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Combustion Engines

(a) lexusenthusiast.com.
(b) BMW Combustion Engine (bmwblog.com).

(c) Ferrari Combustion Engine. (d) A beautiful combustion engine.

Figure: Various Combustion Engines.

2/22 A shape optimization problem for stationary Navier-Stokes flows in 3D tubes

https://lexusenthusiast.com/2018/04/24/internal-combustion-engines-remain-priority-at-toyota/
https://www.bmwblog.com/2019/06/27/bmw-sees-internal-combustion-engines-still-going-for-a-couple-decades/
https://www.pinterest.es/pin/816136763692046539/


Modeling Air Ducts

A schematic geometry and its boundary:

Figure: Simple sketch of an air duct.

Target: Optimize the shape of air ducts.
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Stationary Navier-Stokes Equations

Stationary NSEs for velocity u and kinematic pressure p:
−ν∆u + (u · ∇)u +∇p = f in Ω,

∇ · u = 0 in Ω,
u = fin on Γin,
u = 0 on Γwall,

−ν∂nu + pn = 0 on Γout,

(NSEs)

where

ν: kinematic viscosity

f : source term

fin: inflow profile at Γin
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Cost Functionals (1)

Main Problem. Find an Ω ∈ Oad s.t. 2 criteria are considered:

1. Flow Uniformity at the Outlet.

The uniformity of the flow upon leaving the outlet plane is an important design
criterion of e.g. automotive air ducts.

Other use: Efficiency of distributing fresh air inside the car.

Consider:

J1(u(Ω)) := 1
2

∫
Γout

(u · n− ud)2,

where ud is the desire velocity in the outlet plane.

5/22 A shape optimization problem for stationary Navier-Stokes flows in 3D tubes



Cost Functionals (2)

2. Dissipated Power. Compute power dissipated by a fluid dynamic device as the
net inward flux of energy.
I.e., total pressure, through the device boundaries for smooth pressure p:

J2((u, p)(Ω)) := −
∫

Γ

(
p + 1

2
|u|2

)
u · ndΓ.

But p ∈ L2(Ω) only, consider an approximation of J2 instead:

J ε
2 ((u, p)(Ω)) := −|Γin|

|Γεin|

∫
Γε

in

(
p + 1

2
|u|2

)
u · n− |Γout|

|Γεout|

∫
Γε

out

(
p + 1

2
|u|2

)
u · n.

Figure: Simple sketch of Geometry Ω with Modified Inlet Γε
in and Outlet Γε

out.

Note. Different measures are applied for Γin and Γεin.
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Mixed Cost Functional & Optimization problem

Mixed cost functional. Take both criteria into effect, with the weighting parameter
γ ∈ [0, 1]:

J ε,γ
12 ((u, p)(Ω)) := γJ1(u(Ω)) + (1− γ)J ε

2 ((u, p)(Ω)). (J12)

Shape Optimization Problem.
Objective: Minimize the cost functional J ε,γ

12 : Oad → R over some admissible
subset Oad of 2Rd := {Ω; Ω ⊂ Rd}, i.e.

min
Ω∈Oad

J ε,γ
12 ((u, p)(Ω)) s.t. (u, p) solves (NSEs), Vol(Ω) = V0. (SOP)
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Lagrangian & Adjoint Method

Lagrangian:

L(u, p,Ω,v, q,vin,vwall,vout, vVol) := J ε,γ
12 ((u, p)(Ω))

+
∫

Ω
v · (−ν∆u + (u · ∇)u +∇p− f)dx +

∫
Ω
q∇ · udx

+
∫

Γin

vin · (u− fin)dΓin +
∫

Γwall

vwall · udΓwall

+
∫

Γout

vout · (−ν∂nu + pn)dΓout + vVol(Vol(Ω)− V0). (L)

Total variation of L:

δL = δL
δΩ

+ δL
δu

+ δL
δp
.

Adjoint method. Choose Lagrange multiplier v, q s.t.
δL
δu

+ δL
δp

= 0,

then the total variation δL can be computed simply as:

δL = δL
δΩ
.
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Derive Adjoint Systems

Expand δL
δu + δL

δp = 0 as

∂J ε,γ
12

∂u
δu + ∂J ε,γ

12
∂p

δp +
∫

Ω
v · [(δu · ∇)u + (u · ∇)δu− ν∆δu] dx

−
∫

Ω
q∇ · δudx +

∫
Ω

v · ∇δpdx +
∫

Γin

vin · δudΓin

+
∫

Γwall

vwall · δudΓwall +
∫

Γout

(−νvout · ∂n(δu) + vout · δpn)dΓ = 0.

Decompose: J ε,γ
12 =

∫
Γ JΓdΓ +

∫
Ω JΩdΩ.

Integrate by parts:∫
Ω

(−∇ · v + ∂pJΩ)δpdx

+
∫

Ω
[−∇v · u− (u · ∇)v− ν∆v +∇q + ∂uJΩ] · δu

+ Boundary integral terms = 0,
for any variation δu and δp.
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Adjoint NSEs

Collect terms on each
∫

Ω(· · · )δu,
∫

Ω(· · · )δp,
∫

Γ(· · · )δu,
∫

Γ(· · · )δp, obtain:

Adjoint Navier-Stokes equations.

−(∇v)>u−∇v · u +∇q − ν∆v = (γ − 1)kε
[(
p + 1

2
|u|2

)
n + (u · n)u

]
,

in Ω,
−∇ · v = (γ − 1)kεu · n in Ω,

v = 0 on Γin ∪ Γwall,
−ν∂nv− n(u · v)− (u · n)v + qn = γ(u · n− ū) on Γout,

with

kε(x) := |Γin|
|Γεin|

χΓε
in
(x) + |Γout|

|Γεout|
χΓε

out
(x), ∀x ∈ Ω,
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Shape Derivatives

Describe perturbed domains via a reference domain Ω:

Ωt := Tt[V ](Ω) := {x + tV (x);x ∈ Ω}.

Definition (Shape derivative (Sokolowski Zolesio 1992))
Let D ⊂ Rd. A function J : 2D → R is said to be shape differentiable, if the limit

dJ(Ω)[V ] := lim
t↓0

J(Tt[V ](Ω))− J(Ω)
t

exists for all directions V and if the mapping V 7→ dJ(Ω)[V ] is linear and
continuous.

Typical choices for Tt[V ].

Perturbation of Identity : Tt[V ](x) = x + tV (x), t ≥ 0, x ∈ Ω.

Speed method : Tt[V ](x) = ϕ(t, x) where ϕ solves the ODE

∂ϕ

∂t
(t, x) = V (t, x), ϕ(0, x) = x, ∀(t, x) ∈ [0,∞)× Ω.
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Shape Derivative of J ε,γ
12

Applied above formulas, obtain:

dJ ε,γ
12 (Ω)[V ] =

∫
Γwall

(∂nu · ∂nv)(V · n).

Shape gradient:

DJ ε,γ
12 (Ω) = −(∂nu · ∂nv)n|Γwall.
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Geometrical Constraints (1)

Impose further restrictions on the possible design by geometrical constraints:

Figure: A design space (blue) contains a tube.
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Geometrical Constraints (2)

Minimization problem with geometrical constraint G:

min
Ω⊂Oad∩G

J ε,γ
12 ((u,p)(Ω)) + αG(Ω) s.t. (u, p) solves (NSEs), Vol(Ω) = V0,

with α > 0 and G(Ω) :=
∫

Ω lG(x).

Barrier method. lG(x) := | log d(x,Gc)| with Gc = Rd\G.

Penalty method. lG(x) := (d(x,G))β with β ≥ 1 and the distance function
d(x,G) := miny∈G |x− y|.

Additional shape derivative term:

dG(Ω)[V ] =
∫

Γwall

(V · n)lG(s)ds.
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Gradient Descent Algorithm (1)

A gradient descent algorithm using Armijo linesearch:

Initial data

Generate mesh

Calculate shape gradient

Linesearch

Update mesh

Mesh quality

bad

good

Figure: A Gradient Descent Algorithm.

15/22 A shape optimization problem for stationary Navier-Stokes flows in 3D tubes



Data

Kinematic viscosity ν ≈ 1.56659× 10−5.

Weighting parameter γ = 0: Only consider J ε
2 .
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Numerical Results (1)

Choose the weighting parameter γ = 0.
Run 30 gradient-descent iterations (≈ 10 days).

Iteration J12 Reduce
0 182.07227883754 0%
1 180.929940529294 0.63%
2 180.136772627044 1.06%
3 179.571215644196 1.37%
4 179.091345594335 1.64%
5 178.804927417778 1.79%
6 178.048912220916 2.2%
7 177.935313457448 2.27%
8 177.907822689922 2.29%
9 177.368528982915 2.58%
10 177.354503052929 2.59%
11 177.353679949393 2.59%
12 176.874239498098 2.85%
13 176.872879859059 2.86%
14 176.872793330895 2.86%
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Numerical Results (2)

Iteration J12 Improvement
15 176.397008800941 3.12%
16 176.39201327152 3.12%
17 176.391228177362 3.12%
18 176.027299330372 3.32%
19 176.025503228316 3.32%
20 176.025478930617 3.32%
21 175.583524795214 3.56%
22 175.580539111237 3.57%
23 175.580538614767 3.57%
24 175.377206316433 3.68%
25 175.375696397475 3.68%
26 175.375696266596 3.68%
27 175.117224921322 3.82%
28 175.115844803727 3.82%
29 174.771828640699 4.01%
30 174.656762605995 4.07%
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Simulation Results

(a) Initial tube. (b) Optimized tube after 30 gradient iterations.

Figure: Initial vs. Optimized Tubes.
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Meshes

(a) Tube with Mesh. (b) Geometrical Constraint with Mesh.
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Challenges

Model reduction: Replace NSEs with high Reynolds number with turbulence
models in 3D

Small eddies resolution

Time dependent case
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