A shape optimization problem for stationary Navier-Stokes flows in 3D tubes

Michael Hintermüller, Axel Kröner, **Hong Nguyen**

RG8

Combustion Engines

(a) lexusenthusiast.com.

(c) Ferrari Combustion Engine.

(b) BMW Combustion Engine (bmwblog.com).

(d) A beautiful combustion engine.

Figure: Various Combustion Engines.

Modeling Air Ducts

A schematic geometry and its boundary:

Figure: Simple sketch of an air duct.

Target: Optimize the shape of air ducts.

Stationary Navier-Stokes Equations

Stationary NSEs for *velocity* \mathbf{u} and *kinematic pressure* p:

$$\begin{cases} -\nu\Delta\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u} + \nabla p = \mathbf{f} & \text{in } \Omega, \\ \nabla\cdot\mathbf{u} = 0 & \text{in } \Omega, \\ \mathbf{u} = \mathbf{f}_{\text{in}} & \text{on } \Gamma_{\text{in}}, \\ \mathbf{u} = \mathbf{0} & \text{on } \Gamma_{\text{wall}}, \\ -\nu\partial_{\mathbf{n}}\mathbf{u} + p\mathbf{n} = \mathbf{0} & \text{on } \Gamma_{\text{out}}, \end{cases}$$
 (NSEs)

where

• ν : kinematic viscosity

• f: source term

• \mathbf{f}_{in} : inflow profile at Γ_{in}

Cost Functionals (1)

Main Problem. Find an $\Omega \in \mathcal{O}_{ad}$ s.t. 2 criteria are considered:

1. Flow Uniformity at the Outlet.

- The uniformity of the flow upon leaving the outlet plane is an important design criterion of e.g. *automotive air ducts*.
- Other use: Efficiency of distributing fresh air inside the car.

Consider:

$$\mathcal{J}_1(\mathbf{u}(\Omega)) \coloneqq \frac{1}{2} \int_{\Gamma_{\text{out}}} (\mathbf{u} \cdot \mathbf{n} - u_{\text{d}})^2,$$

where $u_{\rm d}$ is the *desire velocity* in the outlet plane.

Cost Functionals (2)

- **2. Dissipated Power.** Compute power dissipated by a fluid dynamic device as the net inward flux of energy.
- I.e., total pressure, through the device boundaries for smooth pressure p:

$$\mathcal{J}_2((\mathbf{u},p)(\Omega)) := -\int_{\Gamma} \left(p + \frac{1}{2} |\mathbf{u}|^2 \right) \mathbf{u} \cdot \mathbf{n} d\Gamma.$$

But $p \in L^2(\Omega)$ only, consider an approximation of \mathcal{J}_2 instead:

$$\mathcal{J}_2^{\varepsilon}((\mathbf{u},p)(\Omega)) := -\frac{|\Gamma_{\mathrm{in}}|}{|\Gamma_{\mathrm{in}}^{\varepsilon}|} \int_{\Gamma_{\mathrm{in}}^{\varepsilon}} \left(p + \frac{1}{2}|\mathbf{u}|^2\right) \mathbf{u} \cdot \mathbf{n} - \frac{|\Gamma_{\mathrm{out}}|}{|\Gamma_{\mathrm{out}}^{\varepsilon}|} \int_{\Gamma_{\mathrm{out}}^{\varepsilon}} \left(p + \frac{1}{2}|\mathbf{u}|^2\right) \mathbf{u} \cdot \mathbf{n}.$$

Figure: Simple sketch of Geometry Ω with Modified Inlet $\Gamma_{\rm in}^{\varepsilon}$ and Outlet $\Gamma_{\rm out}^{\varepsilon}$.

Note. Different measures are applied for $\Gamma_{\rm in}$ and $\Gamma_{\rm in}^{\varepsilon}$.

Mixed Cost Functional & Optimization problem

Mixed cost functional. Take both criteria into effect, with the *weighting parameter* $\gamma \in [0,1]$:

$$\mathcal{J}_{12}^{\varepsilon,\gamma}((\mathbf{u},p)(\Omega)) := \gamma \mathcal{J}_{1}(\mathbf{u}(\Omega)) + (1-\gamma)\mathcal{J}_{2}^{\varepsilon}((\mathbf{u},p)(\Omega)). \tag{\mathcal{J}_{12}}$$

Shape Optimization Problem.

Objective: Minimize the cost functional $\mathcal{J}_{12}^{\varepsilon,\gamma}:\mathcal{O}_{\mathrm{ad}}\to\mathbb{R}$ over some admissible subset $\mathcal{O}_{\mathrm{ad}}$ of $2^{\mathbb{R}^d}\coloneqq\{\Omega;\Omega\subset\mathbb{R}^d\}$, i.e.

$$\min_{\Omega \in \mathcal{O}_{\mathrm{ad}}} \mathcal{J}^{\varepsilon,\gamma}_{12}((\mathbf{u},p)(\Omega)) \text{ s.t. } (\mathbf{u},p) \text{ solves (NSEs)}, \ \mathrm{Vol}(\Omega) = V_0. \tag{SOP}$$

Lagrangian & Adjoint Method

Lagrangian:

$$\mathcal{L}(\mathbf{u}, p, \Omega, \mathbf{v}, q, \mathbf{v}_{\text{in}}, \mathbf{v}_{\text{wall}}, \mathbf{v}_{\text{out}}, v_{\text{Vol}}) := \mathcal{J}_{12}^{\varepsilon, \gamma}((\mathbf{u}, p)(\Omega))$$

$$+ \int_{\Omega} \mathbf{v} \cdot (-\nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p - \mathbf{f}) d\mathbf{x} + \int_{\Omega} q \nabla \cdot \mathbf{u} d\mathbf{x}$$

$$+ \int_{\Gamma_{\text{in}}} \mathbf{v}_{\text{in}} \cdot (\mathbf{u} - \mathbf{f}_{\text{in}}) d\Gamma_{\text{in}} + \int_{\Gamma_{\text{wall}}} \mathbf{v}_{\text{wall}} \cdot \mathbf{u} d\Gamma_{\text{wall}}$$

$$+ \int_{\Gamma} \mathbf{v}_{\text{out}} \cdot (-\nu \partial_{\mathbf{n}} \mathbf{u} + p \mathbf{n}) d\Gamma_{\text{out}} + v_{\text{Vol}}(\text{Vol}(\Omega) - V_0). \tag{\mathcal{L}}$$

Total variation of \mathcal{L} :

$$\delta \mathcal{L} = \frac{\delta \mathcal{L}}{\delta \Omega} + \frac{\delta \mathcal{L}}{\delta \mathbf{u}} + \frac{\delta \mathcal{L}}{\delta p}.$$

Adjoint method. Choose Lagrange multiplier \mathbf{v}, q s.t.

$$\frac{\delta \mathcal{L}}{\delta \mathbf{u}} + \frac{\delta \mathcal{L}}{\delta p} = 0,$$

then the total variation $\delta \mathcal{L}$ can be computed *simply* as:

$$\delta \mathcal{L} = \frac{\delta \mathcal{L}}{\delta \Omega}.$$

Derive Adjoint Systems

Expand
$$\frac{\delta \mathcal{L}}{\delta \mathbf{u}} + \frac{\delta \mathcal{L}}{\delta p} = 0$$
 as

$$\frac{\partial \mathcal{J}_{12}^{\varepsilon,\gamma}}{\partial \mathbf{u}} \delta \mathbf{u} + \frac{\partial \mathcal{J}_{12}^{\varepsilon,\gamma}}{\partial p} \delta p + \int_{\Omega} \mathbf{v} \cdot \left[(\delta \mathbf{u} \cdot \nabla) \mathbf{u} + (\mathbf{u} \cdot \nabla) \delta \mathbf{u} - \nu \Delta \delta \mathbf{u} \right] d\mathbf{x}
- \int_{\Omega} q \nabla \cdot \delta \mathbf{u} d\mathbf{x} + \int_{\Omega} \mathbf{v} \cdot \nabla \delta p d\mathbf{x} + \int_{\Gamma_{\text{in}}} \mathbf{v}_{\text{in}} \cdot \delta \mathbf{u} d\Gamma_{\text{in}}
+ \int_{\Gamma_{\text{cut}}} \mathbf{v}_{\text{wall}} \cdot \delta \mathbf{u} d\Gamma_{\text{wall}} + \int_{\Gamma_{\text{cut}}} (-\nu \mathbf{v}_{\text{out}} \cdot \partial_{\mathbf{n}} (\delta \mathbf{u}) + \mathbf{v}_{\text{out}} \cdot \delta p \mathbf{n}) d\Gamma = 0.$$

Decompose: $\mathcal{J}_{12}^{\varepsilon,\gamma} = \int_{\Gamma} J_{\Gamma} d\Gamma + \int_{\Omega} J_{\Omega} d\Omega$.

Integrate by parts:

$$\begin{split} &\int_{\Omega} (-\nabla \cdot \mathbf{v} + \partial_{p} \mathcal{J}_{\Omega}) \delta p \mathrm{d}\mathbf{x} \\ &+ \int_{\Omega} [-\nabla \mathbf{v} \cdot \mathbf{u} - (\mathbf{u} \cdot \nabla) \mathbf{v} - \nu \Delta \mathbf{v} + \nabla q + \partial_{\mathbf{u}} \mathcal{J}_{\Omega}] \cdot \delta \mathbf{u} \\ &+ \mathrm{Boundary\ integral\ terms} = 0, \end{split}$$

for any variation $\delta \mathbf{u}$ and δp .

Adjoint NSEs

Collect terms on each $\int_{\Omega}(\cdots)\delta\mathbf{u}$, $\int_{\Omega}(\cdots)\delta p$, $\int_{\Gamma}(\cdots)\delta\mathbf{u}$, $\int_{\Gamma}(\cdots)\delta p$, obtain:

Adjoint Navier-Stokes equations.

$$k_{\varepsilon}(x) \coloneqq \frac{|\Gamma_{\rm in}|}{|\Gamma_{\rm in}^{\varepsilon}|} \chi_{\overline{\Gamma_{\rm in}^{\varepsilon}}}(x) + \frac{|\Gamma_{\rm out}|}{|\Gamma_{\rm out}^{\varepsilon}|} \chi_{\overline{\Gamma_{\rm out}^{\varepsilon}}}(x), \ \forall x \in \Omega,$$

Shape Derivatives

Describe perturbed domains via a reference domain Ω :

$$\Omega_t := T_t[V](\Omega) := \{x + tV(x); x \in \Omega\}.$$

Definition (Shape derivative (Sokolowski Zolesio 1992))

Let $D \subset \mathbb{R}^d$. A function $J: 2^D \to \mathbb{R}$ is said to be *shape differentiable*, if the limit

$$dJ(\Omega)[V] := \lim_{t \downarrow 0} \frac{J(T_t[V](\Omega)) - J(\Omega)}{t}$$

exists for all directions V and if the mapping $V\mapsto dJ(\Omega)[V]$ is linear and continuous.

Typical choices for $T_t[V]$.

- Perturbation of Identity: $T_t[V](x) = x + tV(x), t \ge 0, x \in \Omega$.
- Speed method: $T_t[V](x) = \varphi(t,x)$ where φ solves the ODE

$$\frac{\partial \varphi}{\partial t}(t,x) = V(t,x), \ \varphi(0,x) = x, \ \forall (t,x) \in [0,\infty) \times \Omega.$$

Shape Derivative of $\mathcal{J}_{12}^{arepsilon,\gamma}$

Applied above formulas, obtain:

$$d\mathcal{J}_{12}^{\varepsilon,\gamma}(\Omega)[V] = \int_{\Gamma_{\text{wall}}} (\partial_{\mathbf{n}} \mathbf{u} \cdot \partial_{\mathbf{n}} \mathbf{v})(V \cdot \mathbf{n}).$$

Shape gradient:

$$D\mathcal{J}_{12}^{\varepsilon,\gamma}(\Omega) = -(\partial_{\mathbf{n}}\mathbf{u} \cdot \partial_{\mathbf{n}}\mathbf{v})\mathbf{n}|_{\Gamma_{\text{wall}}}.$$

Geometrical Constraints (1)

Impose further restrictions on the possible design by geometrical constraints:

Figure: A design space (blue) contains a tube.

Geometrical Constraints (2)

Minimization problem with geometrical constraint G:

$$\min_{\Omega \subset \mathcal{O}_{\mathrm{ad}} \cap {\color{red} G}} \mathcal{J}_{12}^{\varepsilon,\gamma}((\mathbf{u},\mathbf{p})(\Omega)) + \alpha {\color{red} \mathcal{G}}(\Omega) \text{ s.t. } (\mathbf{u},p) \text{ solves (NSEs)}, \ \mathrm{Vol}(\Omega) = V_0,$$

with $\alpha > 0$ and $\mathcal{G}(\Omega) := \int_{\Omega} l_G(x)$.

- Barrier method. $l_G(x) \coloneqq |\log d(x, G^c)|$ with $G^c = \mathbb{R}^d \backslash G$.
- Penalty method. $l_G(x) := (d(x,G))^{\beta}$ with $\beta \ge 1$ and the distance function $d(x,G) := \min_{y \in G} |x-y|$.

Additional shape derivative term:

$$d\mathcal{G}(\Omega)[V] = \int_{\Gamma_{\text{well}}} (V \cdot \mathbf{n}) l_G(s) ds.$$

Gradient Descent Algorithm (1)

A gradient descent algorithm using Armijo linesearch:

Figure: A Gradient Descent Algorithm.

Data

• Kinematic viscosity $\nu \approx 1.56659 \times 10^{-5}$.

• Weighting parameter $\gamma=0$: Only consider $\mathcal{J}_2^{\varepsilon}$.

Numerical Results (1)

Choose the weighting parameter $\gamma=0$. Run 30 gradient-descent iterations (≈ 10 days).

Iteration	\mathcal{J}_{12}	Reduce
0	182.07227883754	0%
1	180.929940529294	0.63%
2	180.136772627044	1.06%
3	179.571215644196	1.37%
4	179.091345594335	1.64%
5	178.804927417778	1.79%
6	178.048912220916	2.2%
7	177.935313457448	2.27%
8	177.907822689922	2.29%
9	177.368528982915	2.58%
10	177.354503052929	2.59%
11	177.353679949393	2.59%
12	176.874239498098	2.85%
13	176.872879859059	2.86%
14	176.872793330895	2.86%

Numerical Results (2)

Iteration	\mathcal{J}_{12}	Improvement
15	176.397008800941	3.12%
16	176.39201327152	3.12%
17	176.391228177362	3.12%
18	176.027299330372	3.32%
19	176.025503228316	3.32%
20	176.025478930617	3.32%
21	175.583524795214	3.56%
22	175.580539111237	3.57%
23	175.580538614767	3.57%
24	175.377206316433	3.68%
25	175.375696397475	3.68%
26	175.375696266596	3.68%
27	175.117224921322	3.82%
28	175.115844803727	3.82%
29	174.771828640699	4.01%
30	174.656762605995	4.07%

Simulation Results

(a) Initial tube.

(b) Optimized tube after 30 gradient iterations.

Figure: Initial vs. Optimized Tubes.

Meshes

(a) Tube with Mesh.

(b) Geometrical Constraint with Mesh.

Challenges

- Model reduction: Replace NSEs with high Reynolds number with turbulence models in 3D
- Small eddies resolution
- Time dependent case

Literature

- Maz'ya, V.; Rossmann, J. "Mixed boundary value problems for the stationary Navier-Stokes system in polyhedral domains". Arch. Ration. Mech. Anal. 194 (2009), no. 2, 669–712.
- Auer, Naomi; Hintermüller, Michael; Knall, Karl. Benchmark case for optimal shape design of air ducts in combustion engines. ROMSOC D5.1, version 3.0, (2020).
- Othmer, C. "A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows". In: *Internat. J. Numer. Methods Fluids* 58.8 (2008), pp. 861–877.
- Sokołowski, Jan; Jean-Paul Zolésio. Introduction to shape optimization. Vol. 16.
 Springer Series in Computational Mathematics. Shape sensitivity analysis (1992). Springer-Verlag, Berlin, pp. ii+250.

