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A B S T R A C T   

Urban areas and their vertical characteristics have a manifold and far-reaching impact on our environment. 
However, openly accessible information at high spatial resolution is still missing at large for complete countries 
or regions. In this study, we combined Sentinel-1A/B and Sentinel-2A/B time series to map building heights for 
entire Germany on a 10 m grid resolving built-up structures in rural and urban contexts. We utilized information 
from the spectral/polarization, temporal and spatial dimensions by combining band-wise temporal aggregation 
statistics with morphological metrics. We trained machine learning regression models with highly accurate 
building height information from several 3D building models. The novelty of this method lies in the very fine 
resolution yet large spatial extent to which it can be applied, as well as in the use of building shadows in optical 
imagery. Results indicate that both radar-only and optical-only models can be used to predict building height, 
but the synergistic combination of both data sources leads to superior results. When testing the model against 
independent datasets, very consistent performance was achieved (frequency-weighted RMSE of 2.9 m to 3.5 m), 
which suggests that the prediction of the most frequently occurring buildings was robust. The average building 
height varies considerably across Germany with lower buildings in Eastern and South-Eastern Germany and 
taller ones along the highly urbanized areas in Western Germany. We emphasize the straightforward applic
ability of this approach on the national scale. It mostly relies on freely available satellite imagery and open 
source software, which potentially permit frequent update cycles and cost-effective mapping that may be re
levant for a plethora of different applications, e.g. physical analysis of structural features or mapping society's 
resource usage.   

1. Introduction 

Three quarters of humanity currently lives in cities and towns 
(Dijkstra et al., 2020), and it is estimated that this trend will continue 
unabatedly. While cities only cover a small portion of the Earth's land 
surface, their impact is far-ranging as they are, for example, accoun
table for up to 80% of total energy consumption and 75% of carbon 
emissions (United Nations, 2020). For understanding urban process 
regimes, knowing building heights is key (Zhu et al., 2019), and the 
vertical structure of settlements has been identified as a central para
meter to systematize multi-dimensional urban form (Wentz et al., 
2018). Many quantities scale linearly with building height. For ex
ample, building height – or related information like floor area – has 

been shown to be an important indicator for estimating energy con
sumption (Resch et al., 2016), material stock allocation (Tanikawa 
et al., 2015), greenhouse gas emissions (Borck, 2016), human wellbeing 
and urban heat island effects (Perini and Magliocco, 2014), or the 
distribution of population (Alahmadi et al., 2013). The latter is also of 
increasing relevance as knowledge about the distribution and con
centration of the population may help in better understanding the risk 
of spreading infectious diseases (Wu et al., 2017). 

Building height can be derived with a broad variety of geoinfor
mation or remote sensing-based approaches. Nonetheless, it is a para
meter that is hard to quantify accurately and at regular intervals for 
larger areas such as complete countries and at a spatial resolution that 
approximates individual building footprints. The two-dimensional 
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building footprint from building cadasters can be extruded to three- 
dimensional cubes (often referred to as “Level-of-Detail 1” or LoD1), if 
databases include attributes like the number of floors, floor height or 
building function (Biljecki et al., 2017). The combination of cadastral 
building footprints with airborne laser scanning (ALS) represents an 
elaborated extension of the latter approach. This technique has become 
the quasi-standard for generating 3D building models at LoD2, wherein 
prototypical roof shapes are derived from the actual point cloud 
(Aringer and Roschlaub, 2014). Although open data policies are in
creasingly emerging in general (Nugroho Rininta et al., 2015), many 
datasets are still proprietary and come with considerable data purchase 
costs (e.g. Bayerische Vermessungsverwaltung, 2020). Open alter
natives to cadastral data are mostly community-based (e.g. Open
StreetMap) and as such are regionally inconsistent (Neis et al., 2013) 
and spatially incomplete (Brovelli and Zamboni, 2018; Hecht et al., 
2013). Alternatively, building height can be measured in very high 
resolution (VHR) images by (i) measuring the building's cast shadows in 
optical images (Wang et al., 2014), (ii) by photogrammetrically ana
lyzing stereo pairs of optical satellite, aerial or drone images (Stal et al., 
2013; Takaku et al., 2016; Unger et al., 2014), (iii) or by interferometric 
synthetic aperture radar (InSAR) techniques (Stilla et al., 2003). How
ever, measuring shadows is less reliable when buildings shadows 
overlap each other (Biljecki et al., 2017), in which case also the SAR 
side-looking geometry causes adverse layover and shadow effects (Stilla 
et al., 2003). Photogrammetric height retrievals from aerial images are 
more accurate than their space-based counterparts (Sirmacek et al., 
2012), which is related to an increasing error with flying altitude 
(Baltsavias, 1999). Although photogrammetry and ALS may be simi
larly accurate (Baltsavias, 1999), ALS is superior for measuring building 
height (Kaartinen et al., 2005), especially when paired with 3D city 
models where the footprints are coming from official cadasters. Not
withstanding, any acquisition technique without a global observation 
scenario, e.g. ALS, UAV, and airborne or spaceborne VHR imaging 
alike, ultimately faces challenges regarding actuality, continuity and 
regional consistency. The same applies for data affected by non-open 
data policies. For example, TerraSAR-X / TanDEM-X imagery for InSAR 
processing is freely available, but limited to an area of 100,000 km2 and 
only available for scientists and on request (DLR, 2019). 

Eventually, free and open, globally available satellite image ar
chives with standardized and consistent data processing are required to 
allow building height estimation for large areas at fine resolution. 
Among the hundreds of EO satellite missions (Belward and Skøien, 
2015), only few systems fulfill these requirements. The European Co
pernicus program (Aschbacher and Milagro-Pérez, 2012) encompasses 
the Sentinel-1 and Sentinel-2 constellations with a high potential for 
building height mapping. The Sentinel-1 constellation provides all- 
weather, day-and-night C-band Synthetic Aperture Radar (SAR) back
scatter observations at 10 m spatial gridding (Torres et al., 2012). The 
primary observation mode over land surfaces is interferometric wide 

(IW) swath, which covers a 250 km swath at two polarizations (VV and 
VH). The mission currently comprises two satellites, Sentinel-1A and 
Sentinel-1B, providing a same-orbit revisit frequency of 6 days. Due to 
lateral orbit overlaps, the actual revisit frequency increases with lati
tude; over Europe it is 1–3 days. Li et al. (2020b) have recently shown 
that Sentinel-1 backscatter is helpful for estimating 3D information in 
cities when mapping building height as an average elevation per raster 
cell, i.e. a mean value of building heights and non-built-up surfaces in- 
between. They exploited the fact that backscatter is in general posi
tively correlated with building height (Koppel et al., 2017), due to 
specular reflectance by urban structures and a combination of single 
bounce, double bounce (dihedrals), and triple bounce (trihedrals) 
scattering mechanism (Dong et al., 1997). However, the relationship 
between backscatter and height varies with building orientation re
lative to the sensor, surface material, and roughness (Corbane et al., 
2008; Kimura et al., 2005; Koppel et al., 2017; Li et al., 2016). Li et al. 
(2020b) therefore proposed an index from combined VV- and VH-po
larized SAR data and in doing so increased the predictive strength of the 
statistical relationship with building height. Nevertheless, they report 
several urban layouts and structures where this relationship is weak or 
non-existent, including effects related to double bouncing, high re
flectivity from metallic materials, as well as scattering related to tree 
canopy and building density. Therefore, it appears beneficial to add 
information from optical imagery that allows to complement ambig
uous information in the radar signal and improve the signal's correla
tion with building height. 

The Sentinel-2 satellite mission provides multi-spectral optical ob
servations in 13 wavelengths at up to 10 to 60 m spatial resolution 
(Drusch et al., 2012). The mission comprises Sentinel-2A and Sentinel- 
2B, which are operated in the same orbit with a phase delay of 180°, 
providing a nadir revisit frequency of 5 days (Drusch et al., 2012). Due 
to the wide swaths of 290 km, lateral orbital overlaps can be con
siderable and partially increase revisit frequency to 2 to 3 days. Similar 
optical Earth observation missions have already proven their ability to 
contribute to generating 3D information, e.g. to map forest height with 
Landsat data (Helmer et al., 2010; Li et al., 2011; Wang et al., 2018). Li 
et al. (2020a) have recently shown that Landsat and Sentinel-1 (among 
others) are capable of predicting building height and volume at a coarse 
1 km resolution, yet, their feature importance assessment indicates that 
their model is mostly driven by the radar data. Still, the contrast be
tween roofs and shadows is easily visible in optical winter imagery 
(Fig. 1a). Taking into account the clear seasonality of this contrast (cf. 
summer imagery, Fig. 1b), the spatio-temporal information existing in 
time series of multi-spectral data may increase the value of the re
flectance data. 

Thus, we hypothesize that the synergistic usage of information from 
multi-temporal and multi-spectral acquisitions may well complement 
the capabilities of dual-polarized radar backscatter. In this study, we 
aim at creating a methodology to predict building height from free, 

Fig. 1. Building-height induced shadows in Sentinel-2 imagery. (a): Sentinel-2A image, 05.12.2018; (b): Sentinel-2B image, 03.07.2018. The images depict the center 
of Berlin as false colour representation, i.e. R/G/B = near infrared/red/green. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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open, and globally available image archives using machine learning 
regression. We produce a building height map for entire Germany at 
unprecedented spatial resolution approximating building footprints. 
For this, we use dual-polarized Sentinel-1 and multi-spectral Sentinel-2 
time series, and rely on highly accurate training and validation data 
derived from 3D building models. We particularly address the following 
research questions:  

• Are synergistic models based on Sentinel-1 radar and optical 
Sentinel-2 data superior to using radar or optical data alone when 
predicting building height?  

• How accurately can building height be predicted?  
• Can the machine learning models be transferred to other regions 

without significant decrease in prediction accuracy? 
• What regional patterns of building height distribution can be ob

served across our study area? 

2. Study area 

Our region of interest for this study was Germany, covering a total 
area of about 357,000 km2 (Fig. 2a). Germany has about 83.1 Mio. 
inhabitants; population density is 232 cap km−2, varying from 69 cap 
km−2 to 4090 cap km−2 in the federal states (Statistisches Bundesamt 
(Destatis), 2020). About 9.6% of the area is covered by built-up infra
structure (Schug et al., 2020). The majority of buildings are residential 
(19,053,216 in 2018), half of them in the states of North Rhine West
phalia, Baden-Württemberg and Bavaria (Statistisches Bundesamt 
(Destatis), 2019b). The majority of these houses are single-family 
houses (82% one or two dwelling units); only 6% are tall multi-family 
houses (> 7 dwellings), however they make up for a third of all German 
dwellings (Landesamt für Statistik Niedersachsen, 2014). Information 
about the non-residential building stock is less reliable and conclusive; 
it is estimated that there are about 3 Mio. non-residential buildings 
(Deutsche Energie-Agentur (dena), 2016). 

3. Data 

3.1. Independent variables 

3.1.1. Sentinel-1 
Sentinel-1 backscatter data for the year 2017 were accessed from 

the data archive of the Earth Observation Data Centre (EODC, Wagner 
et al., 2012). The EODC infrastructure couples an OpenStack cloud 
platform and the supercomputing resources of the Vienna Scientific 
Cluster (VSC) with a Petabyte-scale storage that contains among other 
satellite data the complete worldwide Sentinel-1 IW swath data record. 
The EODC data archive has been built up by continuously downloading 
Sentinel data from the Copernicus data hubs. To ensure the complete
ness of the data collection and short data latencies, a “Hubwatcher” is 
deployed to monitor and cross-check several Copernicus data hubs. In 
this study we used ground range detected (GRD) and high-resolution 
(HR) IW scenes, which contain backscatter intensities at 10 m pixel 
spacing in VV or VH polarization for 2017. As suggested by Koppel et al. 
(2017), Sentinel-1 data from both orbit directions were combined to 
enlarge the observation space for maximization of information content 
and reduction of areas in radar shadows. To allow efficient spatio- 
temporal analysis of the Sentinel-1 IW swath data, we pre-processed the 
original Level-1 data to generate a Sentinel-1 data cube based upon the 
Equi7 grid (https://github.com/TUW-GEO/Equi7Grid) developed by 
(Bauer-Marschallinger et al., 2014). The pre-processing was orche
strated and carried out using the SAR Geophysical Retrieval Toolbox 
(SGRT) developed by TU Wien, whereas the Sentinel Application Plat
form (SNAP) and the freely available 3-arc sec SRTM terrain model 
(Farr et al., 2007) were used for radiometric calibration and Range 
Doppler geometric terrain correction. Border noise effects, which affect 
a certain percentage of the original Sentinel-1 IW scenes, were elimi
nated with the bidirectional all-samples approach introduced by (Ali 
et al., 2018). The so-generated Sentinel-1 data cube holds backscatter 
values (sigma-naught in dB) sampled regularly at 10 m in space and 
irregularly in time (corresponding to the exact times of the Sentinel-1 
data takes) along with local incidence angles and other relevant me
tadata. 

Fig. 2b shows data availability; overlapping orbits and looking di
rections cover a large part of the study area and increase nominal revisit 
frequency to 1–2 days for a substantial part of the study area. 

Fig. 2. Study area and data availability. (a): study area with locations of training and validation data (colored polygons); (b): number of Sentinel-1A/B acquisitions 
for 2017; (c):number of clear-sky, non-snow Sentinel-2A/B observations for 2018. 
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In a final post-processing step, all images were reprojected to 
EPSG:3035, and then split to 30 × 30 km data cubes (Frantz, 2019;  
Lewis et al., 2016) to match the characteristics of the optical data (see 
next subsection). 

3.1.2. Sentinel-2 
We downloaded all Sentinel-2 Level 1C products acquired in 2018 

with cloud coverage < 70% from the ESA API Hub. The Sentinel-2 
constellation was fully ramped up on 17 February 2018, thus providing 
full data density since this date (ESA, 2018). The study area is covered 
by 69 Military Grid Reference System (MGRS) tiles, and a total number 
of 7278 image products were available. Fig. 2c shows clear-sky data 
availability, where lateral orbital overlaps cover a large part of the 
study area and partially increase nominal revisit frequency to 2–3 days. 

The data were processed to Level 2 Analysis Ready Data (ARD) 
through the Framework for Operational Radiometric Correction for 
Environmental monitoring (FORCE, Frantz, 2019) available from 
https://github.com/davidfrantz/force. Clouds and cloud shadows were 
identified using a modified version of the Fmask algorithm (Frantz 
et al., 2016a; Frantz et al., 2015; Zhu et al., 2015; Zhu and Woodcock, 
2012), including a parallax-based extension to better separate clouds 
from bright targets such as built-up structures (Frantz et al., 2018). All 
images were radiometrically standardized as outlined by Frantz et al. 
(2016a). The atmospheric correction included radiative transfer mod
elling (Tanré et al., 1979), object-based Aerosol Optical Depth (AOD) 
estimation over dense dark vegetation (Kaufman and Sendra, 1988) and 
water (Royer et al., 1988), topographic correction using an enhanced C- 
correction as described in Buchner et al. (2020), adjacency effect cor
rection (Bach, 1995), and Nadir BRDF-adjustment using a global set of 
MODIS-derived BRDF kernel parameters (Roy et al., 2016). Surface 
reflectance retrieval, as well as AOD estimation and cloud masking 
were assessed in the Atmospheric Correction and Cloud Masking Inter- 
comparison eXercises (ACIX/ACIX-II/CMIX, Doxani et al., 2018; ESA, 
2019). The 20 m bands were improved to 10 m resolution using a data 
fusion approach, (Frantz et al., 2016b), wherein 10 m information from 
the local pixel neighborhood is used to weight the 20 m pixels using a 
weighted average approach. The 60 m bands were discarded. Even
tually, all images were reprojected to a single coordinate system 
(EPSG:3035), and then split to 30 × 30 km image chips to form data 
cubes (Frantz, 2019; Lewis et al., 2016). 

3.2. Dependent variable: building height 

For building height training and validation, we used freely and 
openly available 3D building models (3DBM) in CityGML standard 
format. 3DBMs provided by geodetic surveys are optimal input for our 
purpose, as they are high quality compilations of multiple data sources. 
The building height information is typically based on official ALS 
campaigns of the local geodetic surveys, and is merged with building 
footprints from the official cadaster. Thus, in contrast to ALS point 
clouds, height information is provided for buildings only; no further 
disentanglement between buildings and other vertical structures was 
necessary (as e.g. required by the approaches of Geiß et al. (2019) and  
Esch et al. (2020)). As outlined in the introduction however, 3DBMs 
alone are insufficient to produce nation-wide building height maps, as 
they are only available for limited areas, where local administrations 
have decided on open data policies. We have acquired five 3DBMs, 
which cover entire cities to states (Table 1) and include nearly 15 
million buildings. Those are mostly available as LoD1 or LoD2. In LoD1, 
each building is a block without considering its actual roof shape (ac
curacy of building height typically ± 5 m); LoD2 additionally contains 
a standard roof shape that best fits to the LiDAR point cloud (accuracy 
of building height typically ± 1 m). Due to the better accuracy, we only 
used LoD2 models in this study. The datasets were acquired between 
2012 (Potsdam) and 2020 (Thuringia) with some within-dataset in
consistency (Table 1). Due to the fairly low net changes in the German Ta
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building stock (Statistisches Bundesamt (Destatis), 2019a), we consider 
these temporal differences negligible given the purpose of this study. 

3.3. Other data 

Similar to Li et al. (2020b) and Li et al. (2020a), we masked our 
final building height map to areas covered by residential and non-re
sidential buildings only. Note that this was performed after the statis
tical validation. We used the European Settlement Map (ESM, Corbane 
and Sabo, 2019; Sabo et al., 2019), which is part of the Global Human 
Settlement Layer (GHSL) datasets made available by the European 
Commission (https://ghsl.jrc.ec.europa.eu/data.php). The dataset is 
based on Copernicus VHR imagery for the reference year 2015, and is 
generated at 2 m spatial resolution from Pleiades, Deimos-02, World
View-2, WorldView-3, GeoEye-01 and Spot 6/7 images, which were 
acquired between 2014 and 2016. As net change of building stock is 
positive (+114,543 new buildings in 2018 (Statistisches Bundesamt 
(Destatis), 2019a)), our final map is representative for ca. 2015. 

4. Methods 

4.1. Theoretical background 

As illustrated by Fig. 1, winter imagery in sun-synchronous optical 
imagery is much affected by shadows from vertical objects (e.g. 
buildings), whereas only the tallest objects cast a discernible shadow in 
summer imagery from Germany. In addition, there is also a distinct 
seasonal pattern in reflectance. Due to the constant overpass time of 
Sentinel-2, the sun elevation progressively increases towards the 
summer solstice, which results in decreasing building shadow lengths 
(Fig. 3a), which in turn results in a progressive increase of reflectance 
for flat areas next to buildings at 10 m spatial resolution (Fig. 3b, red 
line). Roof pixels that are sunlit throughout the entire year do not show 
this seasonal pattern (Fig. 3b, blue line). 

These findings are further corroborated by the calculations shown in  
Fig. 4. Given a 10:30 local time overpass for 52.51°N (e.g. Berlin, 
Germany), the building shadow length d can be computed with 

=d h/tan , (1)  

where h is the building height and α the sun elevation (Bivand and 
Lewin-Koh, 2019). For a large part of the year, i.e. between spring and 
fall equinox, which also coincides with highest optical data availability, 
shadow lengths for even tall buildings are usually below 50 m. Fig. 4b 
additionally demonstrates that the spatio-temporal effect found in  
Fig. 3b is also dependent on building height. In dependence of building 
height, the theoretical figure shows the number of days we are obser
ving a shadow-free ground when being 10 m, 25 m, or 50 m away from 
the building. 

4.2. Independent variables 

Considering the theoretical background, we consequently devel
oped a workflow that (1) uses radar backscatter and spectral re
flectance, and (2) synergistically includes spatial context, multi-tem
poral, multi-spectral, and multi-polarized information. We generated an 
extensive feature space from the Sentinel-1 and Sentinel-2 time series, 
which include spectral and temporal information (subsection 1), as well 
as additional spatial information in a second step (subsection 2). Both 
steps were performed using FORCE (https://github.com/davidfrantz/ 
force). For the sake of simplicity, we refer to “spectral” information 
throughout the remainder of the paper, although acknowledging that 
this is technically incorrect to some degree as e.g. different radar po
larizations are measured at the same wavelength. 

4.2.1. Spectral-temporal features 
As we identified temporal patterns in the satellite data, which are 

dependent on building height, we generated Spectral Temporal Metrics 
(STM, Mack et al., 2017; Müller et al., 2015; Potapov et al., 2009). 
These are statistical aggregations of all available high-quality ob
servations within a specified time period (one year in this case), and as 
such provide rich information on spectral-temporal variability and data 
distribution (Frantz, 2019). Due to their spatial completeness and fairly 
high robustness against different observation densities, they are optimal 
features for machine learning applications, and have proven to be ef
fective for a large variety of land cover mapping or quantitative vari
able estimation (e.g. Rufin et al., 2019; Schug et al., 2020). For the 
optical time series, only clear-sky, non-cloud, non-cloud shadow, non- 
snow observations were considered. For the radar time series, each 
observation was considered. All statistics available in FORCE (Frantz, 
2019) were used: average, standard deviation, 0/10/25/50/75/90/ 
100% quantiles, range, interquartile range, skewness, and kurtosis. The 
STMs were generated separately for each band of the SAR (2 bands, i.e. 
VV and VH polarization) and optical time series (10 land application 
bands covering VIS, NIR and SWIR domains). Additionally, six spectral 
indices derived from the optical time series were selected. The Nor
malized Difference Vegetation Index (NDVI, Tucker, 1979) and Tas
seled Cap Greenness (Crist, 1985) were selected to account for urban 
vegetation, which was e.g. problematic in the Sentinel-1-only study by  
Li et al. (2020b); two “green” indices were chosen because NDVI alone 
is less suitable in Central Business Districts where shadow is dom
inating. The Normalized Difference Built-Up Index (NDBI, Zha et al., 
2003) was used due to its sensitivity to urban areas. The Tasseled Cap 
Brightness (Crist, 1985) was chosen to capture brightness gradients of 
roofing materials. The Tasseled Cap Wetness (Crist, 1985) and modified 
Normalized Difference Water Index (mNDWI, Xu, 2006) were chosen to 
potentially account for water intermingled within the settlement, and 
as they emphasize shadows. The combination of 18 bands/indices and 
13 statistical aggregations resulted in 234 spectral-temporal features. 

4.2.2. Spatial-spectral-temporal features 
To capture the spatial characteristics originating from shadows cast 

off from nearby buildings, we computed texture metrics on top of the 
STMs, denoted as spatial STM (SSTM). We used morphological metrics 

Fig. 3. Temporal effect of building shadows in Sentinel-2 imagery. (a): sche
matic representation of the shadowing effect for winter (left, subscript W) and 
summer (right, subscript S). (b): monthly near infrared average of all available 
clear-sky observations for a building roof pixel (blue), and the ground that is 
shadowed by this building (red); the two pixels were drawn from the subset 
shown in Fig. 1. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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as they are a standard way to capture spatial context in image proces
sing (Mura et al., 2010), and can e.g. be used to extract the darkest pixel 
within a pixel's neighborhood. We computed erosion, dilation, opening, 
closing, morphological gradient, top hat and black hat using a circular 
structuring element with a 50 m radius. This radius was chosen as a 
compromise to capture most shadows (Fig. 4 shows that even taller 
buildings (30 m) cast a shadow smaller than 50 m for almost the entire 
year), while not losing too much spatial detail. This procedure resulted 
in a feature space with 234 × 7 = 1638 features. 

4.3. Dependent variable: building height 

4.3.1. Data extraction 
The 3DBMs available to us are of very high quality in terms of lo

cation, geometry, and height. However, without further processing, 
they are no adequate training (or validation) data for building height 
mapping with decameter resolution EO data. In the CityGML format, 
buildings are further split into building parts, which are the geometries 
attributed with a building height value. However, these parts can range 
from complete buildings to small building extensions or garages. 
Sampling a garage, which often is located next to a taller building, 
would lead to undesired results when paired with satellite imagery, in 
which the garage and building are intermingled in one pixel. In addi
tion, as outlined in the last section, a pure per-pixel estimate of building 
height would not work as we strive to incorporate surrounding in
formation about the building's shadows in a 50 m radius. As such, all 
building parts in the local neighborhood need to be taken into account 
to match the prepared features, which was enabled by the spatial 
completeness of the official cadaster-based input datasets. 

Fig. 5 displays a small portion of the 3DBM for Cologne as 2D re
presentation, as well as the basic principle of our sample preparation. 
To speed up processing, we first parse the 3DBM, and store the height, 
footprint area and centroid of each building part in a table. Then, we 
overlay the 10 m pixel grid of the cubed EO data (black grid). For each 
pixel, e.g. the one marked with the “+” signature, it is checked whether 
a building part centroid (point signature) is within 5 m distance (small 
circle). If yes, all building parts with their centroids closer than 50 m 
(large circle) are included as 

=z
z A

A
,p

n
p p

p
n

p (2)  

wherein the area-weighted height z is computed from the building 
height zp of all nearby building parts p. The weights are the areas of the 
building parts Ap (as indicated by different point sizes in Fig. 5). Note 
that we only average the height of buildings – and not the ground in 
between as e.g. done by (Li et al., 2020b). 

In the sampling process, selected building categories were removed, 
as we considered them structurally too specific and of rare occurrence, 
for example power poles of wind energy plants. Table 2 summarizes the 
number of potential samples per dataset; note that these numbers differ 
from Table 1 as the latter reports number of buildings, whereas the 
3DBM processing is based on building parts. 

4.3.2. Sampling for training and validation 
Within each 3DBM, we sampled sufficiently large, yet reasonably 

small datasets, which were used for training, as well as for hold-out and 
leave-one out cross-validation setups (see Table 2). This sample was 
drawn using constrained stratification of the building height: with 1 m 
resolution, the same number of samples (if available) was taken from all 
potential samples. For this, the dataset was iteratively sliced into me
ters, and within each slice, random samples were iteratively drawn. Due 
to their rare occurrence, all heights above 50 m were included in the 

Fig. 4. Computations of building shadow lengths. (a): building shadow length in dependence on season, shown for four key astronomical dates. (b): number of 
shadow-free days when being 10 m, 25 m, or 50 m away from buildings with different height. The figure reads like this: for a 10 m high building (vertical line), we 
have 69, 253 and 365 shadow-free days a year if we step 10 m, 25 m, or 50 m away from the building. 

Fig. 5. 2D representation of a small part of a 3D Building model and basic 
principle of the sample generation. The footprint of each building part is drawn, 
and the building height is represented through colour. The black grid represents 
the pixel grid of the cubed EO images. The pink cross marks the current pixel; 
pink circles represent 5 m and 50 m buffers. The black points are building part 
centroids within the 50 m radius; the point size corresponds to the footprint 
area of the building parts. Coordinate system is EPSG:3035. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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50 m slice to avoid that each and every high-rise building was selected. 
If the sample candidate was located within 50 m of another confirmed 
sample, it was discarded. This was repeated until enough samples for 
each height slice were retrieved, if all potential samples were collected, 
or if we exceeded 100,000 iterations. In order to avoid a systematic 
rejection of tall or low buildings, the iterative procedure of height sli
cing was reversed after each iteration, i.e. in the first iteration samples 
were taken from the 3 m to 4 m height slice, then samples were taken 
from the 49 m to 50 m slice, then 4 m to 5 m, then 48 m to 49 m etc. 
Acting on the assumption that the 3DBMs are fully or at least almost 
spatially complete, we further generated background samples of zero 
building height in order to familiarize the machine learning models 
with non-building surfaces, which are not included in the 3DBMs. To 
achieve this, we first generated a random point dataset across the 3DBM 
bounding box using Poisson Disc sampling (Tulleken, 2008). We sub
sequently eliminated all points that were closer than 100 m to any 
building part centroid in the full 3DBM. 

4.3.3. Modelling and validation 
Both model training and the subsequent building height prediction 

were performed using FORCE (https://github.com/davidfrantz/force). 

4.3.3.1. Preliminary analysis. First, we inter-compared the performance 
of the radar features, the optical features, as well as a synergistic 
combination of both on the Berlin dataset. This dataset contains a large 
number of potential samples, as well as a good distribution among 
height classes (Table 2), which we attribute to Berlin being a diversely 
structured city with high-risers in the city center, very dense and 
compact neighborhoods in the inner city, and village-like settlements in 
the outskirts. We trained Support Vector Machine regression (SVR) 
models using 90% of the training data. The SVR hyper-parameters were 
tuned using grid search with 10-fold cross-validation. The remaining 
subsample was used for model inspection. A comparison of SVR with 
Random Forest regression can be found in the supplemental material 
section A1. 

As the large feature space generated (1638 features) may result in 
overfitting and computational complexity related to the “curse of di
mensionality” (Rust, 1997), we reduced dimensionality to 50 features 
using a two-step feature reduction approach as documented in sup
plemental material section A2. 

4.3.3.2. Final modelling. For producing the wall-to-wall building height 
map for Germany, we combined the training data from all available 
3DBMs. First, we evaluated the model performance with a left-out 30% 
sample of the training dataset. As we did not have access to training 
data for complete Germany, we further explored the model's 
transferability and extrapolation capabilities by training models, 
where one training site was exclusively kept for model evaluation, 
whereas the remaining sites were used for training, respectively; this 
cross-validation approach yielded five models, i.e. each city was 
entirely left out once. 

We generated density plots to visually compare the relationship 

between building heights and the reference, complemented by a 
number of statistical descriptors. Ideally, this relationship is linear and 
oriented along the one-to-one line of the density plot. We therefore 
fitted a linear function to the point cloud to statistically evaluate this 
relationship. 

As the stratified sampling scheme was designed to collect the same 
number of validation samples for each meter of height, whenever 
possible, we used ordinary least squares (OLS) regression, which is a 
good estimator of how well the model is able to predict buildings of 
different height classes. The Root Mean Square Error (RMSE) based on 
this sample estimates the height class uncertainty. However, in relative 
terms, there are few high-rise buildings (only 6% of all Germany 
buildings are multi-family houses with more than 7 dwellings 
(Landesamt für Statistik Niedersachsen, 2014)). Therefore, the OLS 
estimate is skewed towards higher building heights. Consequently, we 
additionally computed weighted least squares (WLS) regressions 
wherein each building height class was weighted with the frequency of 
its occurrence in the corresponding 3DBM. The WLS estimate is more 
representative of the areal accuracy, e.g. when reporting a mean 
building height for a given area (e.g. a city, district or state). Accord
ingly, the weighted RMSE is a measure of the areal height uncertainty. 
Complementary to this, we computed both OLS and WLS regression 
through the origin, as building height is a parameter with a well-de
fined lower boundary. 

We further compared the building height distribution for all 3DBMs 
using histograms, and investigated potential saturation effects with 
increasing height by computing and visualizing mean predicted 
building height per building height class in the reference datasets (using 
the cross-validation approach). 

After assessing prediction quality, we trained the model on the full 
training sample (i.e. 100%) before model deployment for the wall-to- 
wall building height map production. The final building height pre
diction was further pruned at the lower end, i.e. all predictions < 2 m 
were eliminated. 

5. Results 

5.1. Synergistic use of radar and optical data 

We trained SVR models based on all radar, optical, and combined 
radar and optical features, respectively. The radar-only model achieved 
an uncertainty (RMSE) of 7.47 m, and frequency-weighted uncertainty 
of 4.32 m, respectively (Fig. 6a). The optical-only model (b) performed 
slightly better in all statistics. A visual inspection of the density plot 
reveals that the density is better concentrated on the one-to-one line 
and the absence of buildings (no building, i.e. reference height = 0 m) 
is better predicted. The combination of radar and optical features (c) 
outperforms both single-domain models in every statistic, e.g., both 
RMSE measures have been reduced by nearly one meter when com
pared to the radar-only model. The density plot clearly reveals less 
scatter, an improved density concentration on the one-to-one line, as 
well as an increase in regression slope, which especially in the weighted 

Table 2 
Number of retrieved samples per 3D Building Model.        

Site Berlin Hamburg Potsdam North Rhine Westphalia Thuringia  

Number of potential samples 435,610 445,729 36,592 7,651,841 960,712 
share of one to two floors (2–6 m) 15.49% 13.83% 22.75% 7.92% 5.66% 
share of three to five floors (6-15 m) 55.88% 74.37% 66.94% 89.41% 90.77% 
share of five to ten floors (15–30 m) 26.56% 11.51% 9.71% 2.62% 3.51% 
share of high-rise (30–150 m) 2.07% 0.29% 0.60% 0.05% 0.05% 
share of sky-scrapers (>  150 m) 0.0012% none none 0.0001% none 
Samples per height slice 1000 1000 1000 1000 1000 
Number of retrieved samples 29,559 21,513 10,127 28,995 20,805 
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cases is very close to the one-to-one line. A comparison of SVR with 
Random Forest regression can be found in the supplemental material 
section A1. Results for the feature selection are documented in the 
supplemental material section A2. 

5.2. Building height validation and model transfer 

The performance of the global model (Fig. 7a) with a reduced fea
ture set (trained and validated with a 70–30 data split with samples 

Fig. 6. Support Vector Regression model comparison using radar-only (a), optical-only (b), and both data sources combined (c). White Line = one-to-one; red line: 
ordinary least squares regression, orange line: ordinary least squares regression through origin; green line: weighted least squares regression; cyan line: weighted 
least squares regression through origin; RMSE: Root Mean Squared Error, RMSE’ = weighted RMSE; weights were obtained from the frequency of occurrence within 
the reference dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Building height validation on a left-out 30% sample of the global training dataset (a), on independent validation datasets left out for testing model extra
polation and transferability (b-f). White Line = one-to-one; red line: ordinary least squares regression, orange line: ordinary least squares regression through origin; 
green line: weighted least squares regression; cyan line: weighted least squares regression through origin; RMSE: Root Mean Squared Error, RMSE’ = weighted 
RMSE; weights were obtained from the frequency of occurrence within the reference dataset. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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from all sites) is very similar to the local model comprised of the 
complete feature space (Fig. 6c). A model degradation due to feature 
reduction was not observed. On the contrary, most performance in
dicators point to an increase in prediction quality. 

Fig. 7b-e illustrate the performance of the model when transferred 
to different areas and independent 3DBMs (not used for training). The 
height class uncertainty (RMSE) ranges from 3.83 m to 8.14 m, and the 
areal height uncertainty (frequency-weighted RMSE) is between 2.92 m 
and 3.55 m. In terms of OLS R2, the best correlation is found for the 
Hamburg dataset (R2 = 0.66). In other statistics, e.g. RMSE and RMSE’, 
the best performance is achieved in Potsdam or Thuringia. 

Histograms of the building height prediction and independent re
ference models (not used for training) are shown in Fig. 8a-e. For the 
city datasets, especially Hamburg and Potsdam, the height distribution 
is well matched. Almost all datasets are characterized by an over
estimation of buildings above 10 or 15 m, which is most pronounced for 
the areal states of Thuringia and North Rhine Westphalia. Above a 
height of about 30 m however (vertical lines), the overestimation 
quickly turns into a substantial underestimation. This is also where the 
histogram becomes noisier due to decreasing sample sizes. In all data
sets, a saturation effect is apparent at approximately 20 m reference 
height (Fig. 8f). 

5.3. Building height mapping 

The wall-to-wall building height map for Germany is shown in  
Fig. 9. The full dataset is openly available (Frantz et al., 2020), and can 
additionally be explored in this interactive map viewer: https://ows. 
geo.hu-berlin.de/webviewer/building-height/. Large cities like Berlin, 
Hamburg or Munich are readily visible in the overview map, as are 
large urban agglomerations, e.g. along the blue banana (Brunet, 1989) 
that covers the Ruhr District, Frankfurt Rhine-Main, Rhine-Neckar, and 

Stuttgart metropolitan areas in Western Germany as indicated by the 
blue corridor. City centers are dominated by taller buildings, whereas 
city outskirts, smaller cities or the rural landscape are generally covered 
by smaller buildings. 

Fig. 10a is characterized by taller buildings in the city center and 
decreasing building heights towards the city limits. The close-up, e.g. 
Central Berlin (a.1) reveal that our approach resolves fine-scale struc
tures like building blocks. Buildings along larger and higher-grade 
streets are generally taller. Berlin-Reinickendorf (Fig. 10a.3) is a district 
largely dominated by single-family houses. However, it also contains 
one of Berlin's largest housing estates, the “Märkisches Viertel”, where 
high-rise buildings clearly contrast with the surrounding single-family 
houses. Hamburg (Fig. 10b) is characterized by a contrast between the 
circular city core, the port (south of the river) and a large allotment to 
the East (dark blue patch). Frankfurt (Fig. 10c) is the only German city, 
where a skyline-dominating CBD is present (red area in the city core 
north of the river). On the contrary, many German cities, such as Co
logne (Fig. 10d) are rather dominated by historic buildings, where 
building height is more uniform in the city center. While the Ruhr 
district (Fig. 10e, Germany's largest metropolitan area) is characterized 
by transitions between different cities, clearly distinct nucleated set
tlements in the Stuttgart metropolitan area are shown in Fig. 10f, al
though they are formally administered as single city (Filderstadt). 
Dispersed settlements in rural Münsterland (Fig. 10g) are dominated by 
separate farmsteads with rather low buildings scattered throughout the 
area. 

5.4. Regional building height distribution 

The mean building height for three NUTS (Nomenclature of 
Territorial Units for Statistics) levels is shown in Fig. 11. NUTS-1 to 3 
represent European states, government regions and districts, 

Fig. 8. Histograms (a-e) and saturation effect (f). (a-e): the histograms are not based on the validation sample, but on the complete dataset (“Number of potential 
samples” line in Table 2), thus, they represent the complete statistical population. The y-axes are drawn logarithmic as the building height distributions are right- 
skewed, e.g. more than 96% of all buildings in Thuringia are lower than 15 m (Table 2). (f): mean predicted building height per building height class of the reference 
datasets (in 1 m increments). The y-axis is drawn logarithmic and the dashed curve represents the one-to-one line. 
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Fig. 9. Building height map for Germany. The full dataset is openly available (Frantz et al., 2020), and can additionally be explored in the interactive map viewer at 
https://ows.geo.hu-berlin.de/webviewer/building-height/. 
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respectively. On the NUTS-1 level, the city-states Berlin, Hamburg and 
Bremen show highest mean building height. The areal states with 
highest and lowest buildings are North Rhine Westphalia and Bran
denburg, respectively. On the NUTS-3 level, districts with large cities, 
e.g. Frankfurt, Munich, Stuttgart, Cologne, Düsseldorf and several cities 
in the Ruhr district exhibit even higher building heights than the city 
states. Frankfurt hosts Germany's highest buildings in its banking dis
trict with a mean building height across the entire city district of 
13.7 m. Areas along the blue banana belt are also covered with higher 

buildings than surrounding areas. In general, it appears that there is a 
trend towards lower buildings in East Germany, which may be a result 
of different planning policies before Germany's reunification. The more 
detailed NUTS levels indicate, however, that regions and districts with 
low building height are not exactly aligned with the former border 
between West and East Germany (red line). There are larger areas with 
low buildings in northern Lower Saxony and eastern Bavaria, too. In 
addition, building heights in southern Saxony and Thuringia do not 
differ substantially from other districts in West Germany. 

Fig. 10. Building height close-ups. (a) Berlin with subsets depicting Berlin Center (a.1–2) and Berlin Reinickendorf (a.3–4) in the height map and in VHR true colour 
(Sentinel-2 Q50 STM); (b): Hamburg; (c): Frankfurt; (d): Ruhr District (Oberhausen); (e): Cologne; (f): nucleated settlements in Stuttgart metropolitan area; (g): 
dispersed settlements near Münster. The colour ramp corresponds to Fig. 9. 
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6. Discussion 

6.1. Synergistic use of radar and optical data 

While radar is known to be sensitive to building height (Koppel 
et al., 2017), mapping from optical data was previously limited to VHR 
imagery, wherein either shadow measurement techniques or photo
grammetric analysis was employed. However, as outlined in section 
4.1, spatial and temporal patterns of building shadows are even ob
servable in optical decameter resolution imagery. Our findings indicate 
that machine-learning based models are capable of predicting building 
height from both radar-only and optical-only data with similar perfor
mance, with a slightly better performance for optical data (Fig. 6). It 
appears that the optical-only results have less scatter in the density plot, 
and thus a smaller uncertainty (RMSE). In addition, the height in the 
absence of a building (reference height = 0 m) is better predicted in the 
optical case. Nevertheless, the synergistic combination of radar and 
optical data outperformed both single domain models. 

It is known that the relationship between backscatter and building 
height is adversely affected by several effects. We aimed at reducing the 
effect of building orientation by using both polarizations (Li et al., 
2020b), as well as by using data from both ascending and descending 
radar orbits (Koppel et al., 2017; Li et al., 2020a), which however may 
result in some uncertainty where viewing directions do not overlap (cf.  
Fig. 2b). Other geometric effects like urban layouts and structures 
causing double-bouncing effects, as well as overlay effects with in
creasing building density affect the results, too (Li et al., 2020b). Due to 
the side-looking view geometry, these effects cannot be fully compen
sated for when using radar data only, whereas such geometric effects 
are nearly non-existent in nadir-looking optical data. Unlike radar data, 
optical images are also not adversely affected by specific surface ma
terials, e.g. specular reflectance over metal roofs that results in a loss of 
signal. On the contrary, the multi-spectral information likely provides 
explanatory power, as e.g. lower buildings in Germany are usually 
covered with roof tiles, whereas taller buildings often have flat roofs 
covered in other materials. Li et al. (2020b) further noted that tree 
canopies adversely affect building height predictions with radar data. 

We consider that optical imagery has both advantages and dis
advantages with regards to trees. On the one hand, multi-spectral and 
multi-temporal observations are expected to provide explanatory power 
as e.g. suggested by Li et al. (2020a), as e.g. low single-family buildings 
are often embedded in settlement forms with a high share of tree cover. 
On the other hand, we approximate shadowing effects through texture 
metrics. Thus, any strong image contrast can potentially result in the 
prediction of spurious heights, e.g. along avenues. To minimize this 
adverse effect, our approach is best paired with existing settlement 
extent layers, which was also done by (Li et al., 2020a; Li et al., 2020b). 
In our case, we masked our final map with the European Settlement 
Map. Despite its challenges (some residential streets classified as 
building and a large missing data patch of 94.7 km2 in North Rhine 
Westphalia (51.497° N, 7.271° E), it is provided at optimal spatial re
solution for our purpose, and is distributed with a free and open data 
license. 

6.2. Prediction quality 

6.2.1. Validation of model 
The quantitative validation on the left-out 30% global sample re

veals a proportional relationship between predicted and reference 
height (Fig. 7a), which visually is close to the one-to-one line for a 
substantial part of the data range. The sampling scheme collected the 
same number of samples for each meter of height between 3 m and 
50 m, wherever possible. Thus, OLS statistics between predicted and 
reference height are good estimators of prediction quality across dif
ferent height classes. We observe a linear relationship (R2 = 0.61), thus 
our model is well capable of estimating building heights across most of 
the observed range of building height. However, the OLS estimates are 
skewed towards high-rise buildings, which in relative terms are rare in 
Germany. Thus WLS statistics, wherein each building height class was 
weighted with the frequency of its occurrence are more representative 
of the areal accuracy, and the corresponding RMSE is a measure of the 
areal height uncertainty. The WLS estimates are somewhat better than 
the OLS estimates: regression slope is closer to one, intercept closer to 
zero and RMSE is substantially lower (3.02 m vs 6.07 m), which all 

Fig. 11. Mean building height per NUTS unit; NUTS-1 to 3 represent states, government regions and districts, respectively. The red line represents the former border 
between West and East Germany (the former Inner-Berlin border is not drawn for graphical reasons). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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suggests good prediction quality for the most frequently occurring 
building heights. 

6.2.2. Model transfer (Transfer of model for national-scale mapping) 
Validation on different areas with independent reference data (i.e. 

entirely left-out) suggests that the regional model transfer was suc
cessful and the resulting density plots (Fig. 7b-e) show a similar accu
racy as the global validation (Fig. 7a). For some datasets, selected 
statistics are better, e.g. RMSE in Potsdam and Thuringia. Compared to 
all other datasets, both Potsdam and Thuringia have very few buildings 
taller than 20 m, which accordingly lowers RMSE, which is also re
flected by smaller differences in the frequency-weighted RMSE between 
datasets. 

The lowest transfer performance is observed for the state of North 
Rhine Westphalia with RMSE of 8.14 m, R2 of 0.46 and regression slope 
below 0.5. North Rhine Westphalia is the industrial core region of 
Germany; thus, many high-rising industrial buildings are located in this 
state, including tall factories but also many vertical structures like in
dustrial smoke pipes, silos, or cooling towers. As we attempted to col
lect the same number of samples for each meter of height in the vali
dation data, most of those tall infrastructures are included in the North 
Rhine Westphalia sample – although their relative proportion is com
parably low (see Fig. 8). Accordingly, the OLS estimate is skewed to a 
larger degree as compared to the other datasets. This is readily visible in 
the density plots, wherein many buildings taller than 25 m are present, 
for which we additionally observe the most scatter (i.e. highest un
certainty). When applying the WLS-regression, the performance on the 
North Rhine Westphalia is much better, which suggests that the pre
diction of the most frequently occurring buildings is robust. The 
weighted RMSE is also more similar to the other datasets, which in
dicate that the areal height uncertainty is fairly uniform across Ger
many. 

Our model shall be transferrable e.g. to neighboring countries that 
are characterized by similar building structures and material composi
tion. From our results (especially the North Rhine Westphalia model 
transfer evaluation), we, however, expect that the model cannot be 
transferred without adaptations to regions that are too distinct from the 
settings in Germany, both in terms of climatic and structural properties 
(e.g. sky-scraper dominated cities in the U.S. or cities in deserts). When 
including such cases in the training sample (as e.g. by including samples 
from North Rhine Westphalia in the global model), we presume that the 
methodology might well be transferable to other parts of the globe. 
However, testing these hypotheses is out of scope of this paper, but 
merits future research. 

6.2.3. Saturation 
Despite the proportional relationship between predicted and re

ference building height, we generally observe a saturation effect above 
20 m (Fig. 8f). Note however, that these are average numbers, higher 
values than 20 m do exist in our results, and Fig. 8a-e) indicates that in 
terms of building height frequency on the city to state level, under
estimation does not occur until about 30 m. This confirms findings from  
Koppel et al. (2017), who report a saturation at 20 m due to the overlay 
effect at 41–46° incidence angle in Sentinel-1 data on Tallinn. It appears 
that the additional optical data cannot fully compensate for this. This 
may be due to physical limitations, as e.g. shadows do not have a 
multiplicative darkening effect when a shadow overlays on other 
building's shadows. However, the saturation may simply be an effect of 
an insufficient number of high-rise buildings in our training data. Ma
chine learning regression usually works best if the predicted values are 
well inside the trained range. We hypothesize that our method would 
account better for high-risers by significantly increasing their occur
rence in the training dataset. This however, would need to be tested in 
other study areas (e.g. in the U.S.) as these building types are rare in 
Germany (cf. Table 2). For reporting statistics for larger areas, e.g. for 
administrative units, we consider this effect to be negligible due to the 

rare occurrence of this building category in Germany. 

6.3. Inter-comparison with a recent 3D mapping product 

Great advances have been made to map building height at spatial 
resolutions of 0.5 km to 1.0 km (Li et al., 2020a; Li et al., 2020b). Our 
maps presented in Fig. 9 and Fig. 10, as well as the online map (http:// 
ows.geo.hu-berlin.de/webviewer/building-height) add to these ad
vances by offering a further extension towards much higher spatial 
resolution. Our maps resolve fine scale built-up structures both in rural 
and urban contexts, e.g. different building blocks or even building 
footprints in the case of large buildings or farmsteads (see Fig. 10a.3 
and g). However, it needs to be emphasized here that some care needs 
to be taken when interpreting this 10 m building height map. Our de
pendent variable is the average building height within a 50 m radius 
around the pixel of interest, thus, in dense and heterogeneous neigh
borhoods, we are still predicting a local mixture of different building 
heights. This is similar, although less pronounced, to previous ap
proaches with coarser resolution. Our map can be readily aggregated to 
coarser spatial resolution to negate such issues if needed. Nevertheless, 
our approach allows for a comparative interpretation of highly detailed 
spatial patterns, which is not possible when directly mapping at coarse 
resolution. 

We further inter-compared the final building height map with the 
1 km map published by Li et al. (2020a), which was produced with a 
generalized, inter-continental model that has seen training data across 
the United States, China, and Europe. To homogenize the datasets as far 
as possible, we clipped the Li map to Germany, and aggregated our map 
to 1 km using average resampling (Fig. 12). Both approaches yield si
milar results for highly urbanized areas (see Fig. 12 top: Frankfurt 
Rhine-Main agglomeration). However, the predictions for rural and 
suburban areas are less congruent (see both Frankfurt Rhine-Main 
surroundings, as well as Berlin surroundings in the second row). Our 
map has fewer nodata values: this is a direct result of the different 
settlement masks and not related to the building height prediction. Still, 
outside of urban agglomerations, the Li map features very homogenous 
predictions, whereas our predictions are typically higher, and with 
more variability; see e.g. the differentiation between medium regional 
centers with ten thousands of residents (e.g. Eberswalde; green box) 
and small settlements. 

A portion of the data is stretched along the one-to-one line (Fig. 13); 
however, the vast majority of pixels are located in a cluster with ca. 5 m 
buildings in the Li dataset, for which our map indicates a larger 
variability. This results in a rather low statistical relationship with 
R2 = 0.27. Note that the disagreement at ca. 32 m in the Li map is a 
result of spurious estimates in surface mining areas, only affects a fairly 
small number of pixels, and is related to commission errors in both 
settlement masks. When stratifying building height predictions by the 
average built-up fraction within 1 km cells as derived from Schug et al. 
(2020), both predictions are fairly similar when built-up density 
is > 50% (Fig. 13b-c); the linear relationship between the two predic
tions for these pixels yields R2 = 0.66, which is significantly higher 
than for the complete dataset (Fig. 13a). In the Li map, the variability of 
predicted building height decreases with decreasing built-up density, 
whereas the variability is fairly constant for all densities in our map. 
Also, the Li building height predictions are positively correlated with 
building density – as already reported by Li et al. (2020a). However, 
this relationship is much weaker in our case. We hypothesize that this 
difference is because of two main reasons: 

• When predicting building height, uncertainty increases with re
solution. This effect is well documented in Li et al. (2020b), and our 
findings quantify this uncertainty for our map (cf. Fig. 7a RMSE 
measures).  

• There appears to be a loss of sensitivity for sparsely populated areas 
in the Li map. We hypothesize that this is because the “aggregate- 
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then-predict” method hits a spectral-mixture related limit when 
buildings become underrepresented in a pixel. This seemingly re
sults in a dependency of the building height prediction on building 
density. In our “predict-then-aggregate” case, the 1 km average may 
be composed of a single building, for which our approach is sensi
tive enough. However, due to bullet one, a larger uncertainty ap
plies as compared to the other strategy. 

In summary, both 1 km products are similar for highly urbanized 
areas, whereas our map shows more variation in rather sparsely po
pulated areas due to the absent dependency on building density when 
originally mapping building height at high resolution. 

6.4. Regional distribution 

Across Germany, mean building height varies considerably 
(Fig. 11). Unsurprisingly, mean building height is higher for adminis
trative units that are mostly comprised of large cities, e.g. Hamburg and 
Berlin on the state level, as well as other large cities like Frankfurt on 
the district level. The state level analysis implies that buildings are 
generally lower in Eastern Germany as compared to the West. The re
gion and district analysis however suggests that this is unrelated to the 
former Inner-German border and thus not an effect of different socio- 
political systems. Instead, building height appears to be robustly de
pendent on population density (see Fig. A7 in the supplemental 

Fig. 12. Inter-comparison of building height prediction with Li et al. (2020a) for Frankfurt Rhine-Main (a-c) and Berlin surroundings (d-f). (a,d): aggregated building 
height prediction as presented in this study; (b,e) building height prediction of Li et al. (2020a); (c,f) population per settlement (GeoBasis-DE / BKG, 2020). 

Fig. 13. Inter-comparison of building height prediction with Li et al. (2020a). a): density plot; white Line = one-to-one; red line: ordinary least squares regression, 
orange line: ordinary least squares regression through origin; RMSE: Root Mean Squared Error; note the non-linear colour ramp. (b-c): boxplot of the building height 
predictions per built-up density (Schug et al., 2020), as well as statistical relationship between building height and built-up density. Only pixels with valid predictions 
in both datasets were investigated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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material), which is probably due to a mutual interdependence of eco
nomic pull and building height. 

7. Conclusion 

This study presented a methodology to predict building height using 
a synergistic combination of dual-polarized Sentinel-1A/B and multi- 
spectral Sentinel-2A/B time series using a 10 m grid resolving local 
structures both in rural and urban contexts. Our findings confirm our 
hypothesis that the combined usage of optical and radar data excels the 
usage of one data source alone. We employed machine learning re
gression to predict building height using highly accurate training and 
validation data derived from 3D building models. We rigorously re
ported on prediction quality as well as on the accuracy of spatially 
transferring the model. We have inter-compared our map with a recent 
dataset and found that differences are mostly due to differences w.r.t. 
the data aggregation strategy. We further showed that building height 
varies considerably across Germany with lower buildings in less densely 
populated areas in Eastern and South-Eastern Germany. As demon
strated in this paper, we emphasize the straightforward applicability of 
this approach on the national scale as it relies on freely available sa
tellite imagery and open source software, which potentially permit 
frequent update cycles and cost-effective mapping that may be relevant 
for a plethora of different applications. We conclude that the applica
tion of our method could be especially beneficial in countries, where 
information on building height is only available for smaller areas. 
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