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Combustion Engines

(c) Ferrari Combustion Engine. (d) A beautiful combustion engine.

Figure: Various Combustion Engines.
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https://lexusenthusiast.com/2018/04/24/internal-combustion-engines-remain-priority-at-toyota/
https://www.bmwblog.com/2019/06/27/bmw-sees-internal-combustion-engines-still-going-for-a-couple-decades/
https://www.pinterest.es/pin/816136763692046539/

Modeling Air Ducts

A schematic geometry and its boundary:

Figure: Simple sketch of an air duct.

Target: Optimize the shape of air ducts.
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Stationary Navier-Stokes Equations

Stationary NSEs for velocity u and kinematic pressure p:

(—vAu+ (u-V)u+Vp==£f inQ,

V-u=0 in{),

{ u=1F, on Fin; (NSEs)
u=0 on Fwalla

—voau+pn =0 on [y,

where

= /: Kinematic viscosity
= f: source term

= f;,: inflow profile at [ '},
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Cost Functionals (1)

Main Problem. Find an € € 0.4 s.t. 2 criteria are considered:

1. Flow Uniformity at the Outlet.

= The uniformity of the flow upon leaving the outlet plane is an important design
criterion of e.g. automotive air ducts.

= Other use: Efficiency of distributing fresh air inside the car.

Consider:

Ji(u(Q)) = %/F (u-n—uyg)?

where uq is the desire velocity in the outlet plane.
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Cost Functionals (2)

2. Dissipated Power. Compute power dissipated by a fluid dynamic device as the
net inward flux of energy.
|.e., total pressure, through the device boundaries for smooth pressure p:

Jo((u,p)(2)) = —/F (p + %|u|2> u - ndl.

But p € L*() only, consider an approximation of 7, instead:

Fin | Fou 1
T (@) =2 [ (p gl uen = 2 (b G uen

| Flgn Flgn | Fgut | Fgut

Figure: Simple sketch of Geometry (2 with Modified Inlet I';, and Outlet 1"

out-

Note. Different measures are applied for ['y, and 15,.
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Mixed Cost Functional & Optimization problem

Mixed cost functional. Take both criteria into effect, with the weighting parameter
v € [0, 1]:

Jfé”((u,p)(ﬁ)) = 7«71<U(Q)) T (1 — ’Y)jgg((uap)(Q»- (J12)

Shape Optimization Problem.
Objective: Minimize the cost functional J;3" : O.q — R over some admissible

subset Oyq of 28" = {Q;Q C RY, e

Qrgén T (0, p)(Q)) s.t. (u, p) solves (NSEs), Vol(Q2) = V4. (SOP)
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Lagrangian & Adjoint Method

Lagrangian:
£<u7 p, Q? V, {4, Vin, Vyall, Vout, UVOI) = j1€é7(<u7 p) (Q>)

+/V-(—uAu+(u-V)u+Vp—f)dx+/qV‘udX
Q Q
+ / Vin - (11 - fin>dFin + / Vwall Udrwall

1—‘in Fwall

+ / Vout * (—v0qu + pn)dl oy + vyor(Vol(2) — V). (L)
Fout

Total variation of L:
0L N 0L N 0L
02 ou Op
Adjoint method. Choose Lagrange multiplier v, ¢q s.t.

0L oL

+ =0,

ou  op

then the total variation 0L can be computed simply as:

0L
0L = 50

oL =
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Derive Adjoint Systems

Expand 3= 0L 4 0 5p = (0 as

05 05
Ty ou + o

— / qV - oudx + / v - Vopdx + / Vi - oudlyy,
0 Q

Fin

op +/QV-[(5u-V)u+(u-V)5u—uA6u]dx

+ / Viall - 0ud way + / (—vVout + On(01) + Vout - Opn)dl’ = 0.
Fvvall Fout

Decompose: Jy5' = [ Jrdl + [, JodSQ.
Integrate by parts:

/(—V - v + 0,Jq)dpdx
0

+/[—Vv-u— (u-V)v—vAv+Vq+ 0uJo| - du
9
+ Boundary integral terms = 0,

for any variation du and op.

9/22 A shape optimization problem for stationary Navier-Stokes flows in 3D tubes W\ ij .gé.

vvvvvvv



Adjoint NSEs

Collect terms on each [,(---)du, [o(---)op, [(---)ou, [(---)op, obtain:

Adjoint Navier-Stokes equations.

( 1
—(Vv)'u—Vv-u+Vqg—vAv = (y — 1)k. [(p = §|u\2) n+ (u- n)u] :
< in €2,
—V-v=(y—1kau-n in{,
v=_0 on I'iy U yal,
Vv —n(u-v)—(u-n)v+gn=yu-n-u on [out,
with
Fln FOU
) = o) + (2 o), Va €9
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Shape Derivatives

Describe perturbed domains via a reference domain ():
Qp =TV](Q) ={x+tV(x),x € Q}.

Definition (Shape derivative (Sokolowski Zolesio 1992))
Let D C RY A function J : 2P — R is said to be shape differentiable, if the limit

T(QV] = lim ZHHVIED) = T
t0 t

exists for all directions V' and if the mapping V' — d.J(£2)[V] is linear and
continuous.

Typical choices for 7;|V].

= Perturbation of Identity: T;|V|(z) =z +tV(z),t > 0, x € (.
= Speed method: T;|V'|(x) = ¢(t, x) where ¢ solves the ODE
0y

E(t,x) =V(t,x), ¢0,2) =z, V(t,x) € [0,00) x Q.
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Shape Derivative of ;5

Applied above formulas, obtain:
AT @V = [ O o)V ).
Fwall

Shape gradient:
Djlgéf}/(Q> — _(anu | an">:n'|Fvvadl'
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Geometrical Constraints (1)

Impose further restrictions on the possible design by geometrical constraints:

Figure: A design space (blue) contains a tube.
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Geometrical Constraints (2)

Minimization problem with geometrical constraint G5

0 rgm Gj1 (a,p)(Q)) + aG(Q) s.t. (u, p) solves (NSEs), Vol(Q2) = 1},

with a > 0and G(Q) = |, la(x
= Barrier method. l(;(a:) = | log d(:z:, G°)| with G¢ = RAG.

= Penalty method. I (z) = (d(z, G))” with 3 > 1 and the distance function
d(z,G) = mingeq | — y.

Additional shape derivative term:

GOV = /F (V - n)i(s)ds.
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Gradient Descent Algorithm (1)

A gradient descent algorithm using Armijo linesearch:

Initial data

iy Generate mesh

Calculate shape gradient -

Linesearch
| Update mesh

Figure: A Gradient Descent Algorithm.
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Data

= Kinematic viscosity v ~ 1.56659 x 107°.

= Weighting parameter v = 0: Only consider /5.
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Numerical Results (1)

Choose the weighting parameter v = 0.
Run 30 gradient-descent iterations (=~ 10 days).

lteration

J12

Reduce

o

182.07227883754

0%

180.929940529294

0.63%

180.136772627044

1.06%

179.571215644196

1.37%

179.091345594335

1.64%

178.804927417778

1.79%

178.048912220916

2.2%

177.935313457448

2.27%

177.907822689922

2.29%

OO NP WDND —

177.368528982915

2.58%

177.354503052929

2.59%

177.353679949393

2.59%

176.874239498098

2.85%

176.872879859059

2.86%

176.872793330895

2.86%
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Numerical Results (2)

Iteration | 715 Improvement
15 176.397008800941 3.12%
16 176.39201327152 3.12%
17 176.391228177362 3.12%
18 176.027299330372 3.32%
19 176.025503228316 3.32%
20 176.025478930617 3.32%
21 175.583524795214 3.56%
22 175.580539111237 3.57%
23 175.580538614767 3.57%
24 175.377206316433 3.68%
25 175.375696397475 3.68%
26 175.375696266596 3.68%
27 175.117224921322 3.82%
28 175.115844803727 3.82%
29 174.771828640699 4.01%
30 174.656762605995 4.07%
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Simulation Results

(a) Initial tube. (b) Optimized tube after 30 gradient iterations.

Figure: Initial vs. Optimized Tubes.

19/22

A shape optimization problem for stationary Navier-Stokes flows in 3D tubes

ssssssssss



Meshes
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(b) Geometrical Constraint with Mesh.

(a) Tube with Mesh.
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Challenges

= Model reduction: Replace NSEs with high Reynolds number with turbulence
models in 3D

» Small eddies resolution

= Time dependent case
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