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Abstract. Fibre-reinforced polymer composites are gaining increasing attention in various 

applications for constructing mechanical structures such as wind turbine blades. The interface 

between fibres and a polymer matrix should be optimally designed to promote the mechanical 

performance of the composites. Plasma treatment shows obvious advantages over conventional 

approaches, since it has the characteristic of environmental friendliness, low-cost, and easy 

operation. A plasma can be favourably generated at atmospheric pressure. One of the most 

commonly used atmospheric pressure plasmas is a dielectric barrier discharge (DBD). In the 

present work, an air-to-air DBD is introduced. The DBD was generated in a gas mixture of 

helium and fluorocarbon between a rod-shaped water-cooled powered electrode covered with 

alumina and a one-dimensionally movable ground aluminium plate. Polyethylene terephthalate 

films were used as model specimens, and attached on the aluminium plate for the surface 

modification. The results indicate that specimen surfaces can be oxidized or fluorinated, 

depending on the conditions, and that the gap between the electrodes and gas flowrates 

significantly affect the treatment effect. 

1.  Introduction 

Glass fibre reinforced polymer (GFRP) composites are widely used due to high strength-to-weight 

ratios, mechanical and corrosion resistance properties [1]. Examples of applications include sporting 

equipment, vehicles, architectures, and wind turbine blades.  

It is indicated experimentally [2] and theoretically [3] that fracture toughness of GFRPs can be 

improved not by strong interactions at the interfaces between fibres and polymer matrices, but by 

optimally designed interfaces. More specifically, creation of multiple cracks in GFRPs due to locally 

distributed domains with low adhesion can improve overall fracture toughness of GFRPs. Therefore, at 

the initial stage of polymer composite manufacturing, surface treatment of fibres is important for 

controlling the interfacial properties of GFRPs. Motivated by this idea, fluorination of sized glass fibres 

is studied aiming at reducing initial interaction of glass fibre surfaces with polymer matrices [4,5]. 

Specifically, it is expected that fluorination of sized glass fibre surfaces can pronounce de-wetting of 

uncured matrix polymers, delay interaction between the sizing and the matrix, and that subsequent 

interfacial interaction can be lowered. Among the reported surface treatment techniques, atmospheric 

pressure plasma treatment is attractive due to its high treatment efficiency, environmental friendliness 
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and easy operation with simple setups [6,7]. Commonly used atmospheric pressure plasmas include  

corona discharge, dielectric barrier discharge (DBD) [8], cold plasma torch [9,10], and gliding arc [11-

17]. DBD is generated by applying an alternating-current (AC) voltage between electrodes separated by 

one or more dielectrics. Simple and robust configuration of the DBD allows for design flexibility 

including air-to-air type continuous plasma treatment systems [18,19]. 

Adhesion improvement of material surfaces using plasma treatment [6,7] is commonly demonstrated 

by oxidation for acid-based interactions [20] and/or surface roughening for mechanical interlocking 

effects for the purpose of improving interactions at interfaces. By contrast, recent publications [4,5] 

propose designed lower interactions between glass fibre fabrics with a polymer matrix by creating a 

polytetrafluoroethylene (PTFE) like surface by substitution reactions between hydrogen and fluorine 

using a DBD in a helium/tetrafluoromethane (He/CF4) gas mixture. However, it is reported that use of 

fluorocarbons such as hexafluoropropylene (HFP. C3F6) and octafluorocyclobutane (OFB. c-C4F8) in a 

DBD exhibits better hydrophobic effects by plasma polymerization to synthesize a PTFE like coating 

than use of CF4 [21]. It is noted here that if plasma polymerization on a material surface is appropriately 

carried out, the surface property of the coating is generally independent of the material to be coated.   

In the present work, an air-to-air DBD is introduced for investigating hydrophobic plasma surface 

modification in a He/OFB gas mixture. Polyethylene terephthalate (PET) films were used as model 

specimens to study the modification effects, since PET is easily available, and its properties are well-

known. Contact angle measurements were carried out using deionized water and glycerol as test liquids 

for studying wetting characteristics. X-ray photoelectron spectroscopy (XPS) was used to characterize 

the elemental analysis of the modified PET film surfaces. 

 

2.  Experimental methods 

A photo image and a diagram of the DBD setup are shown in Fig. 1. The powered electrode is water-

cooled cylindrical metallic tube covered with an alumina tube. Inner and outer diameters of the alumina 

tube are 12 and 16 mm, respectively. The lower ground electrode is an aluminium plate (280 mm x 400 

mm). The gap between the alumina tube and the aluminium plate was adjusted to 0.6 mm or 2.0 mm. 

He and OFB were used as a dilute gas and a reactive gas, respectively. A flowrate of He was adjusted 

between 14.5 and 29 standard litre per minute (SLM). OFB flowrate was adjusted between 0.066 and 

0.262 SLM. A gas mixing ratio (MR) is defined in equation (1).  

 

MR = FOFB / (FHe + FOFB) × 100 (vol. %),   (1) 

 

where FOFB and FHe are the flowrates of OFB and He, respectively.  

 

    
 

 Fig. 1 A photo image and a diagram of the air-to-air atmospheric pressure DBD setup. 
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He gas was pre-mixed with OFB, and then introduced into a poly-methyl-methacrylate (PMMA) 

chamber, separating the gas mixture from the surrounding atmosphere. The bottom part of the PMMA 

chamber facing the aluminium plate is open to air so that the DBD was generated between the alumina 

tube and the aluminium plate. The DBD was driven by an AC power supply (Generator 6030, SOFTAL 

Electronic GmbH, Germany) at a frequency of approximately 40 kHz. Untreated general-purpose PET 

films with thickness of 65 m were used as specimens. They were attached on the aluminium plate at 

positions in a y-axis direction of “-y” (approximately 5 cm from the edge of the aluminium plate), “0” 

(centre) and “+y” (approximately 5 cm from the edge of the aluminium plate). The aluminium plate was 

moved forward and backward in an x-axis direction at a speed ranging from 1 to 100 mm/s. The 

specimens were exposed to the DBD once or four times. The average power input was obtained by 

measuring voltage and current with a high-voltage probe and a 10 Ω current viewing resistor, 

respectively. The power of each treatment was adjusted to 100 W.  

Static contact angles of deionized water and glycerol on the PET films before and after the treatment 

were measured in air at room temperature using a contact angle measurement system (CAM100; Crelab 

Instruments AB, Sweden). Here, deionized water is characterized by its significantly polar nature, and 

is the most commonly used test liquid for the contact angle measurement. Glycerol is also often used as 

a test liquid, exhibiting both polar and non-polar nature with high viscosity. Glycerol is considered to 

be an appropriate test liquid for screening adhesion properties of polymer surfaces due to similarities of 

physical properties to general adhesives and uncured resins [22].    

 XPS data were collected using a monochromatic Al Kα X-ray source with a lateral resolution of 30 

mm (K-alpha; ThermoFischer Scientific, UK) to study the changes of the elemental composition at the 

PET film surfaces. Atomic concentrations of each element were calculated by determining the relevant 

integral peak intensities subtracting a linear background.  

 

3.  Results 

A photo image of the DBD in the He/OFB gas mixture is exemplified in Fig. 2. The discharge looks a 

mixture of filamentary and glow-like discharges. It was confined between the electrodes, and spread 

along the powered electrode in the y-axis direction. The photoemission on the right side in Fig. 2, 

corresponding to +y direction, was more intense than at the centre and at the left-hand side. The 

difference of the photoemission is related to the uniformity of the plasma and treatment, which will be 

discussed below. 

 

 
Fig. 2. A photo of the DBD in He/OFB gas mixture (gap: 2.0 mm, MR value: 0.45 %). The purple 

colour indicates photo-emission from the DBD between the cylindrical powered electrode and the ground 

electrode. 

 

The voltage and current waveforms of the DBD in the He/OFB gas mixture are shown in Fig. 3. The 

voltage waveform was sinusoidal. The phase shift was approximately π/4, indicating that the DBD is 
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primarily a capacitively coupled plasma. Generation of the DBD in each half period deformed the 

current waveform from the sinusoidal feature.  

 

 
Fig. 3. An example of voltage (black) and current (red) waveforms of the DBD in He/OFB gas mixture 

(gap: 2.0 mm, MR value: 0.45 %).  

 

  
Fig. 4. Contact angles of deionized water and glycerol with the gaps of 0.6 mm (a, b) and 2.0 mm (c,d). 

(exposure: 4 times, MR value: 0.045 %, 0.23 %, 0.45 %, and 0.90 %). The contact angles for the 

untreated PET are also plotted in each figure. 

 

41st Risø International Symposium on Materials Science 2020 IOP Conf. Series: Materials Science and Engineering

4



In order to investigate the influence of different plasma process parameters on the wettability of the 

PET surfaces, static contact angles of deionized water and glycerol were measured after treatment. PET 

films without treatment were also tested for comparison and the values for deionized water and glycerol 

were 76.4 ± 1.5 and 58.0 ± 2.8 degrees, respectively. The gas content in a plasma is an important 

parameter for atmospheric pressure plasma processing. It depends on flowrates of the gases, the MR 

value, introduction of air from the surrounding, and consumption of the reactive gas by polymerization 

and/or decomposition in the plasma. The gap between the two electrodes, which affects the introduction 

of atmospheric air into the DBD, was first set to the minimum value of 0.6 mm. The MR value was set 

to 0.045 %, 0.23 %, 0.45 %, or 0.90 %. PET films were placed at the “0” position on the aluminium 

plate (see Fig. 1) and exposed to the DBD four times. Results of the contact angle measurement of the 

PET films treated under different conditions are summarized in the Fig. 4 (a,b). The contact angle 

increased greatly after each treatment.  

Next, the gap was set to 2.0 mm and similar experiments were carried out. Fig. 4 (c,d) illustrates the 

results of the contact angle measurement, showing a different trend from the smaller gap in Fig. 4 (a,b). 

When the MR value was set from 0.045 to 0.45 %, the contact angles of deionized water and glycerol 

increased, but were lower than the values achieved at the gap of 0.6 mm. When the MR value was 0.9 % 

by decreasing the He flowrate from 29 SLM to 14.5 SLM, the contact angles were even lower than those 

of the original PET films.  
 

 
Fig. 5. Contact angles at position of –y, 0, and +y. (a) deionized water, (b) glycerol (exposure: 

once, gap: 2.0 mm, MR value: 0.45 %, He flowrate: 29 SLM). The contact angles for the untreated 

PET are also plotted in each figure. 

 

 

Since the DBD can treat an up to A4 size specimen (210 mm x 300 mm), it is worth investigating 

the treatment uniformity. In addition, time for treatment is an important parameter for practical 

applicability of the processing. It can be changed by the number of the exposures and the moving speed 

of the aluminium plate.  In the following experiments, the number of exposures is fixed to one time. In 

addition, the PET films were fixed at the positions of “-y”, “0” and “+y”, the moving speed was varied 

between 1 and 100 mm/s, and the gap and the He flowrate were fixed at 2.0 mm and 29 SLM, 

respectively.  

The MR value was fixed at 0.45 %, and contact angles of deionized water and glycerol were 

measured after the treatments as shown in Fig. 5. The result indicates that the treatment was significantly 

uneven. The “-y” position became highly hydrophobic. On the other hand, at the “0” and “+y” positions, 

the water contact angle was slightly lowered from the original value of 76.4 degrees, and the glycerol 

contact angle did not change significantly from the original value of 58.0 degrees.  
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Fig. 6. Distributions of contact angles at positions –y, 0, and +y. (a) deionized water, (b) glycerol (gap: 

2.0 mm, exposure: once, MR value: 0.90 %, He flowrate: 29 SLM). The contact angles for the untreated 

PET are also plotted in each figure. 

 

The flowrate of OFB was increased from 0.131 SLM to 0.262 SLM with a fixed He flowrate of 29 

SLM, and the similar experiment was carried out (MR value: 0.90 %). The results of the measured 

contact angles are summarized in Fig. 6. The uniformity of the treatment was generally improved, 

compared with the results in Fig. 5. At higher speeds, the contact angle approaches the values of the 

untreated PET films.  

 

 

Table 1. XPS elemental analysis of the PET films (gap: 2.0 mm, exposure: once, MR value: 0.90 %).  

 

Speed 

(mm/s) 

Position Atomic content 

(at.%) 

Contact angle 

(°) 

C F O Water Glycerol 

- - 75.8 0.0 24.2 76.4

±1.5 

58.0±
2.8 

 

1 

-y 45.5 52.4 2.1 105.3

±2.6 

103.6±
8.0 

0 48.5 25.6 26.0 101.3

±3.5 

94.9±
2.7 

+y 36.6 36.6 26.8 99.1

±4.8 

97.8±
4.5 

 

10 

-y 45.5 39.9 14.6 104.8

±4.6 

98.0±
6.2 

0 55.2 13.2 31.6 112.6

±1.8 

81.7±
4.1 

+y 52.9 17.5 29.6 105.1

±6.1 

103.5±
8.3 

 

 

XPS measurements were carried out to analyze the elemental composition of the PET film surfaces 

before and after the plasma treatments. Table 1 summarizes the results XPS together with contact angles. 

The plasma conditions were the same as those in Fig. 6, and the moving speed was 1 or 10 mm/s. The 
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untreated PET film surface was dominated by carbon (C) and oxygen (O) atoms without fluorine (F) 

atoms. After each treatment, F atoms bonded with C were introduced at the surfaces. The F content on 

the film surfaces tended to be higher at the slower speed. Compared with the “0” and “+y” positions, 

the F content at the “-y” position was significantly higher at each speed. Specifically, the F content of 

the film was 52 at.% when the speed was 1 mm/s. At the “0” and “+y” positions, the O content was 

higher than the untreated one. In other words, both fluorination and oxidation simultaneously occurred 

at these positions.  

 

4.  Discussion 

The discharge mode of the DBD is discussed by comparing the visual observation of the plasma in Fig. 

2 with the voltage current waveforms in Fig. 3. The overall deformation in the current waveform from 

the sinusoidal feature suggests an increase in the electrical impedance by the generation of a bulk 

plasma, while the complex spiky current waveform indicates formation of filamentary micro-discharges, 

which agrees with the observation of the DBD in Fig. 2.  

Measurement of wetting characteristics gives direct indication of surface treatment effects. Fig. 4 

(a,b) indicates that the DBD treatment could effectively increase the hydrophobicity of the PET surfaces 

when the gap was 0.6 mm. On the other hand, when the gap was 2.0 mm, the surfaces did not show 

hydrophobicity when the He flowrate was lowered as shown in Fig. 4 (c,d). The results demonstrate that 

the electrode gap has a great impact on the treatment effect. Furthermore, it is suggested that oxidation 

and/or etching on the PET film surfaces would take place with the gap of 2.0 mm. When the gap becomes 

larger, the gas flowrates should be increased to account for extra leakage.  

 The measured result in the unevenness of the wettability shown in Fig. 5 can be related to the 

uniformity of the gas mixture in the DBD. The photo in Fig. 2 was captured in the same condition. The 

intense photoemission at “+y” position indicates the lower OFB content in that region. It can be due to 

insufficient gas mixing process of He and OFB, or uneven local consumption of OFB. It is therefore 

worth increasing the flowrate of OFB or the MR value as demonstrated in Fig. 6. The result confirms 

that the treatment can be more uniform by the higher MR value at the high He flowrate. 

  It is interesting to compare the XPS result with the result of the contact angle measurement in Table 

1. It seems that the measured contact angles would be rather insensitive against the significant difference 

of the F and O contents at different positions. One possible explanation of the discrepancy is that each 

position would be sufficiently fluorinated to be hydrophobic, and that the differences of the F and O 

contents may not necessarily affect the contact angles. However, additional investigation will be 

necessary for further improving the uniformity of the plasma treatment. 

 

5.  Conclusion 

An air-to-air DBD plasma in a He/OFB gas mixture can introduce fluorine and promote hydrophobicity 

of the PET films. The flowrates of the gases and the gap of the electrode played important roles for the 

treatment effects, attributed to the gas content in the plasma. The measured wetting characteristics of 

hydrophobicity was rather insensitive to the difference in elemental composition of the PET surfaces. 

The technique presented can be used for continuous air-to-air surface modification of sheet-like 

specimens including glass fibre fabrics, indicating industrial feasibility of the technology for fibre 

composite manufacturing.  
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