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Abstract—Modern automotive and avionics embedded systems
integrate several functionalities that are subject to complex tim-
ing requirements. A typical application in these fields is composed
of sensing, computation, and actuation. The ever increasing
complexity of heterogeneous sensors implies the adoption of
multi-rate task models scheduled onto parallel platforms. Aspects
like freshness of data or first reaction to an event are crucial
for the performance of the system. The Directed Acyclic Graph
(DAG) is a suitable model to express the complexity and the
parallelism of these tasks. However, deriving age and reaction
timing bounds is not trivial when DAG tasks have multiple rates.
In this paper, a method is proposed to convert a multi-rate
DAG task-set with timing constraints into a single-rate DAG that
optimizes schedulability, age and reaction latency, by inserting
suitable synchronization constructs. An experimental evaluation
is presented for an autonomous driving benchmark, validating
the proposed approach against state-of-the-art solutions.

Index Terms—DAG, multi-rate, end-to-end latency, schedula-
bility.

I. INTRODUCTION

Modern automotive and avionics real-time embedded sys-
tems are composed of applications including sensors, control
algorithms and actuators to regulate the state of a system in its
environment within given timing constraints. Task chains are
commonly adopted to model a sequence of steps performed
along the control path. Complex data dependencies may exist
between task chains with different activation rates, making
it very hard to find reliable upper bounds on the end-to-end
latency of critical effect chains [1].

This problem is exacerbated by the adoption of even more
complex task models based on Directed Acyclic Graphs
(DAG) to capture the parallel activation of multiple jobs
executing on heterogeneous multi-core platforms. A recent
example in the automotive domain is given in the WATERS
industrial challenge [2], focusing on the minimization of the
end-to-end latency of critical effect chains of an autonomous
driving system involving several sensors. The application is
modeled in Figure 1, with three sensors providing input to
multiple task chains. Nodes represent tasks with different
activation periods, while edges represent the exchange of
data between tasks, forming effect chains. Reaction to input
stimuli and freshness of data are key factors to consider when
deploying the application on a selected computing platform.
Data age quantifies for how long an input data affects an
output of a task chain, i.e., it is the maximum delay between
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Fig. 1: An example of high-utilization automotive application
with tasks at different periods.

a valid sensor input until the last output related to that input in
the chain. Data age constraints are commonly found in control
systems, where the age of the data can directly influence the
quality of the control. In the considered application, key effect
chains to optimize for data age are connected to the processing
of camera frames and LiDAR point clouds: the older the input,
the less precise is the localization of the ego vehicle and the
detection of obstacles.

Another key metric to optimize is the reaction latency,
a parameter that measures the reactivity of the system to
a change in the input. It is defined as the maximum delay
between a valid sensor input until the first output of the event
chain that reflects such an input. It measures how much time
it takes for a new event to propagate through a chain. In the
considered autonomous driving example, key reaction times to
optimize are the detection of an obstacle in the driving path,
and the related actuation on the steering and breaking system
to safely avoid it in due time.

The aim of this work is to consider such systems composed
of DAG tasks having multiple rates with given constraints on
age and reaction latencies. Starting from a high-level repre-
sentation, a method is presented to create a single-rate DAG
that fulfills the given restrictions, optimizing schedulability
and end-to-end delays. To do so, a set of DAG candidates
is generated and evaluated by a constrained cost function
designed to pick the best DAG meeting the given requirements.



The paper is organized as follows: in the next section, an
overview of the state-of-the-art is given before introducing
the system model of the proposed approach. In Section IV,
the mathematical basis of the following sections is derived.
Section V gives a detailed explanation of the conversion from
the multi-rate task set to the single-rate DAG. Section VI
focuses on the requirements: end-to-end latency, schedulability
and their evaluation. Finally, we conclude with an experimen-
tal part, in which the results of our framework are shown,
comparing them with other existing methods.

II. RELATED WORK

A. End-to-end latency

A task chain is a sequence of communicating tasks in which
every task receives data from its predecessor. In literature,
two types of task chains can be found: periodic chains and
event-driven chains [3]. In the former, each task is activated
independently at a given rate, and it communicates with its
successor by means of shared variables; in the latter, task exe-
cutions are triggered by an event issued from a preceding task.
The propagation delays of a task chain affect responsiveness,
performance and stability of an application.

We hereafter focus on the periodic model, which is the
most common in the automotive domain [1]. Di Natale et
al. [4] proposed a method to evaluate the worst-case latency of
mixed chains of real-time tasks and Controller Area Network
(CAN) messages. Zeng et al. [5], [6] computed the probability
distribution, via statistical analysis, of end-to-end latencies for
CAN message chains.

Feiertag et al. [7] were the first to define data age and
reaction time and to propose a framework to calculate end-to-
end latencies in automotive systems, where each task operates
according to the read-execute-write semantic, also known as
the implicit communication model of AUTOSAR [8].

Becker et al. presented in [9] [10] a method to compute
worst- and best-case data age for periodic tasks with implicit
deadlines using implicit, explicit and Logical Execution Time
(LET) communication models. The analysis is based on Read
Interval (RI) and Data Interval (DI), which respectively are the
interval in which a task can possibly read its input data in order
to complete its execution before the deadline, and the interval
for which the output data of a task can be available to the
successor task in the chain. Multiple Data Propagation Trees
(DPT) are constructed in order to compute the data age. A
method is also described to constrain the maximum latency by
inserting job-level dependencies. A tool, called MECHAniSer
[11], is presented to compute latency values for a given task
set. Regarding the LET model, Biondi et al. [12] and Martinez
et al. [13] addressed the problem of computing end-to-end
latency bounds on multi-cores, improving the results of Becker
et al. in [10]. Our paper does not focus on the LET model,
but it aims at deriving better latency bounds for the implicit
model.

There exist other works that aim at selecting the best
periods or deadlines to minimize data age in simpler task
models. In [14], this is done on a single core platform, without

considering task chains. In [15], the authors propose a method
to find the best period to bound data freshness of task chains,
assuming the task set given in input be already schedulable.
Adapting these solutions to our setting is not trivial, because
we assume periods and deadline to be given.

B. Multi-rate DAG

In [16], Saito et al. present a framework developed for
the Robot Operating System (ROS) to handle automotive
applications with multi-rate tasks. The model assumes an
event-driven data-flow system in which a node starts when the
predecessor nodes are completed. In order to handle multi-rate
tasks, a synchronization system is adopted consisting of two
kinds of additional nodes: synch driver nodes and synch nodes.
The synch driver node is used to adjust the publishing period
of the sensors, buffering the data of the highest rate one, in
order to have a node with a unique rate for all the sensors.
Synch nodes are then inserted before the tasks to handle
buffered data. In this way, a single-rate DAG is obtained and
scheduled using a fixed-priority algorithm based on the HLBS
scheduler [17].

Forget et al. [18] faced the same problem for autopilot
applications, considering periodic tasks modeled as nodes
in a DAG with two kinds of edges: simple and extended.
Simple edges are precedence constraints between tasks having
the same rate, while extended edges are data dependencies
between tasks having different rates. To handle extended
edges, a method is proposed to generate multiple conversions
from extended edges through simple precedence constraints
between jobs, selecting a permutation that guarantees Earliest
Deadline First (EDF) schedulability.

Another conversion method from a multi-rate DAG to a
single-rate one has been proposed by Saidi et al. in [19] for
a similar DAG model. The output DAG has a period equal to
the hyper-period of the input task set. The nodes are the job
instances activated in a hyper-period for each task. Edges are
precedence constraints between jobs, which are inserted based
on the ratio between the periods of the communicating tasks.
A multi-core heuristic is proposed to schedule the DAG, while
minimizing a cost function related to task schedulability.

Converting the original task set to a DAG is a very
convenient approach that allows seamlessly inserting explicit
precedence constraints to control end-to-end latency. To our
knowledge, most of the other methods in the literature perform
similar conversions to impose such precedence constraints for
limiting latency. While the work of Becker [9] may appear
different, as it does not explicitly consider DAGs, it ends
up implementing a similar approach by inserting precedence
constraints between different jobs. In Section VII, we will
highlight the differences between the presented methods and
our approach.

III. SYSTEM MODEL

This work shows how to convert a Multi-Rate Task set with
Constraints into a Single-Rate Directed Acyclic Graph (DAG),



in order to analyze schedulability and end-to-end latency of
task-chains.

A. Multi-Rate Task set with Constraints

The input to the proposed method is a task set Γ, modeling
an application like the one in Figure 1, composed of N
periodic tasks τx arriving at time t = 0. Each task τx is
described by the tuple (WCx, BCx, Tx, Dx), where:
• WCx ∈ R is the Worst Case Execution Time (WCET)

of the task;
• BCx ∈ R is the Best Case Execution Time (BCET);
• Tx ∈ N is the period;
• Dx ∈ R represents the relative deadline.
The exchange of data between two tasks is modeled with as

data edge, a directed (dashed) edge between the producer and
the consumer of the data. Moreover, precedence constraints
may be specified between two tasks (τx, τy), stating that a
job τy,b cannot start until all the jobs of τx released in τy’s
period completed their execution. For this reason, precedence
constraints can be inserted only between tasks having the same
period, corresponding to job level precedence constraints.

To constrain the latency of data propagation in task-chains,
upper bounds on data age and on reaction time can be given.
The latency constraints evaluation is described in more detail
in Section VI.

Our approach is based on a global non-preemptive list
scheduling approach, as described in Section VI-B. Such a
policy allows different instances of the same task to run on
different cores, while preventing a job to be migrated during
its execution, mitigating the preemption overhead.

B. Directed Acyclic Graph

The output of the proposed method is a single-rate Directed
Acyclic Graph (DAG). Such a model is based on the parallel
DAG model proposed by Baruah in [20] to capture the
parallelism of a task to be scheduled on a multi-core platform.
In this model, tasks are represented as directed acyclic graphs,
each with a unique source vertex and a unique sink vertex.
Each vertex represents a sequential job, while edges represent
precedence constraints between jobs.

In this work, we use a similar model with a semantic
difference, i.e., a DAG represents a full application, with each
vertex representing a task instance, which we call job. In detail,
the DAG is specified by a 3-tuple (V,E,HP ) where:
• V represents the set of nodes, namely the jobs of the

tasks of Γ, and n = |V |;
• E is the set of edges describing job-level precedence

constraints;
• HP is the period of the DAG, namely the hyper-period

of the tasks involved: HP = lcm∀τx∈Γ{Tx}.
In this model, the communication between jobs utilizes

buffers in shared memory, which can be accessed by all the
cores. The time to write/read a shared buffer is included
in the execution time of each task. We adopt the implicit
communication model defined in AUTOSAR [8], solving
mutual exclusion via double-buffering. Each task complies

with a read-execute-write semantic, i.e., it reads a private copy
before the execution, and it writes a private copy at the end
of the execution [1].

C. Notation

For the sake of clarity, a standardized set of indexing names
is adopted throughout the entire paper, i.e., {i, j, k} denote
general nodes in a DAG (jobs, synchronization or dummy
nodes), {x, y, z} indicate tasks, and {a, b, c} are used for jobs.

IV. BACKGROUND

This part describes the main algorithms used in the fol-
lowing sections. A DAG is represented as an adjacency
matrix T ∈ Bn×n, in which Ti,j = 1 iff there exists an
edge e(vj , vi)1. Given this Boolean formulation of the DAG,
Boolean algebra can be applied. Therefore, the Boolean matrix
product is defined as:

C = AB, A ∈ Bn×m,B ∈ Bm×n,C ∈ Bn×n (1)

for which the cells of C evaluate to

ci,j =

m−1∨
k=0

ai,k ∧ bk,j (2)

Cell-wise Boolean operations are denoted as ∧ and ∨ for and
and or, respectively. Additionally, a maximum matrix multi-
plication is used in this work to combine Boolean matrices
with real matrices. It is defined as

C = maxProduct(A,B), (3)

A ∈ Bn×m,B ∈ Rm×n,C ∈ Rn×n

where the cells of C are calculated as

ci,j = max
k∈{0,...,m−1}

{ai,kbk,j}. (4)

A. Transitive Closure

The proposed scheduling method and the related end-to-end
latency computation make use of the mathematical principles
of graph theory [21]. One principle is the transitive closure
[22] of a DAG, defined as

D =

n∨
k=1

Tk (5)

where the exponentiation of a Boolean matrix is calculated
through the Boolean matrix product defined in (1). The tran-
sitive closure of a DAG describes the set of descendants of
each node, where di,j = 1 if there exists a path from vj to vi,
i.e., vi is a descendant of vj . Consequently, vj is an ascendant
of vi. The transpose of the descendants matrix, DT, therefore
represents the ascendants matrix.

Computing the power of k of an adjacency matrix of a graph
means calculating the nodes reachable through any k-step walk
from every node vi, which is a general result in graph theory

1We chose the column-row approach over the commonly used row-column
approach to perform state and value propagation, described later in this
section, by left-multiplying the transition matrix to a column state vector.



(Lemma 2.5 in [21]). Instead of computing the descendants
matrix via (5), we can adopt a simpler formulation. By
introducing a self-loop to every node, the power of k of
the adjacency matrix calculates not only the reachable nodes
of any k-step walk, but it also includes the reachable nodes
through all shorter walks. Therefore,

D = (T ∨ I)n ∧ ¬I (6)

where I ∈ Bn×n is the identity matrix, and ¬I is the Boolean
complement of I. Given that T is an acyclic transition matrix,
Tk has no element on the main diagonal ∀k ∈ N>0. Therefore,
the elements introduced on the main diagonal are set back to
zero.

B. State and Value Propagation

To use the DAG matrix T for the analysis of a DAG, two
propagation methods are useful. The first is a Boolean state
propagation and the second is a maximum value propagation.
Let xk ∈ Bn×1 denote a state describing which node of the
DAG is visited at iteration k. Then, the state of the DAG in
iteration k + 1 can be calculated using the Boolean matrix
multiplication as:

xk+1 = Txk (7)

In this way xk+1 will contain 1 for the nodes that are reached
with one step-walk from the ones in state xk, 0 for the others.

Similarly, a value can be propagated through the DAG. Let
vk ∈ Rn×1 denote a value for each node of the DAG at
iteration k. This value can be propagated through the paths of
the DAG by using

vk+1 = maxProduct(T,vk), (8)

where the vector vk+1 describes the value vk in the next
iteration.

In this work, we are interested in propagating execution
times along the DAG. Given that in a DAG more paths can
converge to the same node, we will propagate the maximum
value among converging paths. In the case of propagating
execution times through the DAG, we can define a value
function v as

v = maxProduct(T,v + c), (9)

with c being the execution time of each node (WC or BC).
In this equation, the value of a node is equal to the maximum
of its predecessors’ values plus its execution time. The fixed-
point v∗ solving Equation (9) can be found by iterating

vk+1 = maxProduct(T,vk + c) (10)

until it converges to v∗ when vk+1 = vk. Convergence is
guaranteed to happen after at most n iterations, because the
graph is acyclic and, therefore, all its paths are composed of
n or fewer nodes.
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Fig. 2: The simple task set defined in Example 1.
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Fig. 3: The 4-Stage DAG generation depicted.

V. DAG GENERATION

In this section, we explain how to convert a task set of
periodic tasks with constraints to a set of potential single-
rate DAGs. The explanation and mathematical derivations are
augmented with an example to illustrate the conversion.

Example 1. We consider an application modeled as a
Multi-Rate task set Γ = {τ0 = (7, 5, 10, 10), τ1 =
(13, 10, 30, 30), τ2 = (10, 8, 30, 30)}, with a constraint on the
maximum data age of chain {τ0, τ1, τ2} to be smaller than 50.
The Multi-Rate task set is represented in Figure 2.

A set of DAGs is generated using a 4-Stage DAG Genera-
tion. The set is subsequently pruned to accelerate the analysis
in the next sections.

A. 4-Stage DAG Generation

We aim at generating a set of DAGs that have the potential
to meet all the constraints. The DAG generation can be split
into four stages:

1) The respective jobs of the tasks are created.
2) The jobs are synchronized to meet their respective

deadlines.
3) The job-level precedence edges are added to address the

data edges.
4) The DAGs are simplified by removing redundant edges.

The four steps for the example are depicted in Figure 3. We
hereafter detail each step.
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1) Replication: Each task has to execute a number of jobs
within one hyper-period. For a task τx, the number of jobs is
HP
Tx

. Since jobs are just instances of the same task, they should
always run sequentially, therefore job-level precedence edges
are added between successive jobs τx,a and τx,a+1 where a ∈
{0, . . . , HPTx

− 1}. Additionally, the start node of the DAG is
connected to each first job of each task, and each last job is
connected to the end node. The resulting DAG for the example
is shown in Figure 3a. To synchronize the jobs in the following
step, each job gets an offset and deadline. For τx,a, the offset
is aTx and the deadline is aTx +Dx.

2) Synchronization: To be sure that tasks instances maintain
their original period and deadlines in the DAG, a synchronisa-
tion mechanism has to be applied. In this way, we can enforce
a job to start after its offset and to finish before its deadline. To
accomplish this, we add additional nodes for synchronization
purposes, as in Figure 3b. Firstly, we add a synchronization
node σt, with WC = BC = 0, for each unique value
t in the list of offsets and deadlines of all jobs. Secondly,
we add dummy nodes δ between each two consecutive syn-
chronization nodes σt and σt′ , with WC = BC = t′ − t,
i.e., the difference in the timestamps of the corresponding
synchronization nodes. The source and sink of the DAG are
synchronization nodes too, with a timestamp of 0 and HP ,
respectively.

To enforce the jobs to execute in a time-window within
its offset and deadline, an edge to the job is added from the
synchronization node of the corresponding offset, and another
one from the job to the synchronization node corresponding
to its deadline.

3) Permutation: The various instances of tasks with differ-
ent periods may be scheduled in multiple ways. We would like
to enforce a suitable execution order between such instances,
in order to minimize the latency of a given set of task chains.
Thus, we convert the original multi-rate task set into several
single-rate DAGs, each representing a possible activation pat-
tern of the considered tasks. To do so, we include additional
precedence edges to the DAG obtained at the previous step.

Consider two tasks τx and τy with periods Tx and Ty ,
assuming Ty ≥ Tx without loss of generality. Let SPx,y be the
super-period of tasks τx and τy , defined as the least common
multiple of their periods, i.e., SPx,y = lcm(Tx, Ty). Note
there are HP

SPx,y
− 1 super-periods in the hyper-period HP of

the whole task set.
There exist multiple ways to insert precedence edges be-

tween jobs of τx and τy in each super-period of length SPx,y .
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Fig. 5: Arrangement permutations with one parallel job of τx;
there are three permutations because Q = 3 and ψ0 = 1,
therefore Q+ 1− ψ = 3. The permutation (b) corresponds to
the example in 3c.

Each possible edge assignment that complies with the multi-
rate task specification is called “job arrangement”.

To find all the possible permutations, two cases must be
considered: harmonic and non-harmonic periods. In the former
case, there exists q ∈ N for which q =

Ty

Tx
and SPx,y = Ty .

Therefore, finding all the permutations between one job of
τy and q of τx allows finding all the job arrangements in
their super-period. The non-harmonic case is slightly more
complicated. For two non-harmonic tasks, q ∈ N can be
computed as q = dTy

Tx
e, but SPx,y 6= Ty . In this case, one

job of τy can be arranged with q or q+ 1 jobs of τx, because
of the non-harmonicity. To better understand the problem, let
us consider an example in which Tx = 3 and Ty = 5, as in
Figure 4.

When periods are harmonic, a job of τx always interact
with exactly one job of τy (and respectively, τy interacts with
exactly q jobs of τy) . However, for non-harmonic periods,
a job of τx can interact with 1 or 2 (at most) jobs of τy ,
as shown in Figure 4. For this reason, in the non-harmonic
scenario some jobs of τy will interact with q (in the example
d 5

3e = 2, as for τy,0 and τy,2 ) jobs of τx, while others with
q + 1 (in this case 3, as for τy,1). In general, a job τy,a can
interact with all the jobs between τx,b and τx,c, where b and
c can be obtained as:

b ∈ N | o(τx,b) ≤ o(τy,a) ∧ o(τx,b) + Tx > o(τy,a) (11)

c ∈ N | o(τx,c) < o(τy,a) + Ty ∧ o(τx,c) + Tx ≥ o(τy,a) + Ty
(12)

where o(τx,b) stands for the offset of the job τx,b.
Once the interacting job of τx and τy have been associated,

this case can be traced back to the harmonic one.
Now, let us consider a job τy,s and all the possible arrange-

ments with Q jobs of τx (which is either q or q+ 1), denoted
as Ax,y(s) = (pres, posts, ψs) in the super-period SPx,y . In
this tuple, pres (resp. posts) denotes the number of jobs of τx
executing before (resp. after) each job of τy . ψs denotes the
number of jobs of τx that can execute in parallel to the job of
τy . This parameter is critical for the data update variability,
that is defined as the difference between the maximum and
minimum number of data updates. Since pres, posts, and ψs
comprise all the jobs of τx interacting with τy,s, it follows that

pres + posts + ψs = Q. (13)

Three example arrangements for two tasks, τ0 with T0 = 10
and τ1 with T1 = 30, are shown in Figure 5. In all three
arrangements, the job of τ1 is parallel to one job of τ0 (ψ0 =



1). The number of permutations of arrangements with each
τy,s can be calculated as:

perm(Ax,y(s)) =
∑

ψ={0...Q}

(Q+ 1− ψ), (14)

while the permutations can be found combining all the possible
edges between the jobs of the two tasks.

For the harmonic case, this value is also the total number
of permutations of a super-period:

permSPx,y = perm(Ax,y(s)). (15)

On the other hand, for the non-harmonic case, the number of
permutations for the super-period is obtained as:

permSPx,y =
∏

∀τy,s∈{0...
SPx,y

Ty
}

perm(Ax,y(s)). (16)

Finally, considering all the super-periods contained in a
hyper-period, the total number of permutations can be given
by:

permtotal =
∏
∀x,y

perm
HP

SPx,y

SPx,y
, (17)

where x 6= y and τx and τy are consecutive tasks in a given
task chain. Each combination of arrangement permutations
generates a new DAG that can be analyzed. Therefore, it is
critical to keep the number of possible permutations as small
as possible. A reduction of the exploration space is discussed
in Section V-B.

Figure 3c shows one of the obtained DAG, whose sim-
plified2 adjacency matrix T and transitive closure matrix D
(obtained with (6)) are the following:

T =

S
τ0,0
τ0,1
τ0,2
τ1,0
τ2,0
E



0 1 0 0 1 1 0
0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0

 D =

S
τ0,0
τ0,1
τ0,2
τ1,0
τ2,0
E



0 1 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 1 0 0 1
0 0 0 0 0 0 1
0 0 0 1 1 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0


4) Reduction: While constructing the DAGs, it is possible

to end up generating redundant edges. There is a redundant
edge between two nodes when there exist both a direct edge
and a non-direct path. Redundant edges can be removed using
a technique called transitive reduction, firstly proposed by Aho
et al. in [23]. The transitive reduction of a DAG uniquely
describes the sub-graph of this DAG with the fewest possible
edges, while maintaining the same reachability relation.

The transitive reduction of a DAG can be calculated in
different ways. Since in this work we need the transitive
reduction as well as the transitive closure of the DAG, we
compute the transitive reduction using

Tr = T ∧ ¬(T ·D), (18)

where (T ·D) has 1 in (j, i) if the node j can reach the node
i in more than one step, 0 otherwise. Applying equation (18)

2Without synchronization and dummy nodes, removed for a clearer repre-
sentation, but used in the actual algorithm.

means removing direct edges e(vj , vi) in T that are redundant
because a non-direct path already exists between node j and
node i.

In Figure 3d, the obtained DAG with reduced edges is
presented. For that example, the matrix T·D and Tr (obtained
with (18)) are the following3:

T ·D =

S
τ0,0
τ0,1
τ0,2
τ1,0
τ2,0
E



0 0 1 1 1 1 1
0 0 0 1 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 Tr =

S
τ0,0
τ0,1
τ0,2
τ1,0
τ2,0
E



0 1 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


The interaction of the different data edges during the

Permutation stage can result in DAGs that are inherently not
schedulable. These DAGs can be removed to speed up the
analysis. Then, two factors are further inspected: potential
cycles in the generated DAG, and length of the longest chain.

DAGs containing cycles need to be removed, as they are
inconsistent with the task semantics and they could not be
feasibly scheduled. Finding cycles in a graph is a common
problem which can be solved with several approaches. In this
work, we use state propagation, described in Section IV-B.
We adopt a state vector x, whose elements indicate whether
a path exists (1) or not (0). Initially, x0 = 1 to consider
the potential paths from all the nodes. Then, we apply state
propagation in Equation (7), multiplying the state vector with
the adjacency matrix T. This means stepping from a node to
its successor: if it has any, the resulting vector will have a
1 in the corresponding position, otherwise it will have a 0.
Repeating this operation means going through all the possible
paths. Since the graph is acyclic and it has n nodes, there
should be no path with a length greater than n. In other words,
the resulting vector should have all 0’s after at most n steps,
indicating that all the paths have ended, i.e., there are no more
nodes to step into. If this is not the case, it means the DAG
contains cycles, and it can be discarded.

Finally, the longest chain in the DAG corresponds to the
chain with the longest execution time. This chain can be
explicitly found by calculating the fixed-point of (9) with
c = WC, the WCET of each node. If any value in v∗+WC
is bigger than the hyper-period HP , it means that there
exists a path whose sum of WCETs exceeds the hyper-period,
which makes the DAG not schedulable. Also these DAGs are
discarded.

In the example, the vectors of WC and v∗ are the follow-
ing:

WC =



0
7
7
7
10
13
0

 v∗ =



30
23
7
0
10
0
0


3Given the previously mentioned simplification, consecutive jobs of the

same task have precedence constraints between them, rather than having edges
to and from synchronization nodes. In the example, there is an edge from τ0,0
to τ0,1 and one from τ0,1 to τ0,2.
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(a) Heterogeneous arrangement example with Ax,y(s) = (0, 2, 1)
and Ax,y(s+ 1) = (2, 1, 0)

SPs SPs+1

τi,0 τi,1 τi,2

τj,0

τi,0 τi,1 τi,2

τj,0

(b) Homogeneous arrangement example with Ax,y(s) = Ax,y(s +
1) = (0, 2, 1)

Fig. 6: Examples showing heterogeneous and homogeneous
arrangements.

B. Permutation Space Reduction

The worst-case number of permutations, and thus the total
number of DAGs created, is given in (17), i.e., it is scaling
exponentially with the size of the task set. Therefore, a
reduction of the permutation space is essential to keep the
approach computationally tractable for larger task sets. To
reduce the permutation space, we inspect the inter-super-
period-arrangement.

Given the previously adopted tasks τ0 and τ1, Figure 6
shows two possible arrangements, omitting synchronization
nodes for simplicity.

Let us consider a couple of harmonic tasks τx, a τy in
their super-period SPx,y . For a given parallelism ψs, relative
to job τy,s, the execution order of the parallel jobs is not
defined. Therefore, a bounded number of jobs of τx, denoted
as prePars ∈ {0, . . . , ψs}, can execute before τy,s. Conse-
quently ψs − prePars jobs of τx will execute after τy,s. The
probability distribution of prePars is not relevant since the
only values that affect the latency variability are, by definition,
the extremes, i.e.,

max(prePars) = ψs and min(prePars) = 0 (19)

Based on these definitions, the number of jobs of τx between
two consecutive jobs τy,s and τy,s+1 (in the following super-
period) is given by

ns,s+1 = posts+(ψs−prePars)+pres+1+prePars+1 (20)

The upper and lower bound of this value are given by

max(ns,s+1) = posts + ψs + pres+1 + ψs+1 (21)
min(ns,s+1) = posts + pres+1 (22)

The variability of the data updates, i.e., the difference
between the maximum and the minimum data updates in
between, can be formalized as:

V arx,y = max
s
{max(ns,s+1)} −min

t
{min(nt,t+1)}, (23)

using t in the minimum to highlight that the maximum
and minimum do not need to consider the same job of τy ,

and thus the same arrangement. However, in a homogeneous
arrangement, Ax,y(s) = Ax,y(s + 1) = (pre, post, ψ) and
s = t. Therefore,

V arx,y,hom = 2ψs (24)

Comparing to heterogeneous arrangements, in which
Ax,y(s) 6= Ax,y(s + 1),∀s, two observations can be made.
On the one hand, a higher value of ψs for a job τy,s increases
schedulability of the related super-period, since it allows
for more parallelism and shortens the longest path. Given
that the schedulability of all the super-periods determines
the schedulability of the hyper-period, the value of ψs is
crucial. On the other hand, from an application side, the data
update variability should be as low as possible to constrain
end-to-end latency.

To reduce the permutation space while investigating all
the permutations that optimize latency, we chose to sacrifice
optimality w.r.t. schedulability. Homogeneous arrangements
are better at this compromise. To show it, we prove that

V arx,y,het > V arx,y,hom (25)

Proposition: Given two tasks τx and τy with periods
gTx = Ty, hTy = HP, g, h ∈ N+, a heterogeneous
arrangement results in a strictly higher variability than a
homogeneous arrangement.

Proof: In a heterogeneous arrangement, Ax,y(s) 6=
Ax,y(s + 1), which means that (pres, posts, ψs) 6=
(pres+1, posts+1, ψs+1). Let us define αs ∈ Z (resp.
βs ∈ Z) as the difference between the jobs of τx that execute
before (resp. after) τy,s+1 and the jobs of τx that execute
before (resp. after) τy,s4

αs = pres+1 − pres (26)
βs = posts+1 − posts (27)

Consequently, considering that pres+posts+ψs = pres+1 +
posts+1 + ψs+1 = Q, we derive

ψs+1 = ψs − αs − βs (28)

With this definition, Equation (20) provides

ns,s+1 = posts + (ψs − prePars) + pres+1 + prePars+1

ns,s+1 = posts + (ψs − prePars) + pres + αs + prePars+1

= Q+ αs − prePars + prePars+1.

Then,

max(ns,s+1) = Q+ αs + ψs+1

= Q+ ψs − βs
min(ns,s+1) = Q+ αs − ψs

4Remember that there is only one job of τy,s in each super-period SPx,y .
Therefore, τy,s+1 refers to the next super-period.



The variability in Equation (23) can then be simplified to

V arx,y,het = max
s
{max(ns,s+1)} −min

t
{min(nt,t+1)}

= max
s
{ψs − βs} −min

t
{αt − ψt}

= max
s
{ψs − βs}+ max

t
{ψt − αt}

= 2ψs + max
s
{−βs}+ max

t
{−αt}.

As the full arrangement is the same in each hyper-period,
the super-period arrangement is cyclic. Since αs and βs denote
the change of the arrangement, the cyclicity of A requires∑

s∈{0,...,HP
Ty
}

αs =
∑

s∈{0,...,HP
Ty
}

βs = 0. (29)

Therefore, ∃αs < 0 and ∃βs < 0 such that

V arx,y,het > 2ψs (30)

Since V arx,y,het > 2ψs, it then follows
V arx,y,het > V arx,y,hom, proving the proposition.

We can therefore omit heterogeneous arrangements without
affecting the resulting end-to-end latency, since no such ar-
rangement can provide a better compromise with respect to
variability. By discarding the heterogeneous arrangements in
the permutations, the value of permtotal in (17) can be reduced
to

permtotal =
∏
∀x,y

permSPx,y
, (31)

where x 6= y and τx and τy are consecutive tasks in a given
task chain, and the full hyper-period arrangement is defined
by a unique super-period arrangement. This is valid both for
harmonic and non-harmonic tasks.

C. Computational Complexity

The computational cost of the overall method can be sum-
marized as O(permψ × permA × n4). The first term permψ

represents all the permutations for all the possible ψ values.
From (31), it can be expressed as

permψ =
∏

(ex,ey)∈E

max(Tx, Ty)

min(Tx, Ty)
. (32)

The second term permA represents all the arrangement per-
mutations for a fixed ψ. From (14), it can be expressed as

permA =
∏

(ex,ey)∈E

(max(Tx, Ty)

min(Tx, Ty)
− ψ + 1

)
. (33)

Lastly, O(n4) is the maximum cost of all the math opera-
tions applied on the obtained DAGs, which are matrix-vector
multiplication O(n2), matrix multiplication O(n3) and matrix
exponentiation O(n4). Let us define R as the maximum ratio
between periods of the taskset, i.e., R = max(Tx)

min(Ty) ∀x, y ∈
{0 . . . N −1}. The computational cost of the method can then
be expressed as:

O(R|E|R|E|(RN)4) = O(R2|E|(RN)4). (34)

job EST LST EFT LFT
τ0,0 0 0 5 7
τ0,1 10 13 15 20
τ0,2 20 23 25 30
τ1,0 5 7 15 20
τ2,0 15 20 23 30

TABLE I: Timing attribute for the for Example 1.

The complexity is thus exponential in the number of edges
|E|. Such a high cost is mainly determined by the need to
take into account all the permutations at once. However, this
is also the reason why the proposed conversion method allows
better controlling end-to-end latencies, jointly optimizing data
and reaction times of all the task chains given in input. This
is achieved by picking up the best configuration out of all the
permutations generated by means of a cost function.

VI. END-TO-END LATENCY AND SCHEDULABILITY

In this section, a method to calculate an upper bound on
data age and reaction time is proposed. As explained in
the introduction, data age defines the maximum time a data
produced by the first task of the chain can influence the
last one. Reaction time is the maximum interval between the
acquisition of a stimulus in the first task of a chain and the
moment the first instance of the last task in the chain reacts
to it.

We first define a set of additional timing attributes, that will
be used to compute the end-to-end latency. The schedulability
of the DAG is verified by deriving a static schedule. If more
than one generated DAG meets the latency and schedulability
constraints, we select the DAG that maximizes a weighted sum
of the end-to-end latencies, taking into account all the tasks
chains in input.

For each job, we define the following timing attributes:
Earliest Finishing Time (EFT), Latest Finishing Time (LFT),
Earliest Starting Time (EST) and Latest Starting Time (LST).
The earliest a node can start is the maximum of all its
predecessors’ earliest finishing times. Similarly, the latest a
node can finish is the minimum of its successors’ latest starting
times. These values can be iteratively calculated using the
operators defined in Section IV, initializing ESTj = 0 and
EFTj = HP for all nodes j:

ESTi = max
∀j
{(ESTj +BCj)Tj,i}

LFTi = min
∀j
{(LFTj −WCj)Ti,j}

EFTi = ESTi +BCi

LSTi = LFTi −WCi.

Table I reports the timing attributes computed for Example 1.

A. Task Chain Propagation

In a DAG G, a node j is defined to react to node i if there
exists a direct or indirect edge from node i to node j. A node
k reacting to node j also reacts to node i. Further, a node k
reacts to the chain (i, j) if node j reacts to node i and node
k reacts to node j.



Extending this definition to tasks and jobs:
• τy,b reacts to τy,a,∀b > a;
• Consequently, if τy,a reacts to τx,c, it follows that τy,b

reacts to τx,c.
Given a task chain (τx, . . . , τz), the reactions of jobs of task
τz to each job of τx can be found. Consider a job τx,a of the
first task in the chain. The first (resp. last) reaction to τx,a is
defined as the first (resp. last) job of the last task τz that reacts
to τx,a. The reaction time (resp. data age) is then defined as
the maximum interval between a stimulus in a job τx,a and
the finishing time of the first (resp. last) reaction, taken over
all instances τx,a, for all a ∈ [0, HPTx

]. Since the structure of
the DAG repeats after each hyper-period, it is sufficient to
consider only the first hyper-period.

Algorithm 1: findReactions
Input: C = {τstart, ..., τend}
Output: 1streactions, lastreactions

1 forall a ∈ {0, . . . , HP
Tstart

+ 1} do
2 fr job = τstart,a;
3 lr job = null;
4 forall τx ∈ C \ τstart do
5 b = 0;
6 while τx,b does not react to fr job do
7 b++;

8 fr job = τx,b;
9 if b > 0 then

10 lr job = τx,b−1;

11 if a ≤ HP
Tstart

then
12 1streactions.insert(τstart,a, fr job);

13 if (b 6= null) and (a > 0) and
(1streactions(τstart,a−1) 6= fr job) then

14 lastreactions.insert(τstart,a−1, lr job);

15 return 1streactions, lastreactions;

A method to compute the first and last reactions is shown in
Algorithm 1. The algorithm considers every job of the starting
task of the chain in one hyper-period, plus an additional job (to
cover the last reactions). The first reacting job (fr job) is set
to τstart,a. Then, for each task in the chain, we find the first job
τx,b that reacts to fr job, and we use it to update fr job. This
can happen either in the same hyper-period of fr job, or in the
next one. The preceding job τx,b−1 is instead used to update
lr job, which keeps track of the last reaction to τstart,a−1.
Once the whole chain has been considered, 1streactions and
lastreactions are updated. The latter is updated only if b is
not null and if the first reaction to τstart,a is different from
the first reaction to τstart,a−1. Reaction time and data age can
then be simply derived as

RT = max
τx,a∈1streactions

{LFT1streactions − ESTτx,a
} (35)

DA = max
τx,a∈lastreactions

{LFTlastreaction − ESTτx,a}, (36)

i.e., reaction time (resp. data age) is the difference between
the first (resp. last) moment some data is used by a job of the
last task in the chain (LFT) and the first moment the same
data is read from the job of the first task in the chain (EST).
Since the schedule repeats identically after each hyper-period,
it is sufficient to consider all the jobs of the first task in the
first hyper-period.

We hereafter prove that Algorithm 1 correctly finds the first
and last reactions. The algorithm considers all the jobs of the
starting task in the chain (line 1). For each of the starting jobs,
it iterates over all the other tasks in the chain, always looking
for the first and last reacting job (lines 4-14). Let us consider
two consecutive tasks in the chain τx and τy and only one job
a of τx.
• To find the maximum reaction time, the jobs of τy that are

said to react to τx,a are those that are definitely executing
after τx,a, i.e., they belong to τx,a’s descendants, or their
EST is greater than the LFT of τx,a. Since the DAG is
schedulable, a reacting job can always be found (and the
loop at line 6 is not infinite) either in the same hyper-
period of τx,a, or in the next one. Once a job τx,b is found
to react to τx,a, it becomes the starting job to find the first
reaction between τy and the next task in the chain.

• The maximum data age of τx,a is strictly related to the
first reaction to τx,a+1. Indeed, the first reaction to τx,a+1

assures that the data from τx,a are no longer used: the
last time they were used was by the job preceding the
one that surely reacts to τx,a+1. Thus, when finding the
first reaction τx,a+1, the last reaction of τx,a can be found
(line 14).

In the example DAG in Figure 3d, data age is 30, while
reaction time is 50. The chains leading to these values are
{τ0,0, τ1,0, τ2,0} for data age and {τ0,1, τ ′1,0, τ ′2,0} for reaction
time, where a prime indicates that the job is in the next hyper-
period.

B. Schedulability

To build a feasible schedule for a given number of cores,
we apply a list-scheduling heuristic for non-preemptive DAG,
very similar to the Heterogeneous Earliest Finishing Time
(HEFT) algorithm presented in [24]. We decided to use a
(node-level) limited preemptive scheduling for (i) avoiding
job-level migrations, (ii) reducing cache-related preemption
delays, and (iii) minimizing the input-output delay and jitter
[25].

The list-scheduling algorithm is summarized in Algorithm
2. Jobs are sorted in increasing LFT order (line 3). Given p
homogeneous processors, a job is scheduled at time t only
if it is ready and a processor is available. A job enters the
ready queue (line 8) at time t only if (i) its EST is greater
than or equal than t, (ii) all its predecessors in the DAG
have been executed, and (iii) its LFT is the smallest between
all the remaining jobs’ LFT. The ready queue is sorted in
increasing LFT order (line 9). A ready job is scheduled if a
processor is available and if its execution time, starting from
the current t, does not exceed its LFT (lines 13,16,17). If
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Fig. 7: Schedule produced for the DAG in Figure 3d with 2
cores

this last condition is not met, the algorithm declares the DAG
not schedulable (lines 13,14). An example of the schedule
obtained for Example 1 is shown in Figure 7.

Algorithm 2: isDAGSchedulable
Input: V, pred, p, EST, LFT,WC
Output: true if the DAG is schedulable on p

processors, false otherwise
Data: Ready queue of jobs rq = {}, procExec vector

1 pqi = {},∀i = 1, . . . , p;
2 nodes = {v0, . . . , vn−1}, n = |V |;
3 sort(nodes) sort by ascending value of

LFT
4 for t = 0, 1, . . . ,HP do
5 forall node ∈ nodes do
6 if EST [node] > t and all pred[node] have

finished and LFT [node] ≤ all other nodes
LFTs then

7 nodes = nodes \ node;
8 rq.push(node);

9 sort(rq) sort by ascending value of
LFT

10 for i = 1, ..., p do
11 if rq 6= {} and procExeci == 0 then
12 readyJob = rq.pop();
13 if t+WC[readyJob] > LFT [readyJob]

then
14 return false;

15 else
16 procExeci = WC[readyJob];
17 pqi.push(readyjob);

18 if procExeci > 0 then
19 procExeci = procExeci − 1 ;

20 return true;

VII. EVALUATION

To evaluate our approach, we first use simulation to validate
end-to-end latency bounds as well as schedulability and then
compare the proposed method with the state-of-the-art using
a realistic automotive benchmark.

A. Evaluation via Simulation

To validate that the DAGs generated with the method pre-
sented in this paper comply with the constraints, we developed

Taskset Γ
τi = (WCi, BCi, Pi, Di) Task

τ0 = (7, 5, 50, 50) GPS
τ1 = (12, 10, 50, 50) Lidar
τ2 = (28, 22, 50, 50) Localization
τ3 = (28, 25, 50, 50) Detection
τ4 = (25, 18.9, 50, 50) Fusion
τ5 = (2, 1.8, 25, 25) Camera
τ6 = (6.5, 3, 10, 10) EKF
τ7 = (5, 3.2, 10, 10) Planner
τ8 = (4.5, 1.8, 10, 10) Control

Task chains
chain {τstart, . . . , τend} (Age, Reaction)

{τ5, τ3, τ4} (120, 120)
{τ0, τ2, τ6, τ7, τ8} (120, 150)
{τ1, τ2, τ6, τ7, τ8} (120, 150)
{τ5, τ3, τ4, τ7, τ8} (150, 150)

Scheduling constraints
6 processors

TABLE II: Periodic taskset and constraints used for the
simulation, referring to the application of Figure 1.

a simulation tool. The tool uses the DAG to schedule the
individual tasks, which tracks the data propagation through
the task chains under analysis. The execution time of each
task is identically and independently sampled from the BC to
WC interval. The schedule is generated according to EDF, and
the deadline is set equal to LFT.

We simulated the best DAG, in terms of schedulability and
end-to-end latency, produced for the application introduced in
Figure 1. The task set specification and constraint are detailed
in Table II. The latency computed for the given chains is
reported in Table III.

Using the simulation tool, the DAG is simulated for 109

ms, which leads to the following results. Two distributions
of reaction time and data age of two task chains are shown
in Figure 8 and 9. In Figure 8 the reaction time plot is
showing two distributions, one for each camera frame. In
the DAG, the camera jobs are serialized to the detection job,
leading to only one distribution for the data age, because the
detection job always receives the freshest camera frame. A
similar distribution for the reaction time can be seen for the
task chain in Figure 9, as the task chain, is extended with the
planner and control task. The data age, however, shows several
distributions. This is due to the higher rate of the planner and
control task with respect to the fusion task. Nevertheless, the
data age of the data corresponding to each control output is
always based on the freshest camera frame, which can be seen
by comparing the distribution shapes. The simulation showed
that all the calculated upper bounds for data age and reaction
time for the four task chains are not exceeded.

B. Evaluation via Benchmark

To further analyze the performance of the proposed
method the detailed automotive benchmark proposed by
BOSCH for the WATERS challenge in 2015 [26] has been
adopted. Multi-rate periodic task sets and cause-effect chains
are randomly generated while conforming with the char-



chain {τx, . . . , τy} (Age, Reaction)
{τ5, τ3, τ4} (75, 98.2)
{τ0, τ2, τ6, τ7, τ8} (105, 65)
{τ1, τ2, τ6, τ7, τ8} (105, 65)
{τ5, τ3, τ4, τ7, τ8} (125, 108.2)

TABLE III: Maximum data age and reaction time for task
chains of the best DAG produced for the task set described by
Table II
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Fig. 8: Reaction time and data age of the chain {Camera,
Detection, Fusion}, or {τ5, τ3, τ4}, evaluated in simulation
with the red lines showing the calculated maximum.
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Fig. 9: Reaction time and data age of the chain {Camera,
Detection, Fusion, Planner, Control}, or {τ5, τ3, τ4, τ7, τ8},
evaluated in simulation with the red lines showing the cal-
culated maximum.

permutation admissible (%) schedulable (%)
min 0.00 0.00 0.00
avg 1.830.48 62.10 61.60
max 18.148.00 100.00 100.00

TABLE IV: Statistics about DAG permutations, admissible and
schedulable DAGs on 1000 different task set.
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Fig. 10: Statistic about produced DAG on 50 randomly chosen
task set of the 1000 analyzed.

acterization. Task periods are selected with given distri-
bution, out of the periods found in automotive applica-
tions [1, 5, 10, 20, 50, 100, 200, 1000]ms. Cause-effect chains
are generated to include tasks of either 1, 2, or 3 different
period wherein tasks of the same period can appear 2 to
5 times. To obtain a higher utilization, the individual task
execution times are generated based on UUniFast [27]. For
the experiments 1000 task set composed of 5 tasks and 15
chains have been taken into account, with a utilization equal
to 1.5, considering 2 cores available.

Table IV reports some statistics about the DAG obtained
from the 1000 multi-rate periodic task sets. From the initial
generated permutations the 40% is on average removed due to
cycles or a non-schedulable longest chain. However, between
the admissible generated DAGs5, almost the totality is also
schedulable on 2 cores. Figure 10 shows 50 randomly selected
examples in which the number of permutations, admissible
DAGs and schedulable DAGs are compared.

C. Comparison with state-of-the-art

1) Qualitative: In [19], Saidi et al. present a method to
convert a parallel multi-rate task set with precedence and data
edges into a single-rate DAG. However, the end-to-end latency
is not considered, and only one possible DAG is generated.
Therefore, no guarantee is given on reaction time or data age.
Moreover, there are no synchronization methods to force task
instances to execute within their periods, potentially leading
to a wrong implementation of the system.

In [18], Foget et al. present another conversion method,
producing different DAGs. However, neither this work takes
into account latency. Different solutions are created just for

5DAGs that have a correct structure (i.e., no cycles and no path greater
than the hyper-period) but that may still be unschedulable.



Forget [18] Saidi [19] Becker [9] this paper
schedulable task set(%) 46.9 21.8 90.56 90.5
1st lowest data age (%) 45.89 17.85 77.81 96.82
2nd lowest data age (%) 2.79 0.09 13.55 3.15
3rd lowest data age (%) 3.03 1.46 6.38 0.03
4th lowest data age (%) 0.00 4.58 2.25 0.00

TABLE V: Schedulability and data age results on 1000 task
set compliant to [26] of 5 tasks and 15 chains, with utilization
equals to 1.5.

Forget [18] Saidi [19] Becker [9] this paper
min [ms] 0.002 0.002 0.078 0.002
avg [ms] 0.571 0.022 3.001 21.410
max [ms] 4.422 0.116 16.614 433.033

TABLE VI: Execution times in milliseconds on an Intel(R)
Core(TM) i7-7700HQ CPU @2.80GHz.

schedulability reasons, picking the version that makes the
DAG schedulable with EDF.

Focusing on data latency, the most related approach is the
one introduced by Becker et al. in [9], where the focus is
on the computation of data age. In their work, they can
compute data age for a given chain of periodic tasks, given
a communication model (i.e. implicit, explicit or LET). The
method allows generating job-level dependencies to meet
latency requirements. However, data age is the only parameter
under their analysis. Moreover, they can optimize end-to-end
latency for only a single chain. Once job-level dependencies
are inserted, all the other chains are affected. Finally, their
work assumes the input task set is already schedulable. Our
work has several improvements over their approach, i.e., (i) the
model is more general and can jointly optimize the latency
of multiple chains, (ii) we consider not only data age, but
also reaction time, and (iii) our task allocation and scheduling
algorithms also consider the schedulability of the system.

2) Quantitative: To show that our method dominates the
state-of-the-art, we implemented the solutions proposed in
[19], [18], [9], and tested them on the previously presented
automotive benchmark by BOSCH. Table V shows the results
for the 1000 task sets considered, and all the 15000 task chains,
while Table VI offers a comparison of the running times of
the considered methods for larger task sets, i.e., composed of
10 tasks with 15 task chains.

The proposed method not only dominates the others in term
of schedulability, but also in terms of data age. Given that
[18] and [19] do not propose a method to compute end-to-end
latency, we adopted our algorithm for this scope. Considering
data age, our method produces a DAG that leads to the lowest
end-to-end latency bound in 96.82% of cases. There are some
cases in which Becker [9] method obtains a tighter latency,
since it optimizes a single chain. However, the limitation of
that approach is that it is not able to optimize all the given
chains for a task set, while our method optimizes them all.
Therefore, we are willing to sacrifice the latency of some
chains for a more balanced improvement of all chains.

6Since no method is proposed in [9] to check schedulability, we applied
our method to derive the schedulable task sets.

On the other hand, when optimizing a single chain, our
method allows finding a better solution than with the method
presented in [9]. As an example, consider the task chain in
Example 1. Using the method by Becker et al., a minimum
data age of 40 can be achieved, inserting a precedence
constraint between τ1,0 and τ2,0. Instead, our method allows
achieving a data age of 30, picking a DAG with additional
precedence constraints.

As can be expected, the improved performance of the
proposed algorithm are obtained by paying a somewhat higher
computational cost. Table VI shows that our method is on
average about 7 times slower than [9]. We believe such a slow-
down is acceptable for an offline analysis performed at system
design time, as it allows obtaining the best solution for even
complex task systems within a reasonable time.

VIII. CONCLUSIONS

This paper presented a detailed method that allows con-
verting a multi-rate task set into a single-rate DAG which
meets schedulability and timing requirements. To the best
of our knowledge, this approach is the most general and
complete w.r.t. the methods available in the literature. The
transformation process maps the whole application into a
DAG, using precedence constraints for synchronizing jobs
to comply with task activation periods. Multiple DAGs are
generated in four stages and a pruning process is applied
to exclude the ones that are inherently not feasible. The set
of feasible DAGs is narrowed down using a further analysis
that considers data age and reaction time bounds on specific
task chains, as well as the schedulability of the system on
the considered homogeneous multi-core platform. The best
DAG is selected based on the weighted sum of end-to-end
latencies. Most of the operations performed are based on a
matrix representation of the DAG. The conversion method
and a simulation tool have been implemented and made avail-
able7. The efficiency of the proposed approach over existing
methods has been extensively validated on real experimental
benchmarks. In future works, we plan to extend this model to
heterogeneous platforms. Moreover, we plan to integrate the
proposed approach considering predictable execution models
to solve the contention problems on the memory hierarchy
[28].
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[13] J. Martinez, I. Sañudo, P. Burgio, and M. Bertogna, “End-to-end latency
characterization of implicit and let communication models,” in Proc. of
the 8th International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems, ser. WATERS, 2017.

[14] M. Xiong, S. Han, K.-Y. Lam, and D. Chen, “Deferrable scheduling for
maintaining real-time data freshness: Algorithms, analysis, and results,”
IEEE Transactions on Computers, vol. 57, no. 7, pp. 952–964, 2008.

[15] D. Golomb, D. Gangadharan, S. Chen, O. Sokolsky, and I. Lee, “Data
freshness over-engineering: Formulation and results,” in 2018 IEEE 21st
International Symposium on Real-Time Distributed Computing (ISORC).
IEEE, 2018, pp. 174–183.

[16] Y. Saito, F. Sato, T. Azumi, S. Kato, and N. Nishio, “Rosch: Real-time
scheduling framework for ros,” in 2018 IEEE 24th International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA). IEEE, 2018, pp. 52–58.

[17] Y. Suzuki, T. Azumi, S. Kato et al., “Hlbs: Heterogeneous laxity-based
scheduling algorithm for dag-based real-time computing,” in 2016 IEEE
4th International Conference on Cyber-Physical Systems, Networks, and
Applications (CPSNA). IEEE, 2016, pp. 83–88.

[18] J. Forget, F. Boniol, E. Grolleau, D. Lesens, and C. Pagetti, “Scheduling
dependent periodic tasks without synchronization mechanisms,” in 2010
16th IEEE Real-Time and Embedded Technology and Applications
Symposium. IEEE, 2010, pp. 301–310.

[19] S. E. Saidi, N. Pernet, and Y. Sorel, “Automatic parallelization of
multi-rate fmi-based co-simulation on multi-core,” in Proceedings of the
Symposium on Theory of Modeling & Simulation. Society for Computer
Simulation International, 2017, p. 5.

[20] S. K. Baruah, D. Chen, S. Gorinsky, and A. K. Mok, “Generalized
multiframe tasks,” Real-Time Systems, vol. 17, pp. 5–22, 1999.

[21] N. Biggs, N. L. Biggs, and B. Norman, Algebraic graph theory.
Cambridge university press, 1993, vol. 67.

[22] P. Purdom, “A transitive closure algorithm,” BIT Numerical Mathemat-
ics, vol. 10, no. 1, pp. 76–94, 1970.

[23] A. V. Aho, M. R. Garey, and J. D. Ullman, “The transitive reduction
of a directed graph,” SIAM Journal on Computing, vol. 1, no. 2, pp.
131–137, 1972.

[24] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
transactions on parallel and distributed systems, vol. 13, no. 3, pp. 260–
274, 2002.

[25] G. Buttazzo and A. Cervin, “Comparative assessment and evaluation of
jitter control methods,” in Proceedings of the 15th conference on Real-
Time and Network Systems, 2007, pp. 163–172.

[26] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS),
2015.

[27] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

[28] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for cots-based embedded
systems,” in 2011 17th IEEE Real-Time and Embedded Technology and
Applications Symposium. IEEE, 2011, pp. 269–279.


