nodes: 128 MPI processes/GPUs

– disabled Simulation file writing

● Considerable variations by rank

– GPU global memory correlates with 
number of fluid sites

– CUDA kernel processing time 
correlates with number of blocks?

– what about iolets?
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                                      HemeLB_GPU Simulation CPU file writing balance (v1.20a)

● 32 nodes: 128 MPI processes/GPUs

– 4 writes per rank: MPI_File_write_at

– 6.93 GiB written in total (to 2 files)

– 174s total writing time (0.01-3.75)

● 4 procs: 3.55s (0.89-1.05)

● 8 procs: 3.50s (0.44-0.71)

● 16 procs: 3.76s (0.24-0.47)

● Considerable variations by rank

– erratic writing time

● varies from run to run

– time for writing not particularly 
correlated with amount written

● Also results in additional MPI waiting 
before starting next simulation time step
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                                      HemeLB_GPU Simulation CPU time balance (v1.20a w/o file writing)

● 32 nodes: 128 MPI processes/GPUs

– disabled Simulation file writing

● Considerable variations by rank

– computation time roughly constant, 
but noticably higher for highest and 
lowest ranks

– CUDA memory management much 
higher for processes in the middle

– CUDA synchronization time varies 
significantly

– MPI communication time dominates

● however, almost all waiting time 
while GPUs compute kernels
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                                      HemeLB_GPU Simulation CPU cudaMemcpyAsync

● 32 nodes: 128 MPI processes/GPUs

● Considerable variations by rank

– CUDA memory management time 
much higher for processes in the 
middle

● Some copies require much longer than 
others to initiate

– 51% PreReceive DtoH 
(Read_DistrFunctions_GPU_to_CPU_total
SharedFs)

– 41% PostReceive HtoD 
(Read_DistrFunctions_CPU_to_GPU_total
SharedFs)

– 4% EndIteration DtoD
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                                      HemeLB_GPU Simulation MPI communication imbalance

● 32 nodes: 128 MPI processes/GPUs

● Considerable variations by rank

– ranks 63 & 75 have 12 partners, 
whereas several have only one

– most mid-range ranks 57-76 have at 
least 6 partners, and also exchange 
twice as much data as the others

– however, these mid-range ranks 
spend less time (waiting) in MPI 
communication
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                                      HemeLB_GPU Simulation MPI communication matrix

● 32 nodes: 128 MPI processes/GPUs

– 4000 MPI_Waitall calls by each rank

– 2334-24334 MPI_Isend/Irecv calls (messages)

● max for ranks 63 & 75

– 0.03 - 5.19 GB sent/received

● max for rank 65

● Considerable variations by rank

– heaviest communication for interior processes
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                                      Timeline detail of 3 time-steps

● 2 nodes: 9 MPI processes driving 8 GPUs

– monitor rank 0 not executing simulation

● One MPI process (#5) mostly doing CUDA synchronization 
in EndIteration & next PreSend actions

– others mostly in MPI_Waitall

– neighbours waiting for return messages from rank 5 
(and their neighbours waiting for them)

● Additional CUDA kernels executed by that process/GPU

– iolet processing both for domain edge and interior 
(both PreSend and PreReceive actions)



● Time for CUDA kernels from each GPU aggregated

– ignores concurrent execution on GPU!

– more v1.20a concurrency results in more kernel execution time dilation?

● GPUs assumed to idle when no kernels executing

– don’t see asynchronous memory transfers on GPU!

● IncompressibilityChecker only executed by (diminishing) subset of processes on CPUs?

– and not every 200 steps?

● MPI File I/O writing time & bytes by CPUs is imbalanced (particularly at growing scale)

– associated with additional CPU computation and MPI communication time

– but otherwise no apparent impact on CUDA kernels (since GPUs idle)
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                                      Notes



● v1.20a Simulation is faster, particularly with more nodes

– but v1.20b CUDA kernels execute faster and scale better

– however, in both cases they execute less than half of the total Simulation time, 
and suffer from progressively worsening load balance (0.5 efficiency with 32 nodes)

● GPU_CollideStream_mMidFluidCollision_mWallCollision_sBB kernel constitutes most 
GPU (non-idle) time: 99% on 1 node decreasing progressively to 92% on 32 nodes 
(load balance efficiency of 0.7)

– further load imbalance originates from (less time consuming) iolet kernels

● Simulation is dominated by MPI communication (waiting) time,
with MPI file writing becoming most significant for 16 or more nodes

– v1.20a significantly reduces MPI communication time (particularly without file 
writing), despite slightly increasing CUDA overheads
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                                      Comparison



● Good GPU computation scaling, however, ...

● GPU kernel load imbalance is significant

– use alternative decomposition scheme? (such as Zoltan+ParMETIS or ALL)

● likely to require more host memory and longer initialisation time

– revise weighting used by BasicDecomposition?

● currently default is unweighted, but weighted GMY+ should be used instead
● cudaMemcpyAsync becomes expensive when not overlapped with kernels

– particularly Read_DistrFunctions_CPU_to_GPU_totalSharedFs cuMemcpyDtoHAsync

– CUDA-aware MPI should avoid need for these copies between CPU and GPU,
and generally be much more efficient for data transfers between GPUs
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                                      Summary (GPU)



● Major inefficiencies arise from file I/O and non-GPU computation

● GPUs are idle much of the time with CPU-only activities during Simulation DoTimeStep

– periodic property file writing with MPI File I/O (by all ranks)

● possible to do asynchronously (with dedicated processes/threads)
● or non-blocking MPI_File_iwrite_at (+ MPI_Wait)

– periodic incompressibility check (only by some ranks): may be better done on GPUs?

● Additional ‘monitor’ process is extra complication

– necessary for future coupled codes

● Initialisation of simulation takes a significant time and warrants detailed investigation

– time grows with size of geometry, but not specifically file reading

● investigate additional reader ranks (possibly all simulation ranks)?
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                                      Summary (CPU)
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● Only considering GPUs (ignoring all CPU cores, 90% of which are completely unused)

● Parallel efficiency determined by load balance

● Single (quad-GPU) node already suffers significant communication inefficiency

– but improves as additional nodes are included?

● Load balance of GPUs deteriorates progressively

● GPU computation scaling remains reasonably good
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                                      HemeLB_GPU Simulation strong scaling efficiency (v1.20a w/o file writing)
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                                      HemeLB_GPU Simulation strong scaling efficiency (v1.20a) hybrid CPU+GPU

GPU only

CPU+GPU

CPU only
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