
VARIATIONAL FILTERING ALGORITHM FOR INTERDEPENDENT TARGET
TRACKING AND SENSOR LOCALIZATION IN WIRELESS SENSOR NETWORK

Jing Teng, Hichem Snoussi, and Cédric Richard

ICD/LM2S, University of Technology of Troyes
12, rue Marie Curie, 10000, France

phone: + (0033) 0325715887, fax: + (0033) 0325715649, email: jing.teng@utt.fr

ABSTRACT

A novel algorithm for interdependent sensor localization and
target tracking in wireless sensor networks is proposed in this
paper. Based on range measurements between sensors and
the target, sensor location estimations and that of the target
are interdependently improved. The contribution of this work
lies in three aspects: first, the algorithm is executed on a fully
decentralized cluster scheme to reduce the energy and band-
width consumption; second, a general state evolution model
is proposed to describe the target and activated sensors, since
no a priori information of the the target motion is available;
finally, the variational method further lightens the communi-
cation burden and terminates the error propagation problem.
The effectiveness of the proposed algorithm is evaluated and
compared in terms of tracking accuracy, localization preci-
sion and execution time.

1. INTRODUCTION

Many strategic applications of Wireless Sensor Networks
(WSN), especially the target detection, surveillance and
tracking, require that the sensor locations are known [1, 2, 3].
However, it is impractical to equip each sensor with a GPS
unit in view of the configuration cost. On the other hand,
the sensor hardware is generally cheaper than the cost of ac-
curate sensor placement [4]. Random deployment is thus
more desirable especially in military applications. As a re-
sult, sensor localization research has gained a lot of atten-
tion. In earlier works, sensor localization and target tracking
are always treated as two separate phases. But in fact, the
two phases can be complementary to one another. By incor-
porating measurement information between sensors and the
target, estimations of sensors and the target can be interde-
pendently improved. This is an attractive solution for several
reasons: first, it poses no additional requirements on both the
deployment phase and sensor hardware; second, it allows the
precision of sensor localization to be continuously improved,
even during the tracking phase.

In this paper we propose a novel Variational Filtering al-
gorithm for interdependent target tracking and sensor local-
ization. The rest of the paper is organized as follows: in
section 2 we briefly summarize related existing works. The
detection model and the general state evolution model are
formulated in section 3. In section 4, the variational filter-
ing algorithm for interdependent sensor localization and tar-
get tracking (VFISLTT) is presented in detail. Finally, the
proposed schemes are evaluated by simulations in section 5.
Section 6 concludes the paper.

2. RELATED WORK
There have been some previous works using a mobile object
to assist in localizing sensors [5, 6, 7]. Most of them require
that the position of the mobile be known. Consequently, the
mobile must be constrained to a well-known trajectory or
be equipped with a GPS-like system. One exception is [6],
which builds a constraint structure as measurements become
available. Compared to [6], we employ an extensible statis-
tical model to incorporate measurements.

Simultaneous localization and mapping (SLAM) is the
process by which a mobile robot can build a map of the en-
vironment and, at the same time, use this map to compute
its own location [8]. The past decade has seen rapid and
exciting progress in solving the SLAM problem and many
compelling implementations. But it requires the control sig-
nal for the mobile robot to be known, which simplifies the
problem. Another problem labeled as Simultaneous Local-
ization And Tracking (SLAT) in [2], is analogous to our
algorithm. By incorporating the range measurements in a
Bayesian framework, a joint probability distribution over the
active sensors’ positions and the trajectory of the mobile are
updated together. As mentioned above, to avoid represen-
tation complexity and unnecessary consumption of energy
and bandwidth in the WSN, we use the Variational method
to approximate the state with an extended Gaussian distri-
bution. Furthermore, error propagation is terminated in the
VFISLTT, which is always unavoidable in other approxima-
tion methods, such as KD-tree [9] or GMM [10].

3. PROBLEM FORMULATION
3.1 Detection Model
Sensor network localization algorithms mainly rely on range
measurement, angle measurement, neighborhood proximity
or hop count methods. In this paper, we employ a realistic
range measurement detection model, where range measure-
ments are corrupted by Gaussian distributed errors:

yt
i,x =

{
‖ si−xt ‖+εi, if yt

i,x ≤ γi

0, otherwise
,

with εi ∼ N(0,σ2
i )

and yi,s = {yi, j|yi, j =‖ si−s j ‖+εi},
where j ∈ Neighbori,

yt
i = {yt

i,x,yi,s}

(1)

where yt
i,x denotes the detected Euclidean distance between

the sensor i and the target x at instant t, γi is the sensor de-
tection radius, and εi denotes the detection error of the sensor
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i. Similarly, yi,s denotes the set of Euclidean distance mea-
surements between the sensor i and its neighbor sensors They
are corrupted by the detection error εi too. yt

i gathers all ob-
servations of the sensor i at instant t. To minimize energy
and bandwidth consumption, only those sensors, which have
detected the presence of the target, exchange information be-
tween each other. Thus an activated cluster is formed to per-
form the Variational Filtering algorithm for Interdependent
Sensor Localization and Target Tracking (VFISLTT).

3.2 General State Evolution Model
Since the mobile target travels arbitrarily in the sensor
field. Instead of a traditional kinematic parameter model
[11, 12, 13], we employ the general state evolution model
[14, 15, 16], which is more adaptive to practical situation
and has no restriction on velocity and moving direction of
the target. Considering a 2D space, at instant t, the hidden
state to be estimated contains the target position xt and a set
of activated sensor positions St = {st

1,s
t
2, . . . ,s

t
m}, where m

denotes the number of sensors that have detected the target.
Take a sensor i for example, si is assumed to be a Gaussian
variable, whose expectation is its initial deployment value si,
and the precision matrix ηi indicates its position offset due to
deployment error and other spatial factors. The target xt is
assumed to be Gaussian distributed, with a random mean µ t

and a random precision matrix λ t to further capture the un-
certainty of the state distribution:






si ∼ N(si,ηi)
xt ∼ N(µ t ,λ t)
µ t ∼ N(µ t−1,λ )
λ t ∼ Wd(V ,n)

(2)

where λ is the initial precision matrix to reflect the uncer-
tainty for estimation of the target position at instant t versus
that of the former instant. The state precision matrix is mod-
eled by a d dimensional Wishart distribution, with V and n
denoting respectively the precision matrix and the degrees of
freedom. Note that · denotes the initial fixed parameter.

4. VFISLTT ALGORITHM
Given the general state evolution model described above, the
hidden state has been extended to (xt ,µ t ,λ t ,St). We use α t

to denote them, thus the distribution of interest takes the form
of posterior distribution p(α t |y1:t), where y1:t denotes range
measurements gathered previously. The variational approach
consists in approximating p(α t |y1:t) by a separable distribu-
tion q(α t), which minimizes the Kullback-Leibler (KL) di-
vergence error:

DKL(q||p) =
∫

q(α t) log q(αt )
p(αt |y1:t )dα t ,

where q(α t) = ∏i q(αi) = q(xt)q(µ t)q(λ t)q(St)
and q(St) = ∏m

i=1 q(st
i).

With variational calculus, the following approximate distri-
bution yields,

q(αi) ∝ exp〈logp(y1:t ,α t)〉∏ j '=i q(α j) (3)

where {αi} denotes the subsets of α t , which are xt ,µ t ,λ t

and St . Note that 〈.〉q denotes the expectation operator rela-
tive to the distribution q.

Taking into account the separable approximate distribu-
tion at time t−1, the filtering distribution at time t is written,

p(α t |y1:t) ∝ p(yt |xt ,St)p(xt |µ t ,λ t)p(λ t)qp(µ t), (4)

with qp(µ t) =
∫

p(µ t |µ t−1)q(µ t−1)dµ t−1.

The temporal dependence on the past is hence reduced
to incorporate only one component approximation q(µ t−1).
The communication between two successive active clusters is
then reduced to sending the mean and the precision matrix of
q(µ t−1). Since it turns out to be a Gaussian distribution. The
approximate distribution yields thus a natural and adaptive
compression of the filtering distribution, which is propagated
in the sensor network without lossy compression.

With a view to the general state evolution model in for-
mulation (2), the inference leads to the mean and the preci-
sion matrix of the target state in the following form:

q(µ t) ∼ N(µ t
∗,λ

t
∗), q(λ t) ∼ Wd(V t

∗ ,n∗)

By incorporating the equation (3), the parameters above
are iteratively updated according to the following scheme:

µ t
∗ = (λ t

∗)
−1(〈λ t〉〈xt〉+λ t

pµ t
p)

λ t
∗ = 〈λ t〉+λ t

p
n∗ = n+1 (5)

Vt
∗ = (〈xtxt T 〉−〈xt〉〈µ t〉T −〈µ t〉〈xt〉T + 〈µ t µ t T 〉+V−1)−1

µ t
p = µ t−1

∗

λ t
p = ((λ t−1

∗ )−1 +λ−1
)−1 (6)

However, the target state xt and sensors’ positions St

do not have closed forms of approximate distribution. In
order to compute their means and covariances, we employ
the Importance Sampling Scheme, where samples are drawn
from an Gaussian distribution and are weighted according to
their likelihoods. By combining the equation (3) and (4), the
likelihood expression for q(xt) and q(st

i) have the following
forms:

q(xt) ∝ ∏m
i=1 p(yt

i,x|xt ,st
i)N(xt |〈µ t〉,〈λ t〉)

q(st
i) ∝ p(yt

i,x|xt ,st
i)∏m−1

j '=i p(yt
i, j|st

i,s
t
j)N(st

i|si,ηi)

Therefore, the estimations of the target state and the sen-
sor positions are interdependently updated by incorporating
the detection model and the general state evolution model.
Generally speaking, the sensor locations need to be known
as a priori for precise target tracking. Thus, a sub-program
is launched to initially localize the activated sensors by the
classical particle filtering algorithm. Taking sensor i for ex-
ample:

st
i,(k) ∼ N(si,ηi), wt

i,(k) ∝
m−1

∏
j '=i

p(yt
i, j|st

i,s
t
j) (7)

After the initial sensor localization phase, the target state
and the activated sensor location estimations are interdepen-
dently updated:

xt
(k) ∼ N(〈µ t〉,〈λ t〉), wt

x,(k) ∝ ∏m
i=1 p(yt

i,x|xt ,st
i)

st
i,(k) ∼ N(si,ηi), wt

i,(k) ∝ p(yt
i,x|xt ,st

i)∏m−1
j '=i p(yt

i, j|st
i,s

t
j)
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Therefore, by incorporating the variational method and
the importance sampling scheme, estimations for the acti-
vated sensors and the target are interdependently improved.

Pseudocode of the VFISLTT algorithm is summarized in
Algorithm 1.

Algorithm 1: VFISLTT algorithm

Input: S, λ , V , n, µ0
∗, λ 0

∗
Output: 〈xt〉, 〈St〉
for t = 1,2, . . . , do1

for i=1 : m do2
Generate N samples {st

i,(k),w
t
i,(k)}

N
k=1 from3

N(si,ηi);
Compute the initial expectation 〈st

i〉 and4
corresponding precision matrix according to
the equation(7) ;

end5

µ t
p = µ t−1

∗ , λ t
p = ((λ t−1

∗ )−1 +λ−1
)−1,6

qp(µ t) = N(µ t
p,λ

t
p) =

∫
p(µ t |µ t−1)q(dµ t−1);

Initiate µ t
∗ = µ t

p, λ t
∗ = 2λ t

p, nt
∗ = n+1,7

V t
∗ = (2λ t

p−1 +V
−1)−1;

Calculate the initial expectations 〈µ t〉= µ t
∗ and8

〈λ t〉= nt
∗V

t
∗ ;

while not converge do9
Generate N samples {xt

(k),w
t
(k)}

N
k=1 from10

q(xt), where
q(xt) ∝ ∏m

i=1 p(yt
i,x|xt ,st

i)N(〈µ t〉,〈λ t〉);
Compute 〈xt〉= ∑N

k=1 wt
(k)x

t
(k) and11

corresponding precision matrix ;
for i=1 : m do12

Generate N samples {st
i,(k),w

t
i,(k)}

N
k=1 from13

q(st
i), where q(st

i) ∝
p(yt

i,x|xt ,st
i)∏m−1

j '=i p(yt
i, j|st

i,s
t
j)N(st

i|si,ηi);
Update the expectation 〈st

i〉 and14
corresponding precision matrix;

end15

Update the variational parameters µ t
∗, λ t

∗, nt
∗,16

V ∗
t according to the equation (5);

Re-update the expectations 〈µ t〉 and 〈λ t〉;17
end18
if hand-off operation between CHs happens then19

Communicate q(µ t) ∼ N(µ t
∗,λ

t
∗);20

else21
Replace the storage of particles in the CH by22

µ t
∗ and λ t

∗;
end23
Return the target position estimation 〈xt〉 and24
those of the activated sensors:
〈St〉= {〈st

1〉,〈st
2〉, . . . ,〈st

m〉};
end25

Fig. 1 demonstrates the Flowchart of the VFISLTT algo-
rithm. Apparently the VFISLTT algorithm is divided to three
sub-programs:
• Cluster activation and formation
• Initial cluster sensors localization
• Interdependent cluster sensors re-localization and target

tracking

Figure 1: Flowchart of the VFISLTT Algorithm

Please note that only the activated sensors are localized
at each instant. Therefore, sensors close to high traffic areas
can be continuously localized, and in turn, facilitates target
tracking with high precision.

5. EVALUATION AND SIMULATION
The performance of the VFISLTT algorithm is quantified by
three criteria:
• tracking accuracy: the mean square error (MSE) between

the estimation and the true trajectory of the mobile target
• localization precision: the MSE between the estimations

and the sensor positions
• execution time

Considering a target tracking duration of 320 time slots,
400 sensors are initially set to be uniformly deployed in a
2 dimensional field (100× 100m2). The sensor detection
radius is set to 9 m to ensure coverage condition. Due to
the spatially varying environment factors and deployment er-
rors, sensors are in fact randomly distributed around their
initially set locations S = {s1,s2, . . . ,s400}. We assumed
that si ∼ N(si,ηi), where ηi are identical for all the sen-
sors. These parameters involved in the general state evolu-
tion model (2) are initially set as:

V =
[

10 0
0 10

]
, ηi =

[
1/5 0

0 1/5

]
,

λ =
[

1/1000 0
0 1/1000

]
, n = 1

The low state precision λ and the degree of freedom n al-
low a general non informative prior. The tracking perfor-
mance of the VFISLTT algorithm is evaluated by the Mean
Square Error (MSE) in Fig. 2. We can find the error distribu-
tions of the sensor deployment and the localization of them in
Fig. 3. It shows that sensor deployment errors are Gaussian
distributed, after the execution of the VFISLTT algorithm,
most of the sensors are localized within a much smaller error.
Fig. 4 compares the MSE of sensor deployment and their lo-
calization. Note that only sensors, which have detected pres-
ence of the target, are localized by the VFISLTT algorithm.

We also compare our VFISLTT algorithm with the tra-
ditional strategy, which localizes all the sensors in the field
and then tracks the target based on the sensor location esti-
mations. In the traditional strategy, we deploy the classical
particle filtering algorithm to localize the sensors, then vari-
ational method and importance sampling scheme are used to
track the target. By repeatedly executing the two algorithms
on the same configuration, the average values of the three
criteria are obtained to evaluate their performance. Table.1
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Figure 2: Tracking Performance of the VFISLTT Algorithm
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Figure 3: Error Distributions Comparison between the Sen-
sor Deployment & the Sensor Localization

shows that the VFISLTT algorithm outperforms the tradi-
tional one on interdependently and continuously improving
estimates of both the sensors and the target. The tracking ac-
curacy and the localization precision are quantized in MSE.

Evaluation Traditional VFISLTT
Tracking accuracy 11.5661 1.4176
Localization precision 8.59 1.19
Execution time (s) 0.0700 0.0624

Table 1: Evaluation of Traditional and VFISLTT Algorithms

6. CONCLUSION

A variational filtering algorithm for interdependent sensor lo-
calization and target tracking has been proposed in the con-
text of WSN. Since no a priori information on the target and
the activated sensors is available, VFISLTT algorithm aimed
at continuously updating and improving the estimation of
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Figure 4: MSE Comparison between the Sensor Deployment
& the Sensor Localization

sensor positions and that of the target. To minimize resource
consumption in WSN, the algorithm is executed on a fully
decentralized cluster scheme. That is to say, only sensors
which have detected the target are activated to form a clus-
ter in order to process data. The variational method allows
an implicit compression of the exchanged statistics between
clusters. It further reduces energy and bandwidth consump-
tion, while terminate the essential error propagation problem,
which is always unavoidable in other approximation meth-
ods. As the target can travel arbitrarily in WSN, and loca-
tion information of the activated sensors is not accurate too,
a general state evolution model is proposed to describe the
hidden state, which is more adaptable to the non-linear/ non-
gaussian situation than the other kinematic parameter model.
In conclusion, as the target move freely in WSN, a large
number of range measurements are generated, which facil-
itate both the localization of the activated sensors and the tar-
get tracking. By incorporating these measurements into the
VFISLTT algorithm, estimations of sensors and that of the
target are interdependently and continuously improved.
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