
DEGREE PROJECT, IN , SECOND LEVELCOMPUTER SCIENCE
STOCKHOLM, SWEDEN 2015

A study on the similarities of Deep
Belief Networks and Stacked
Autoencoders

ANDREA DE GIORGIO

KTH ROYAL INSTITUTE OF TECHNOLOGY

SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION (CSC)

KTH, Royal Institute of Technology

A study on the similarities of
Deep Belief Networks and Stacked Autoencoders

Degree Project in Computer Science, Second Cycle (DD221X)

Master’s Program in Machine Learning

Supervisor Master student
Anders Holst Andrea de Giorgio

andreadg@kth.se
Examiner
Anders Lansner

October 3rd, 2015

Abstract

Restricted Boltzmann Machines (RBMs) and autoencoders have been used - in several variants
- for similar tasks, such as reducing dimensionality or extracting features from signals. Even
though their structures are quite similar, they rely on different training theories. Lately, they
have been largely used as building blocks in deep learning architectures that are called deep
belief networks (instead of stacked RBMs) and stacked autoencoders.

In light of this, the student has worked on this thesis with the aim to understand the extent
of the similarities and the overall pros and cons of using either RBMs, autoencoders or denoising
autoencoders in deep networks. Important characteristics are tested, such as the robustness to
noise, the influence on training of the availability of data and the tendency to overtrain. The
author has then dedicated part of the thesis to study how the three deep networks in exam
form their deep internal representations and how similar these can be to each other. In result
of this, a novel approach for the evaluation of internal representations is presented with the
name of F-Mapping. Results are reported and discussed.

Contents

1 Introduction 1
1.1 Context and purpose . 1
1.2 Related work . 2

1.2.1 Performance of basic architectures . 2
1.2.2 Invariance in internal representations . 3

1.3 Overview of the thesis . 3

2 Autoencoders and Restricted Boltzmann Machines 4
2.1 Multi-Layer Perceptron . 4

2.1.1 Training . 5
2.1.2 Logistic regression . 6

2.2 Autoencoders . 6
2.2.1 Structure . 6
2.2.2 Training . 7

2.3 Denoising Autoencoders . 8
2.4 Restricted Boltzmann Machines . 8

2.4.1 Structure . 9
2.4.2 Gibbs sampling . 10
2.4.3 Contrastive Divergence (CD-k) . 10
2.4.4 Persistent Contrastive Divergence . 11
2.4.5 Training . 11

3 Deep Learning 13
3.1 Deep Belief Networks . 13
3.2 Stacked Autoencoders . 15
3.3 Stacked denoising Autoencoders . 15
3.4 Relation between models . 16

4 Methods 18
4.1 Dataset . 18

CONTENTS

4.2 Implementation of the Deep Networks . 18
4.2.1 Programming language and framework 19
4.2.2 Hardware and experiments . 19
4.2.3 Training parameters . 19

4.2.3.1 Number of layers . 19
4.2.3.2 Layer-wise training . 20
4.2.3.3 Fine-tuning of the deep networks 20

4.3 Evaluation of the Deep Networks . 21
4.3.1 Test robustness to noise . 21
4.3.2 Create filters . 22
4.3.3 Exploit the internal representations . 23

4.3.3.1 Histograms . 24
4.3.3.2 The Gini coefficients: a measure of sparseness 24

4.3.4 Map the internal representations (F-Mapping) 25
4.3.5 Comparison of sorted internal representations with F-Mapping 26
4.3.6 Verify the input reconstructions . 27

4.3.6.1 Single activations . 27
4.3.6.2 Reconstruction of digits . 27
4.3.6.3 Reconstruction of the mean-digits 28
4.3.6.4 Filtering the mean-digits . 28

4.3.7 Feeding internal representations to other architectures 28
4.3.7.1 Inverse F-Mapping . 28

5 Results 30
5.1 Training . 30
5.2 Robustness to noise . 31
5.3 Filters . 32
5.4 Internal representations . 37

5.4.1 Histograms . 37
5.4.2 Sparseness . 45

5.5 Mapping of the internal representations (F-Mapping) 46
5.5.1 Comparison of sorted filters using MSE 46
5.5.2 Comparison of sorted internal representations using MSE 51

5.6 Input reconstruction . 51
5.6.1 Reconstruction of single activations . 52
5.6.2 Reconstruction of digits . 56

5.6.2.1 Reconstruction of the mean-digits 56
5.6.2.2 Filtering the mean-digits . 57

CONTENTS

5.6.3 Feeding internal representations to other architectures 58
5.6.3.1 Inverse F-Mapped representations 59

6 Discussion and conclusions 63
6.1 Overview of the results . 63
6.2 Conclusions . 64
6.3 Future work . 64

Bibliography 66

Index 70

Abbreviations

AE Autoencoder

ANN Artificial Neural Network

BM Boltzmann Machine

CD Contrastive Divergence

CNN Convolutional Neural Network

DBN Deep Belief Network

DN Deep Network

FNN Feedforward Neural Network

GPU Graphics Processing Unit

MLP Multi-Layer Perceptron

MRF Markov Random Field

MSE Mean Squared Error

NLL Negative Log Likelihood

PCA Principal Component Analysis

PCD Persistent Contrastive Divergence

RBM Restricted Boltzmann Machine

SA Stacked Autoencoder

SdA Stacked denoising Autoencoder

SE Squared Error

Acknowledgments

This thesis was possible thanks to:

Anders Holst, for his great ideas and support.

Erik Ylipää, for his generous contributions and corrections.

Morgan Svensson and Vanya Avramova, for their precious friendship.

Carlo de Giorgio and Roberta Eller Vainicher, per il loro supporto e amore infinito.

Chapter 1

Introduction

1.1 Context and purpose

Deep Belief Networks (DBNs), Stacked Autoencoders (SAs) and Convolutional Neural Networks
(CNNs) are the three main networks used by a field of Machine Learning called deep learning
(Bengio, 2007).

CNNs are biologically-inspired variants of the Multi-Layer Perceptron (MLP), from Hubel
and Wiesel’s early work on the cat’s visual cortex (Hubel & Wiesel, 1968). CNNs are deeply
different w.r.t the other two architectures, DBNs and SAs, which are composed respectively by
Restricted Boltzmann Machines (RBMs) and autoencoders as building blocks stacked to form a
Deep Network (DN). In literature there are many different implementations of similar stacked
architectures that have been proposed, but always arbitrarily selecting the use of RBMs or
autoencoders without stating a precise reason for the choice.

By a quick glance the architectures look similar and it seems that their selection is totally
interchangeable. Therefore, the purpose given to this thesis is to compare DBNs, SAs and SdAs
with a focus on:

• implementation;

• robustness to noise;

• influence on training of the availability of more or less training data;

• tendency to overtrain;

• analysis of the internal representations formed at different layers;

• similarity of the internal representations.

When the task is to extract features automatically, invariance plays a key role in the way those
features are represented. Having invariance in the internal representations means that the

1

CHAPTER 1. INTRODUCTION

features extracted are independent of some details inherent to the data such as, for example,
temporal scale or spacial scale, rotation and translation. CNNs contains a complex arrangement
of cells, inspired by the visual cortex, that are sensitive to small regions of the visual field and
are tiled to fully cover it. These cells act as local filters over the input space and are well-suited
to exploit the strong spatially local correlation present in natural images. There are two basic
cell types, the simple cells that respond maximally to specific edge-like patterns within their
receptive field and the complex cells that have larger receptive fields and are locally invariant
to the exact position of the pattern. This means that CNNs have a built-in structure to obtain
invariance in the internal representations.

On the other hand, DBNs, SAs and SdAs are not able to produce invariant internal rep-
resentations without improving the algorithms (see subsection 1.2.2 for related work), so an
analysis of this property can not be included in the comparison presented in this thesis.

1.2 Related work

1.2.1 Performance of basic architectures

Since the introduction of unsupervised pre-training (Hinton et al., 2006) and Deep Networks
(DNs), many new building blocks and overall schemas for stacking layers have been proposed.
Most are focused on creating new training algorithms to build single-layer models which per-
forms better. Among the possible architectures considered in literature are RBMs (Hinton et al.,
2006; Krizhevsky & Hinton, 2009), sparse-coding (Olshausen et al., 1996; Lee et al., 2006; Yang
et al., 2009), sparse RBMs (Lee et al., 2008), sparse autoencoders (Goodfellow et al., 2009;
Poultney et al., 2006), denoising autoencoders (Vincent et al., 2008), marginalized denoising
autoencoders (Chen et al., 2014), “factored” (Krizhevsky et al., 2010) and mean-covariance
(Ranzato & Hinton, 2010) RBMs, as well as many others. Even though the learning module
appears to be the most heavily scrutinized component of DNs, the literature focus mostly on
incremental implementation of the same models.

In Tan & Eswaran (2008), Stacked Autoencoders are compared to stacked RBMs, i.e. DBNs,
and the results clearly show that the stacked RBMs perform better. This comparison is the
closest one to the purpose of this thesis. However they don’t compare the internal representa-
tions.

In Coates et al. (2011) there is an analysis of the compared performance of sparse au-
toencoders and sparse RBMs, as state-of-the-art architectures, with a third newly-introduced
architecture, to use as building blocks in DNs. Even in that case, the performance of sparse
autoencoders and sparse RBMs are shown to to be similar.

There is little or no work aimed to show that autoencoders and RBMs perform in the same
way, in spite of their training algorithms differences.

2

CHAPTER 1. INTRODUCTION

1.2.2 Invariance in internal representations

Goodfellow et al. (2009) presented a general set of tests for measuring invariances in the internal
representations of Deep Networks. A finding in their experiments with visual data is that
Stacked Autoencoders yield only modest improvements in invariance as depth increases. From
this comes the suggestion that a mere stacking of shallow architectures may not be sufficient
to exploit the full potential of deep architectures to learn invariant features.

Other authors preferred to introduce novel algorithms, such as in Sohn & Lee (2012), where
Transformation-Invariant RBMs (TIRBMs) and Sparse TIRBMs, that can achieve invariance
to a set of predefined transformations, are presented and compared to RBMs.

In Rasmus et al. (2014) the invariant representations in a denoising autoencoder are ob-
tained with modulated lateral connections. They show that invariance increases towards the
higher layers but significantly so only if the decoder has a suitable structure, i.e. the lateral
connections.

The overall idea is that invariance in internal representations is highly desired but non-
achievable with shallow architectures.

1.3 Overview of the thesis

In chapter 2 all the building blocks are presented and their theory explained.
In chapter 3, the deep learning methodology is introduced and the blocks are put together

to form the examined deep architectures.
All the details regarding the implementation, the training, the test and the methodology

behind all the operations executed to analyze the three architectures in exam are accurately
described in chapter 4.

Chapter 5 contains all the results, thoroughly labeled, but only partially commented.
Finally, in chapter 6, the results are discussed in their wholeness and some conclusions are

made.

3

Chapter 2

Autoencoders and Restricted Boltzmann
Machines

2.1 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) is an artificial neural network composed of an input layer,
one or more hidden layers and an output layer (see figure 2.1.1).

Figure 2.1.1: Graph of a multi-layer perceptron with one hidden layer. From bottom to top,
respectively, the input layer (white), the hidden layer (gray) and the output layer (white). xk is
an input unit, hj is a hidden unit and yk is an output unit. Connections are exclusively drawn
between different layers.

For a MLP with one hidden layer, the output vector y is obtained as a function of the input
vector x:

y = f(x) = G
(
b(2) + W (2) · h (x)

)
= G

(
b(2) + W (2) · s

(
b(1) + W (1) · x

))
with bias vectors b(1), b(2), weight matrices W (1), W (2) and activation functions G and s.

4

CHAPTER 2. AUTOENCODERS AND RESTRICTED BOLTZMANN MACHINES

The hidden layer is the vector h (x).
Typical choices for s include tanh, with tanh(a) = (ea − e−a)/(ea + e−a), that has been

used in this thesis, or the logistic sigmoid function, with sigmoid(a) = 1/(1 + e−a). A choice
for G can be the softmax function, especially when the MLP is used to identify multi-class
membership probabilities, such as in this work.

Using one hidden layer is sufficient to obtain from an MLP an universal approximator (i.e.
the neural network can represent a wide variety of interesting functions when given appropriate
parameters), but substantial benefits come from using many hidden layers, that is the very
premise of deep learning (LeCun et al., 2015).

2.1.1 Training

A typical training of a MLP is executed with backpropagation, an abbreviation for “backward
propagation of errors”, that is a common method of training artificial neural networks, used in
conjunction with an optimization method such as gradient descent. This method calculates
the gradient of a cost function, e.g. Negative Log Likelihood (NLL) or Mean Squared Error
(MSE), with respect to all the weights in the network. The gradient is then used to update the
weights, in an attempt to minimize the cost function. A local minimum of the cost function is
found taking steps proportional to the negative of the gradient (or of the approximate gradient)
of the cost function at the current point.

The backpropagation learning algorithm can be divided into two phases: propagation and
weight update.

The propagation involves the following steps:

• Forward propagation of a training pattern’s input through the neural network in order to
generate the network’s output activations.

• Backward propagation of the network’s output activations through the neural network
using the training pattern target in order to generate the deltas (the difference between
the input and output values) of all output and hidden neurons.

The weight update is performed in the following steps for each neuron:

• Multiply the neural output delta and input activation to get the gradient of the weight.

• Subtract a ratio (percentage) of the gradient from the weight. This ratio influences the
speed and quality of learning and it is called the learning rate. The greater the ratio,
the faster the neuron trains; the lower the ratio, the more accurate the training is. The
sign of the gradient of a weight indicates where the error is increasing, this is why the
weight must be updated in the opposite direction.

The two phases are repeated until the performance of the network is satisfactory.

5

CHAPTER 2. AUTOENCODERS AND RESTRICTED BOLTZMANN MACHINES

2.1.2 Logistic regression

Logistic regression is a training algorithm inspired by a MLP with no hidden layers, so that
the input is directly connected to the output through a sigmoid or softmax function. It is used
as output layer in deep networks.

2.2 Autoencoders

An Autoencoder (AE), also called autoassociator or diabolo network, is an auto-associative
neural network derived from the multi-layer perceptron which aim to transform inputs into
outputs with the least possible amount of distortion (Bourlard & Kamp, 1988; Hinton & Zemel,
1994; Rumelhart et al., 1986). Autoencoders have been used as building blocks to train deep
networks, where each level is associated with an AE that can be trained separately. An almost
equal but more efficient implementation of the autoencoder is called denoising autoencoder (dA)
and it also used as building block of one of the deep network architectures, so it is independently
presented in section 2.3.

2.2.1 Structure

An autoencoder is respectively composed by an input layer, a hidden layer and an output layer
(see figure 2.2.1). It takes an input x ∈ [0, 1]d and first maps it (with an encoder) to a hidden
representation y ∈ [0, 1]d

′
through a deterministic mapping, e.g.:

y = s(Wx + b)

where s is a non-linearity such as a sigmoid function, e.g. s(t) = 1
1+e−t . The latent represen-

tation y, or code, is then mapped back (with a decoder) into a reconstruction z of the same
shape as x. The mapping happens through a similar transformation, e.g.:

z = s(W̄y + b̄)

where z should be seen as a prediction of x, given the code y.

6

CHAPTER 2. AUTOENCODERS AND RESTRICTED BOLTZMANN MACHINES

Figure 2.2.1: Graph of an Autoencoder. From bottom to top, respectively, the input layer
(white), the hidden layer (gray) and the output layer (white). xk is an input unit, yj is a
hidden unit and zk is an output unit. Connections are exclusively drawn between different
layers.

It is a good approach to constrain the weight matrix W̄ of the reverse mapping to be the
transpose of the forward mapping: W̄ = WT because the number of free parameters is reduced
and it simplifies the training. This is referred to as tied weights. The parameters of this model
(namely W, b, b̄ and, if one doesn’t use tied weights, also W̄) are optimized such that the
average reconstruction error is minimized.

The reconstruction quality can be quantified with an error function, the traditional Squared
Error can do the trick:

L(x, z) = ||x− z||2.

If the input is interpreted as either bit vectors or vectors of bit probabilities, cross-entropy of
the reconstruction can be used:

LH(x, z) = −
d∑

k=1

[xk log zk + (1− xk) log(1− zk)]

2.2.2 Training

Autoencoders are supervised neural networks which are trained using the gradient descent
method (see section 2.1).

If the number of hidden neurons is less than the number of input/output neurons, then the
network will be forced to learn some sort of compression.

Even when the number of hidden neurons is large, there are various tricks in cost functions
one can use to ensure that the network does something more interesting than learning the
identity function. In fact, a common problem is that with no constraint besides minimizing the
reconstruction error the autoencoder merely maps an input to its copy.

7

CHAPTER 2. AUTOENCODERS AND RESTRICTED BOLTZMANN MACHINES

In Bengio (2007) there is the interesting discovery that, when trained with stochastic gradi-
ent descent, non-linear autoencoders with more hidden units than inputs (called over-complete)
yield good representations, in the sense that those representations can be fed to a next network
for classification, and it will have a low classification error.

Other ways by which an autoencoder with more hidden units than inputs could be prevented
from learning the identity function, capturing something useful about the input in its hidden
representation are the addition of sparsity (Poultney et al., 2006; Lee et al., 2008), i.e. forcing
many of the hidden units to be zero or near-zero, or the addition of noise in the transformation
from input to reconstruction (Vincent et al., 2008), a technique that is used for the denoising
autoencoders, discussed in section 2.3. .

2.3 Denoising Autoencoders

A denoising Autoencoder (dA) is an improved version of the basic autoencoders (Vincent et al.,
2008), the simple idea behind it is to force the Autoencoders to not learn the identity function,
but more robust features, by reconstructing the input from a corrupted version of it. The
only way for an Autoencoder to reconstruct a distorted input is to capture the statistical
dependencies between the inputs, and that is exactly what one would like. Note that being
able to predict any subset of variables from the rest is a sufficient condition for completely
capturing the joint distribution between a set of variables and this is also how Gibbs sampling
works in the Restricted Boltzmann Machines (RBMs) (see section 2.4 and subsection 2.4.2).

2.4 Restricted Boltzmann Machines

A Boltzmann Machine (BM) is a particular form of Markov Random Field (MRF) for which
the energy function is linear in its free parameters. Some of its variables, called hidden units,
are never observed, but allow the machine to represent complicated distributions internally.

A Restricted Boltzmann Machine (RBM) was originally presented by Smolensky (1986)
with the name of Harmonium, and further restrict the BM by eliminating all the visible-visible
and hidden-hidden connections. A graphical depiction of an RBM is shown in figure 2.4.1. The
RBMs rose to prominence only after that Geoffrey Hinton and his collaborators invented fast
learning algorithms (see subsection 2.4.3) for RBMs in the mid-2000s.

8

CHAPTER 2. AUTOENCODERS AND RESTRICTED BOLTZMANN MACHINES

Figure 2.4.1: Graph of a Restricted Boltzmann Machine. vj is a visible unit and hj is a hidden
unit. In an RBM, connections are exclusively drawn between visible units and hidden units.

2.4.1 Structure

The energy function of an RBM is defined as:

E (v,h) = −bTv − cTh− hTWv, (2.4.1)

where W represents the weights connecting visible and hidden units and b and c are biases,
respectively, of the visible and hidden units

The free energy can also be expressed in the following form:

F (v) = −bTv −
∑
i

log
∑
hi

ehi(ci+Wiv). (2.4.2)

By the property that visible and hidden units are conditionally independent of one-another,
results:

p (h|v) =
∏
i

p (hi|v) ;

p (v|h) =
∏
j

p (vj|h) .

Each sample p (x) can be obtained by running a Markov chain to convergence, using Gibbs
sampling (see subsection 2.4.2).

A common studied case is when binary units are used, so that vj and hi ∈ {0, 1}, and a
probabilistic version of the usual neural activation is obtained:

P (hi = 1|v) = sigm (ci + Wiv)

P (vj = 1|h) = sigm
(
bj + W T

jh
)
.

The free energy of an RBM with binary units becomes:

9

CHAPTER 2. AUTOENCODERS AND RESTRICTED BOLTZMANN MACHINES

F (v) = −bTv −
∑
i

log
(
1 + e(ci+Wiv)

)
.

2.4.2 Gibbs sampling

Gibbs sampling is used to obtain a sample p (x) by running a Markov chain to convergence,
the sampling of the joint of N random variables S = (S1, . . . , SN) is done through a sequence of
N sampling sub-steps of the form Si w p (Si|S−i) where S−i contains the N − 1 other random
variables in S, excluding Si.

In RBMs the Gibbs sampling is a way to obtain values for visible or hidden units, starting
from the ones that are given.

Figure 2.4.2: Steps of Gibbs sampling in a Restricted Boltzmann Machine. v are visible units
and h are hidden units. Each step is performed from a visible unit to hidden unit, or vice versa.

A step in the Markov chain (see figure 2.4.2) estimates the hidden units from the visible
units (encoding of the input):

h(n+1) w sigm(W Tv(n) + c),

or the visible units from the hidden units (reconstruction of the input):

v(n+1) w sigm(Wh(n+1) + b),

where v(n) and h(n) , respectively, refer to the set of all visible and hidden units at the n-th
step of the Markov chain.

When the number of steps tends to infinity, it is possible to consider p (v,h) as accurate
samples, but to get sufficiently close to this limit there is a need for immense computational
power.

An algorithm called contrastive divergence is often used instead (see subsection 2.4.3).

2.4.3 Contrastive Divergence (CD-k)

Contrastive Divergence (CD-k) is based on two simple ideas.

10

CHAPTER 2. AUTOENCODERS AND RESTRICTED BOLTZMANN MACHINES

The first algorithm was presented by Hinton (2002). It proposes that, since the true under-
lying distribution of the data p (v) w ptrain (v) is desired, the Markov chain can be initialized
with a training sample, so that the first step can be already close to the convergence to the
final distribution.

The second idea for CD is to not wait for the chain to converge. It has been demonstrated
that, with the first modification, for only k steps of Gibbs sampling, especially with just one
sample (k = 1), the samples obtained are extremely good (Bengio & Delalleau, 2008).

In order to improve the contrastive divergence, another technique called persistent CD
has been proposed and it is presented in subsection 2.4.4.

2.4.4 Persistent Contrastive Divergence

Persistent Contrastive Divergence (PCD), presented by Tieleman (2008), uses another approx-
imation for sampling from p (v,h). It relies on a single Markov chain which has a persistent
state, i.e. the chain is not restarted for each observed example. This allows to extract new
samples by simply running the Markov chain for k-steps and the state is always preserved for
subsequent updates.

2.4.5 Training

Since RBMs are energy based models, i.e. associate a scalar energy to each configuration of the
variables of interest, learning corresponds to modifying that energy function so that its shape
has desirable properties, such as low energy configurations.

Energy-based probabilistic models define a probability distribution through an energy func-
tion, as follows:

p (x) =
e−E(x)

Z
. (2.4.3)

The normalizing factor Z is called the partition function by analogy with physical systems:

Z =
∑
x

e−E(x). (2.4.4)

An energy-based model can be learnt by performing (stochastic) gradient descent on the
empirical negative log-likelihood of the training data. The log-likelihood is defined first:

L (θ,D) =
1

N

∑
x(i)∈D

log p(x(i)) (2.4.5)

and then the loss function as being the negative log-likelihood:

11

CHAPTER 2. AUTOENCODERS AND RESTRICTED BOLTZMANN MACHINES

l (θ,D) = −L (θ,D) . (2.4.6)

A problem that regards the training of an RBM is about the impossibility to estimate the
log-likelihood log(P (x)) during the training because of the partition function in equation 2.4.3
that is unknown.

To solve this, a pseudo-likelihood (PL) is calculated as follows:

PL (x) =
∏
i

P (xi|x−i) (2.4.7)

and

logPL (x) =
∑
i

logP (xi|x−i) , (2.4.8)

where x−i denotes the set of all bits of x except the i-th bit. The log-PL is therefore a sum
of the log-probabilities of each bit xi conditioned on the state of all other bits.

A stochastic approximation of log-PL can be also introduced:

g = N · logP (xi|x−i) , (2.4.9)

where i w U (0, N), the uniform distribution, and

E [g] = logPL (x) (2.4.10)

is the expectation taken over the uniform random choice of index i, with N as number of
visible units.

For binary units it becomes:

logPL (x) w N · log e−FE(x)

e−FE(x) + e−FE(x̄)
w N · log [sigm (FE(x̄i)− FE (x))] (2.4.11)

where x̄i refers to x with the i-th bit flipped.
The pseudo-likelihood is then used as a cost function for the training of the RBM with

gradient descent.

12

Chapter 3

Deep Learning

Deep Learning (deep machine learning, or deep structured learning, or hierarchical learning,
or sometimes DL) is an approach to machine learning that refers to a set of algorithms that
aim to model high-level abstractions in the input data by using complex model architectures,
mainly based on multiple non-linear transformations (Deng & Yu, 2014; Bengio et al., 2013;
Bengio, 2009; Schmidhuber, 2015). Various deep learning architectures such as stacked autoen-
coders, convolutional deep neural networks, deep belief networks (referring to stacked restricted
Boltzmann machines and rarely also extended to stacked autoencoders) and recurrent neural
networks have been applied to fields such as computer vision, automatic speech recognition,
natural language processing, audio recognition and bioinformatics where they have been shown
to produce state-of-the-art results on various tasks.

3.1 Deep Belief Networks

Deep Belief Networks (DBN) have been introduced by Hinton & Salakhutdinov (2006) as
stacked restricted Boltzmann machines with a fast-learning algorithm (Hinton et al., 2006)
that allowed the structure to achieve better results with less computational effort. It refers to
stacked RBMs, but rarely also to its counter-part realized with stacked autoencoders (Bengio
et al., 2007). In this thesis the acronym is referred exclusively to stacked RBMs.

A DBN is a graphical model which learns to extract a deep hierarchical representation of
the training data. It models the joint distribution between an observed vector x and l hidden
layers hk as follows:

P
(
x,h1, . . . ,hl

)
=

(
l−2∏
k=0

P
(
hk|hk+1

))
P
(
hl−1|hl

)
(3.1.1)

where x = h0, P
(
hk|hk+1

)
is a conditional distribution for the visible units conditioned on

the hidden units of the RBM at level k, and P
(
hl−1|hl

)
is the visible-hidden joint distribution

13

CHAPTER 3. DEEP LEARNING

Figure 3.1.1: Layer-wise training of a Deep Belief Network, composed by stacked RBMs. From
the bottom, x is the input and hk are hidden layers. (1) The first layer is trained. (2) The
second layer is trained using the first hidden layer as visible units. (3) The third layer is trained
using the second hidden layer as visible units. (4) A regression layer is added and the resultant
DBN is ready for the fine-tuning.

in the top-level RBM (see figure 3.1.1).
Hinton et al. (2006) and Bengio et al. (2007) introduced a greedy layer-wise unsupervised

training that can be applied to DBNs with RBMs as building blocks for each layer. The
algorithm is the following:

1. Train the first layer as an RBM that models the raw input x = h0 as its visible layer.

2. The first layer internal representation is then used as input data for the second layer.
This representation can be either the mean activations P

(
h(1) = 1|h(0)

)
or samples of

P
(
h(1)|h(0)

)
. The second layer is thus trained.

3. Iterate 2 for the desired number of layers, each time propagating upward either samples
or mean values.

4. Fine-tune all the parameters of the deep network with respect to a supervised training
criterion, after having added a further layer to convert the learned deep representation
into supervised predictions. Such layer can be a simple linear classifier, e.g. a regression
layer.

14

CHAPTER 3. DEEP LEARNING

Figure 3.2.1: Layer-wise training of a Stacked Autoencoder. From the bottom, x is the input
and yk are hidden layers and z is the output (reconstructed input). (1) The first layer is trained.
(2) The second layer is trained using the first hidden layer as input to reconstruct. (3) The
third layer is trained using the second hidden layer as input to reconstruct. (4) A regression
layer is added and the resultant Stacked Autoencoder is ready for the fine-tuning.

3.2 Stacked Autoencoders

Autoencoders can be stacked to form a deep network by feeding the internal representation
(output code) of the Autoencoder at the layer below as input to the considered layer. The
unsupervised pre-training of the architecture is done one layer at a time (see figure 3.2.1).
Once the first k layers are trained, it is possible to train the (k + 1)-th layer using the internal
representation of the k-th layer.

When all the layers are pre-trained, a classification layer is added and the deep network can
be fine-tuned, exactly how it is done in a Deep Belief Network (see section 3.1).

The advantage of this architecture is that by using more hidden layers than a single autoen-
coder, a high-dimensional input data can be reduced to a much smaller code representing the
important features.

3.3 Stacked denoising Autoencoders

A Stacked denoising Autoencoder (SdA) is an extension of the stacked autoencoder and was
introduced by Vincent et al. (2008). The building blocks of this deep network are denoising
autoencoders (see section 2.3). The SdA is layer-wise trained and fine-tuned exactly as described

15

CHAPTER 3. DEEP LEARNING

Figure 3.3.1: Layer-wise training of a Stacked denoising Autoencoder. From the bottom, x is
the input and yk are hidden layers and z is the output (reconstructed input). Each autoencoder,
given its input x, reconstructs a noisy version of it x̄. (1) The first layer is trained. (2) The
second layer is trained using the first hidden layer as input to reconstruct. (3) The third layer
is trained using the second hidden layer as input to reconstruct. (4) A regression layer is added
and the resultant Stacked denoising Autoencoder is ready for the fine-tuning.

in section 3.2. In figure 3.3.1 it is shown how the training is performed, but there is basically
no difference w.r.t. the SA, with the only exception that each denoising autoencoder, given an
input x, reconstructs a noisy version of it, namely x̄, and not the original input.

3.4 Relation between models

Comparing the structure of either a stacked autoencoder (SA) or a stacked denoising autoen-
coder (SdA) (they are equal) with the structure of a deep belief network (DBN), one can see
that the fundamental differences consist in the output layer and the direction of the connections
between layers. In the first architecture the output layer is separate from the input layer but
in the second architecture it coincides with it. This is also remarked by the arrows connecting
the layers. In a SA or SdA the information flows unidirectionally from the input layer, through
the hidden layer, up to the output layer. In a DBN the information flows both ways between
the visible (input/output) layer and the hidden layer.

By the point of view of the data flowing into the three structures, this suggests that they
may all behave in the same way.

16

CHAPTER 3. DEEP LEARNING

If the input data given to the three structures is the same, a legit question is: what are
the similarities in the hidden layers, i.e. the internal representations, especially if the outputs
turned out to be very similar after the separate trainings?

The difference in the (layer-wise) training algorithms has already been delineated in this
chapter, a similarity in the structures has been hereby noted, in the following chapters the focus
is moved to the data.

17

Chapter 4

Methods

4.1 Dataset

The dataset chosen for the analysis of the deep networks is MNIST which contains a set of
hand-written digit samples from 0 to 9. Each digit is in the form of a grey-scale image, of size
28x28 pixels, with values in range [0, 1]. Background is represented by low (0) values and the
digits have high values (around 1).

The dataset is composed by a total of 50’000 training samples, 10’000 validation samples
and 10’000 test samples.

The MNIST dataset has been distributed in three new datasets named MNIST-10, MNIST-
50 and MNIST-100 which contain, respectively, the 10%, 50% and 100% of the original dataset
training, validation and test samples. The composition of each dataset is summarized in table
4.1.

Table 4.1: Composition of the MNIST-10, MNIST-50 and MNIST-100 datasets.

Dataset Percentage of MNIST Number of samples
Training Validation Test

MNIST-10 10% 5’000 1’000 1’000
MNIST-50 50% 25’000 5’000 5’000
MNIST-100 100% 50’000 10’000 10’000

4.2 Implementation of the Deep Networks

This section contains the details concerning the implementation of the deep learning architec-
tures.

18

CHAPTER 4. METHODS

4.2.1 Programming language and framework

All the code used in this work is written in the Python language, using Theano which is a
Python library that is used to define, optimize, and evaluate mathematical expressions in-
volving multi-dimensional arrays. Important features of Theano are the possibility to share
parameters between different networks and use the Graphics Processing Units (GPUs) to speed
up simulations. Theano has been employed for large-scale computationally intensive scientific
investigations since 2007 (Bergstra et al., 2010; Bastien et al., 2012).

4.2.2 Hardware and experiments

The analysis of the deep architectures, namely Deep Belief Network (DBN), Stacked Autoen-
coders (SA) and Stacked denoising Autoencoders (SdA), is done through three different train-
ings, validations and tests each, using the datasets MNIST-10, MNIST-50 and MNIST-100.
All the experiments are executed on a MacBook Pro with NVIDIA GeForce GT 650M 512MB
GPU.

4.2.3 Training parameters

The training of deep architectures consists of two steps:

• a layer-wise pretraining of each building block;

• the fine-tuning of all the three architectures composed of all the layers, including the last
regression layer, with a backpropagation (see section 2.1.1) method applied considering
the whole architecture a multi-layer perceptron (see section 2.1).

In order to achieve a comparable performance for all the architectures, the training and fine-
tuning parameters have been set equally.

In this thesis a logistic regression classifier (see section 2.1.2) is used to classify the input
x based on the output of the last hidden layer, h(l) for a DBN (see figure 3.1.1) or y(l) for SA
(see figure 3.2.1) and SdA (see figure 3.3.1). Fine-tuning is performed via supervised gradient
descent (see section 2.1.1) of the negative log-likelihood cost function.

4.2.3.1 Number of layers

All the architectures have a same number of hidden layers, that is three, and for each hidden
layer the same size. The first layer has 900 hidden units, the second has 400 hidden units and
the third has 100 hidden units.

19

CHAPTER 4. METHODS

4.2.3.2 Layer-wise training

Every layer, built with either an RBM, an autoencoder (AE) or a denoising autoencoder (dA),
is trained for 20 epochs, where one epoch corresponds to 500 iterations on MNIST-10, 2’500
iterations on MNIST-50 and 5’000 iterations on MNIST-100, given the different sizes of the three
datasets used and a mini-batch corresponding to 10 samples. This means that the gradient is
computed against 10 instead one training examples at each step of the gradient descent (see
section 2.1.1). This size for the mini-batches was chosen, after several try and error attempts,
and based on the fact that the databases contain 10 different digits, so this size of mini-batch
should carry at least a few different digits in the error evaluation per weights update. It also
allows for more training speed than in 1 sample mini-batches and still a good accuracy. For
layer-wise training times refer to table 4.2.

The training learning rate is set to 0.01, always after several try and error attempts with
the aim of maximizing the error reduction w.r.t. a shorter training time.

When training a denoising autoencoder, the parameter for the reconstruction noise is also
set to 30%, for the quantity of salt and pepper noise added to the samples before the input
reconstruction.

4.2.3.3 Fine-tuning of the deep networks

The fine-tuning parameters include a learning rate, that is again set to 0.01, and a number
of maximum epochs at which the fine-tuning needs to be stopped in case the early-stopping
had not done it yet. This maximum value is set to 30 epochs, where one epoch corresponds to
500 iterations on MNIST-10, 2’500 iterations on MNIST-50 and 5’000 iterations on MNIST-
100, given the different sizes of the three datasets used and a mini-batch corresponding to 10
samples.

The early stopping has a patience parameter which varies at each epoch, increasing if a best
model is found, or decreasing if no best model is found. For fine-tuning times refer to table 4.2.

20

CHAPTER 4. METHODS

Table 4.2: Layer-wise training and fine-tuning times for the three architectures. The models
are evaluated on the validation and test sets at the end of every epoch, that is 500 iterations on
MNIST-10, 2’500 iterations on MNIST-50 and 5’000 iterations on MNIST-100. Whenever the
model performs better than the previous it is chosen as best model. The best model is found
with early-stopping or a forced-stop at epoch 30 in all cases.

Architecture Dataset Training time Best model on iterationLayer-wise Fine-tuning

DBN
MNIST-10 1.49m 1.56m 14’500 (epoch 29)
MNIST-50 7.95m 6.78m 75’000 (epoch 30)
MNIST-100 14.45m 13.03m 150’000 (epoch 30)

SA
MNIST-10 1.42m 0.57m 3’000 (epoch 6)
MNIST-50 7.94m 6.56m 70’000 (epoch 28)
MNIST-100 14.33m 12.37m 150’000 (epoch 30)

SdA
MNIST-10 1.51m 1.50m 10’500 (epoch 21)
MNIST-50 7.72m 6.47m 62’500 (epoch 25)
MNIST-100 14.51m 12.32m 150’000 (epoch 30)

4.3 Evaluation of the Deep Networks

This section contains all the methods used for the evaluation of the deep learning architectures.
The robustness to noise of the three architectures is evaluated with standard methods in

subsection 4.3.1. Filters are created and evaluated following an approach discussed in the latest
literature and presented in subsection 4.3.2.

About the similarities in the internal representations, a numeric standard evaluation cri-
terion is applied (see subsection 4.3.3), but the author has also found a way to compare the
internal representations with a technique that does not seem to exist in literature. The author
has chosen to call it F-Mapping (from Filter Mapping) and presents it in subsection 4.3.4.

Finally, the inputs are reconstructed using the internal representations to show the success
of the overall training and testing of the architectures and their learnt internal representations.
Numerical analysis is also applied to the reconstructed input as a final test (see subsection
4.3.6).

4.3.1 Test robustness to noise

In order to test the robustness of each architecture to noisy inputs, all the samples in the test sets
are corrupted with salt and pepper noise in three different levels: 10%, 20% and 50%. The three
architectures are then trained and validated, respectively, with the uncorrupted training and
validation sets, then tested over the corrupted test sets. Note that the denoising autoencoder
continues to apply a 30% of salt and pepper noise to the training data to reconstruct by default.

21

CHAPTER 4. METHODS

It is to be noted that the salt and pepper noise is the same one used in the denoising
autoencoder as an addition to the input during the layer-wise training (for further details read
section 2.3).

4.3.2 Create filters

A way to visualize how the deep learning architectures are encoding the input data into their
internal representations is to exploit the information stored in the weight matrices, which can
be seen as filters used to transform the input data. As each architecture is composed by more
than one layer which means more than one W matrix, it is possible to project the W matrix
of the last layer down to the W matrix of the first layer, as described by Erhan et al. (2010),
mainly with three techniques:

1. Linear combination of previous units;

2. Output unit sampling;

3. Activation Maximization (AM).

In this experimental set it is chosen to use neither the activation maximization nor the output
unit sampling (can only be used for RBMs), but only the linear combination of previous units,
for it is a more general approach and can be immediately applied to the weight matrices to
show the filters.

In the first layer, the matrix W1 can be immediately shaped as filters:

F1 = (W1)T

From the second layer on, it is necessary to calculate the matrix product of that layer’s Wi

matrix up to W0:

F2 = (W1 ×W2)T

F2 = (W1 ×W2 ×W3)T

Where Fk represents a set of filters at layer k. Each row is a filter that can be shaped as an
image and should show what details are relevant in the input image in order to be represented
as the activation of the corresponding unit in the hidden layer. While the first layer or even
the second one’s filters are not significantly good for understanding how the deep architectures
encode the input data, in the third layer’s filters a high-level representation of the input images
details is expected.

22

CHAPTER 4. METHODS

Note that both the bias bi and the sigmoid activation function - that would make the
equation non-linear - are obviously excluded from the filters. Also, the filters do not depend on
any input values.

The W matrices used in the three architectures here analyzed have the same dimensions for
the respective layers. Each input from the MNIST dataset is a digit image of 28x28 pixels that
is vectorized as 784 values. The first hidden layer encodes a vector of 900 values (visualized
as a tile of 30x30 pixels), the second hidden layer encodes a vector of 400 values (visualized a
tile of 20x20 pixels) and the third hidden layer encodes a vector of 100 values (visualized as a
tile of 10x10 pixels). So, the first W matrix has dimensions 784x900, the second 900x400, the
third 400x100.

A filter is a 28x28 image that contains the corresponding values of a single hidden unit per
layer. So, there are 900 filters for the first layer, 400 for the second and 100 for the third.

4.3.3 Exploit the internal representations

An internal representation is formed by all the hidden units activations at a given input. One
layer of hidden units can already encode the input data as features represented in a lower
dimensional space. In deep learning, adding more layers produces better low dimensional data
representations. In fact, stacked autoencoders have been used for dimensionality reduction
purposes (Hinton & Salakhutdinov, 2006). In general, deeper layers should correspond to
higher level features.

The only disadvantage of the internal representations for humans is that, being merely
an encoding, they are very difficult to understand in an intuitive way, e.g. as an image (see
figure 5.4.1), so it is difficult to attest the quality of the information carried in the internal
representations. A way to check the composition of an internal representation consists of
analyzing its informational content and its properties with a numerical approach.

Sparseness is one desired property because, as reported by Olshausen & Field (2004):

• “Early work on associative memory models, for example, showed that sparse representa-
tions are most effective for storing patterns, as they maximize memory capacity because
of the fact that there are fewer collisions (less cross-talk) between patterns.”

• “Later work has similarly showed that sparse representations would be advantageous for
learning associations in neural networks, as they enable associations to be formed effec-
tively using local (neurobiologically plausible) learning rules, such as Hebbian learning.”

• “In many sensory nervous systems neurons at later stages of processing are generally less
active than those at earlier stages. [...] The nervous system was attempting to form neural
representations with higher degrees of specificity. For example, a neuron in the retina

23

CHAPTER 4. METHODS

responds simply to whatever contrast is present at that point in space, whereas a neuron
in the cortex would respond only to a specific spatial configuration of light intensities (e.g.
an edge of a particular orientation. [...] Several computational studies conducted have
demonstrated concretely the relationship between sparsity and the statistics of natural
scenes.”

Since the architectures in exam perform a reduction of dimensionality when encoding the data in
the deep layers, a trade-off between density, i.e. the compressed data, and sparsity is expected.
If the training is successful, all architectures should entangle the main features in the data
through their internal representations.

4.3.3.1 Histograms

One way to understand the numerical composition of an internal representation is to compute
an histogram, which allows to count the activations and to visualize if their distribution is
sparse or not. If an internal representation is sparse, only a few hidden units have high (1)
values and the rest have no activations, i.e. low (0) values. The information carried by an
internal representation can thus be studied w.r.t the number and intensity of its activations.

4.3.3.2 The Gini coefficients: a measure of sparseness

A second numerical attempt can be made with a method presented in recent literature: the
Gini coefficients (Hurley & Rickard, 2009).

The Gini coefficients are a mean to quantify the sparseness of the high (1) and low (0)
activations in a sequence, by comparison with the Lorenz curve (Lorenz, 1905) generated from
the sequence to test. By looking at a Lorenz curve (see figure 4.3.1), greater equality means
that the line based on actual data is closer to a 45-degree line that shows a perfectly equal
distribution. Greater inequality means that the line based on actual data will be more bowed
away from the 45-degree line. The Gini coefficient is based on the ratio of the area between the
45-degree line and the actual data line, and the area under the data line.

24

CHAPTER 4. METHODS

Figure 4.3.1: A Lorenz curve for an internal representation. A is the area between the equality
45-degree line and the Lorenz curve generated by the sequence; B is the area under the Lorenz
curve. The Gini coefficient is proportional to the ratio of the areas A/B.

In order to obtain a Gini coefficient, a regularization of the sequence is made, so that the
sum of all the values is one. Then, a normalization of the Gini coefficients is executed by
dividing the obtained value for the Gini coefficient of the sparsest sequence (one activation, all
zeros) of the same length.

As a result of the described procedure, a Gini value of 1 means that a sequence is sparse, a
Gini value of 0 means that the sequence is non-sparse.

A high number of random with uniform distributions in [0, 1] sequences have also been
generated and tested, their Gini coefficient tends to 1/3.

4.3.4 Map the internal representations (F-Mapping)

A simple numerical method can be used to compare the internal representations of the three
architectures with the Mean Squared Error (MSE). What is tricky is to obtain two internal
representations of the same input, created by two different architectures, that can be compared
to each other. In fact, there is no guarantee that two different representations may be able to
store the same information (common features created from the input) in the same shape.

This because each hidden unit that works on a different feature can be located at any
position of the internal representation for a given architecture.

But there is a way out. The filters, that have been shown before, represent a trace of the
information stored in each hidden unit of an hidden layer. The vector with all the activations
of the hidden units in a hidden layer is called an internal representation. So, for each element

25

CHAPTER 4. METHODS

of an internal representation vector there is a filter image telling what sort of information that
element carries.

Therefore, by sorting the filters Fi and Fj of the same layer of two different architectures i
and j, one can obtain a mapping function fM of their internal representations. This procedure
has been hereby referred as F-Mapping (from Filter Mapping) and can be described by the
following steps:

1. Two sets of filters Fi and Fj, corresponding to the same layer of architectures i and j, are
first normalized in range [−2, 2]. For each row, namely one filter, the mean of the first
three values and last three values is used as background value. This allows to center the
background at value zero.

2. Two index tables are created for the filter set Fi and Fj , so that N indices, corresponding
to N filter positions are stored in each index table. k is initialized to 1.

3. Each filter of the set Fi present in its index table is compared to each filter of the set Fj

present in its index table through mean squared error. The MSE gives more importance
to the values in ranges [−2,−1] and [1, 2], that are the filters’ white and black marks,
leaving what is closer to the background, range [−1, 1], less relevant. Also, positive and
negative values are treated equally. The couple of filters that minimize the sum of MSEs
of their values compared one by one, is chosen and mapped by their respective positions
in f i

M(k) and f j
M(k) and k is incremented of 1.

4. The position of each chosen filter is then removed from the respective set of filter index
table, now composed of N-1 elements each.

5. Steps 3 and 4 are repeated other N-1 times until the two sets Fi and Fj index tables have
no elements left and all the mapping values f i

M(1), . . . , f i
M(N) and f j

M(1), . . . , f j
M(N) are

obtained.

At the end of this process an F-Mapping function fM for the two sets of filters is obtained, the
original filter sets can be compared using their F-Mappings. Since the idea for the F-Mapping
technique came out during the test of the architectures, images of the normalized filters used
during the F-Mapping are also presented, together with the results in section 5.5.1.

4.3.5 Comparison of sorted internal representations with F-Mapping

Once an F-Mapping fM is defined for each architecture pair, two internal representations vi

and vj, of the architectures i and j, can be sorted so that v̄i = f i
M

(
vi
)
can be supposed to

represent information in the same shape of v̄j = f j
M

(
vj
)
. Using again the Mean Squared

26

CHAPTER 4. METHODS

Error to compare first vi and vj and then v̄i and v̄j allows to note if the F-Mapped internal
representations look more similar or not before and after this procedure.

The aim of this procedure is to align features in the internal representations, so that the
meaning of the whole internal representation vector can be comparable for different architec-
tures. For a numerical clue on the validity of this technique, refer to the results in subsection
5.5.2.

4.3.6 Verify the input reconstructions

One internal representation can also be fed to each previous layer in order to obtain the recon-
structed input of that layer, using its reconstruction function, i.e. sampling the visible units
from the hidden units in RBMs or reconstructing the input (output) from the hidden units in
the autoencoders. Each reconstruction corresponds to the previous layer’s hidden representa-
tion, and the final one is the input of the deep architecture, or better a reconstruction of what
it would have been in order to trigger the highest layer internal representation considered. This
process is hereby referred to as input reconstruction.

It is possible to reconstruct different kind of internal representations from any layer. In
particular: single activations, digits, mean-digits and filtered mean-digits. Each of them is
further explained in the relative subsection.

4.3.6.1 Single activations

When an internal representation - for any given architecture, at any given layer - is reconstructed
as input, it shows the information that the architecture stores about the real sample it was
trained with. One question then is: Can one single hidden unit alone contain an useful piece
of the whole information carried by the hidden layer?

An easy experiment can help answering this question. A number of handmade internal
representations equal to the number of the hidden units for that hidden layer is created. Then,
a very high activation (∼ 1000) is added only to one hidden unit per internal representation,
and the remaining values are all unactivated (0).

4.3.6.2 Reconstruction of digits

A quick reconstruction of the first-10-digits samples in the test set can visually show the validity
of the internal representations created by each architecture. If the reconstruction fails it is a
clue that the architecture cannot decode the internal representation anymore.

27

CHAPTER 4. METHODS

4.3.6.3 Reconstruction of the mean-digits

An interesting way to test the generalizations made by the internal representations in a high
layer is to try to reconstruct something that is not a valid internal representation, i.e. any-
thing that has not been produced by the architecture training, but contains some information
derived from other valid representations. What immediately appears to fit perfectly for this
purpose are the mean-digits, previously created for the histograms, as the mean of the internal
representations (the mean activations) of all the correctly classified test samples per digit are
used as input for reconstruction.

4.3.6.4 Filtering the mean-digits

A problem tied to the use of the mean-digits as internal representations is that they are com-
posed of real values in range [0, 1], as expected, while an internal representation - from all the
given architectures - tends to discriminate more between high (1) and low (0) activations. A
solution consists of filtering the mean-digits in order to obtain clearer high or low activations.
For this purpose it’s useful to create the variance-digits using the same procedure adopted for
the mean, and then set a criterion using both: a high activation in a filtered mean-digit is set
for each value that is α times greater than that mean-digit’s mean value, and its corresponding
variance-digit value is β times less than that variance-digit’s mean value. α and β are parame-
ters chosen with a trial and error approach, in order to get a number of high activations close to
the average number of high activations of a typical internal representation (all the digits have
a comparable number of high activations in the histograms).

4.3.7 Feeding internal representations to other architectures

Lastly, a way to check the similarity of an architecture’s internal representations with another’s
is to feed each internal representation to the other architecture and let it reconstruct an input
digit. Other than visually, the quality of the reconstructions can be attested with the MSE
calculated on the original input and the reconstructed input from an internal representation.
This is not always possible, in fact, the mean-digits and the filtered mean-digits have been
produced in the third layer and have no original input. In this case the first-10-digits original
input can be used to sample the quality of the reconstructions.

4.3.7.1 Inverse F-Mapping

The F-Mapped internal representations described before can also be fed to any architectures,
once a reverse F-mapping is provided. In particular, if it’s true that, given two internal repre-
sentations vi and vj for two different architectures i and j:

28

CHAPTER 4. METHODS

v̄i = f i
M

(
vi
)
h v̄j = f j

M

(
vj
)
,

then it is also possible to use the inverse F-Mappings f−1
M and feed the following internal

representations to the architecture i:

vi and ¯̄
vi = f i,−1

M

(
v̄i
)
h f i,−1

M

(
v̄j
)

= f i,−1
M

(
f j,−1M

(
vj
))
.

It is then possible to reconstruct the F-Mapped internal representations of the first-10-
digits, the mean-digits and the filtered mean-digits, in order to evaluate if there is a gain in the
reconstruction. Again, a comparison with MSE is the best way to attests results.

29

Chapter 5

Results

5.1 Training

The three architectures - Deep Belief Networks (DBNs), Stacked Autoencoders (SAs) and
Stacked denoising Autoencoders (SdAs) - have been trained, validated and tested with three
different percentages of samples in the same dataset: 10% for MNIST-10 (see figure 5.1.1),
50% MNIST-50 (see figure 5.1.2) and 100% for MNIST-100 (see figure 5.1.3). The MNIST-
100 dataset is composed by a total of 50’000 training samples, 10’000 validation samples and
10’000 test samples. The training is successfully stopped when the validation error touches its
minimum, so the best model is chosen before the maximum epoch. For training methods and
times refer to table 4.2 in subsection 4.2.3. Note that for all the plots, one epoch corresponds
to 500 iterations on MNIST-10, 2’500 iterations on MNIST-50 and 5’000 iterations on MNIST-
100, given the different sizes of the three datasets used and a mini-batch corresponding to 10
samples.

All the training curves show that the training error immediately becomes very low, while
the validation and test errors keep oscillating around an acceptable value, which is minimized
by the repeated training steps, until last epoch or early stopping. Overtrain may happen when
the training error is so low w.r.t. the validation and test errors, but all the architectures show a
good success rate on the test set (low error), and the validation error continue to decrease until
the training is ended with no significant increments in the test error. The training is successful
in all cases.

30

CHAPTER 5. RESULTS

Figure 5.1.1: Training (black), validation (green) and test (pink), respectively, for a DBN (left),
SA (center) and SdA (right), trained on MNIST-10.

Figure 5.1.2: Training (black), validation (green) and test (pink), respectively, for a DBN (left),
SA (center) and SdA (right), trained on MNIST-50.

Figure 5.1.3: Training (black), validation (green) and test (pink), respectively, for a DBN (left),
SA (center) and SdA (right), trained on MNIST-100.

5.2 Robustness to noise

In order to test the robustness of each architecture to noisy inputs, all the samples in the test
sets have been corrupted with salt and pepper noise in three different levels: 10%, 20% and

31

CHAPTER 5. RESULTS

50%. The architectures have been trained and validated, respectively, with the uncorrupted
training and validation sets, then tested over the corrupted test sets. Results are showed in
table 5.1.

For highly corrupted inputs and not much training data available, the stacked denoising
autoencoder and the stacked autoencoder perform both better than the deep belief network. For
highly corrupted inputs and more training data available, unintuitively - note that it happens
just in this one case so cannot be significant - the stacked autoencoder performs better than the
stacked denoising autoencoder, but both are still better than the deep belief network. Otherwise
the DBN has the best performance, but does not show significant results w.r.t. the other two
architectures.

Table 5.1: Classification errors of the three architectures trained on different percentages of the
MNIST dataset and tested with three different levels of salt and pepper noise applied to the
test sets.

Architecture Dataset Classification Errors
Original Noise 10% Noise 20% Noise 50%

DBN
MNIST-10 64/1000 76/1000

(+119%)
92/1000
(+144%)

271/1000
(+423%)

MNIST-50 180/5000 198/5000
(+110%)

254/5000
(+141%)

1157/5000
(+643%)

MNIST-100 167/10000 200/10000
(+120%)

261/10000
(+156%)

1422/10000
(+851%)

SA
MNIST-10 89/1000 103/1000

(+116%)
110/1000
(+124%)

269/1000
(+302%)

MNIST-50 218/5000 254/5000
(+117%)

290/5000
(+133%)

881/5000
(+404%)

MNIST-100 222/10000 263/10000
(+118%)

326/10000
(+147%)

1205/10000
(+543%)

SdA
MNIST-10 71/1000 78/1000

(+110%)
83/1000
(+117%)

225/1000
(+317%)

MNIST-50 182/5000 207/5000
(+114%)

236/5000
(+130%)

802/5000
(+441%)

MNIST-100 173/10000 215/10000
(+124%)

298/10000
(+172%)

1288/10000
(+745%)

5.3 Filters

A filter is a 28x28 image that contains the corresponding values of a single hidden unit per
layer. There are 900 filters for the first layer, 400 for the second and 100 for the third. All
the results are reported for a maximum of 100 filters per layer, where the exceeding ones are
randomly pruned.

32

CHAPTER 5. RESULTS

It is possible to notice that the overall quality of a filter increases when more training
samples are given to the architectures (see figures from 5.3.1 to 5.3.9). At a quick glance it is
possible to note that the SdA and DBN filters are quite similar. Also the DBN seems to include
more of a digit-shaped figures distinguishable from the background, while all filters have some
clear white or black marks concentrated in a specific location of the filter. As expected the
deeper layers show more localized filters, and the quality of details of the shapes in the filters
increases with the quantity of training data used (from MNIST-10 to MNIST-100).

33

CHAPTER 5. RESULTS

Figure 5.3.1: 100 random out of 900 first layer filters respectively for a DBN (left), SA (center)
and SdA (right), trained on MNIST-10.

Figure 5.3.2: 100 random out of 900 first layer filters respectively for a DBN (left), SA (center)
and SdA (right), trained on MNIST-50.

Figure 5.3.3: 100 random out of 900 first layer filters respectively for a DBN (left), SA (center)
and SdA (right), trained on MNIST-100.

34

CHAPTER 5. RESULTS

Figure 5.3.4: 100 random out of 400 second layer filters respectively for a DBN (left), SA
(center) and SdA (right), trained on MNIST-10.

Figure 5.3.5: 100 random out of 400 second layer filters respectively for a DBN (left), SA
(center) and SdA (right), trained on MNIST-50.

Figure 5.3.6: 100 random out of 400 second layer filters respectively for a DBN (left), SA
(center) and SdA (right), trained on MNIST-100.

35

CHAPTER 5. RESULTS

Figure 5.3.7: Third layer filters respectively for a DBN (left), SA (center) and SdA (right),
trained on MNIST-10.

Figure 5.3.8: Third layer filters respectively for a DBN (left), SA (center) and SdA (right),
trained on MNIST-50.

Figure 5.3.9: Third layer filters respectively for a DBN (left), SA (center) and SdA (right),
trained on MNIST-100.

36

CHAPTER 5. RESULTS

5.4 Internal representations

After having looked at the filters, it can be expected to achieve better filtered internal represen-
tations when the available training samples are many. It is also expected, but difficult to attest,
that the internal representations in the third layer are of greater interest for a classification task,
i.e. easier to split in different and meaningful classes.

When the different architectures were compared using the filters, the stacked denoising au-
toencoder showed a better understanding of the input data with respect to its basic counterpart,
the stacked autoencoder, while the DBN had still a quite similar encoding to the SdA.

On the other hand, an internal representation, being a sequence of activations, can not be
shaped as interesting images and this is well understandable if one takes a look at the ones
obtained for the first 10 digits and presented in figure 5.4.1. So it is difficult to attest the
quality of the internal representations by eye inspection of the results. Histograms and Gini
coefficients may help to assess various properties of the retrieved internal representations.

Figure 5.4.1: Internal representations in the third layer of the first 10 digits of the MNIST-100
test set, respectively for a DBN (top), a SA (middle) and a SdA (bottom). These internal
representations are obtained by feeding the original digits to the network.

5.4.1 Histograms

The three architectures are able to classify a test set composed of 10 different digits (MNIST)
with just a few errors. If only the well classified data is selected, using the labels provided with
each input, what remains are 10 sets of correctly classified digits.

For each of those digits a third layer internal representation is created by the architecture
in analysis. So, a first approach to look numerically at the internal representations is to create
a histogram of all the activations per digit of the third layer, with real values in range [0, 1]

split in 20 bins, as shown in figures 5.4.2, 5.4.3 and 5.4.4.

37

CHAPTER 5. RESULTS

The histograms clearly show that most of the values are high (1) or low (0) activations,
independently from the training data available: MNIST-10, MNIST-50 and MNIST-100 have
almost the same (scaled) number of activations per corresponding values. In order to extract
further information from the previous histogram, it is possible to compute the mean of all the
internal representations for each classified digit, from now on referred as mean-digits. This
allows to visualize the sparseness of the high (1) and low (0) activations (see figures 5.4.5, 5.4.6
and 5.4.7).

The distribution tends to have an equal number of activations per value, this means that
the high (1) and low (0) activations do not take place in the same hidden units of the third
layer with different digit samples.

38

CHAPTER 5. RESULTS

Figure 5.4.2: Histograms of third layer internal representations respectively for a DBN (top), SA
(middle) and SdA (bottom), trained on MNIST-10. The y-axis shows the number of activations,
the x-axis has 20 bins for values in range [0, 1]. Each color represents a different digit.

39

CHAPTER 5. RESULTS

Figure 5.4.3: Histograms of third layer internal representations respectively for a DBN (top), SA
(middle) and SdA (bottom), trained on MNIST-50. The y-axis shows the number of activations,
the x-axis has 20 bins for values in range [0, 1]. Each color represents a different digit.

40

CHAPTER 5. RESULTS

Figure 5.4.4: Histograms of third layer internal representations respectively for a DBN (top),
SA (middle) and SdA (bottom), trained on MNIST-100. The y-axis shows the number of
activations, the x-axis has 20 bins for values in range [0, 1]. Each color represents a different
digit.

41

CHAPTER 5. RESULTS

Figure 5.4.5: Histograms of third layer internal representations of the Mean-Digits respectively
for a DBN (top), SA (middle) and SdA (bottom), trained on MNIST-10. The y-axis shows the
number of activations, the x-axis has 20 bins for values in range [0, 1]. Each color represents a
different digit.

42

CHAPTER 5. RESULTS

Figure 5.4.6: Histograms of third layer internal representations of the Mean-Digits respectively
for a DBN (top), SA (middle) and SdA (bottom), trained on MNIST-50. The y-axis shows the
number of activations, the x-axis has 20 bins for values in range [0, 1]. Each color represents a
different digit.

43

CHAPTER 5. RESULTS

Figure 5.4.7: Histograms of third layer internal representations of the Mean-Digits respectively
for a DBN (top), SA (middle) and SdA (bottom), trained on MNIST-100. The y-axis shows
the number of activations, the x-axis has 20 bins for values in range [0, 1]. Each color represents
a different digit.

44

CHAPTER 5. RESULTS

5.4.2 Sparseness

The Gini coefficients are calculated for each digit’s third layer internal representation, as a
mean to quantify the sparseness of the high (1) and low (0) activations. For a more compact
reading the mean and the variance of the Gini coefficients is provided per each digit (see table
5.2). A Gini value of 1 means that a vector is sparse, a Gini value of 0 means that the vector
is non-sparse. Vectors with random values in the range [0, 1] have a Gini coefficient that tends
to 0.3̄.

All the digits appear to have a representation that is sparser than a random sequence,
but not extremely sparse. This corresponds to the expected trade-off between density and
sparseness of the internal representations that the three architectures should provide. It is
worth to point out that all the architectures encode the information almost with the same
sparsity.

Table 5.2: Gini coefficients. A hidden representation is sparse if its Gini coefficient is close to 1.
Since a random sequence would have a Gini coefficient close to 0.3̄, the internal representations
can be qualified as sparser than a random sequence.

Arch. Dataset
Digit

Mean
0 1 2 3 4 5 6 7 8 9

DBN

MNIST-10
Mean 0.6252 0.3424 0.5736 0.5432 0.5205 0.5318 0.5602 0.4806 0.5769 0.4971 0.5251

Var 0.0017 0.0020 0.0020 0.0029 0.0043 0.0035 0.0028 0.0031 0.0024 0.0025 0.0027

MNIST-50
Mean 0.5988 0.3941 0.5791 0.5263 0.4889 0.5295 0.5441 0.4795 0.5606 0.4959 0.5197

Var 0.0028 0.0028 0.0029 0.0026 0.0041 0.0038 0.0039 0.0032 0.0026 0.0028 0.0031

MNIST-100
Mean 0.6239 0.4354 0.6061 0.5941 0.5362 0.5374 0.5739 0.5163 0.5991 0.5251 0.5547

Var 0.0022 0.0026 0.0028 0.0029 0.0032 0.0031 0.0030 0.0030 0.0021 0.0025 0.0027

SA

MNIST-10
Mean 0.5689 0.4330 0.5217 0.5241 0.5102 0.5102 0.5365 0.4929 0.5210 0.5035 0.5122

Var 0.0009 0.0006 0.0009 0.0009 0.0015 0.0009 0.0009 0.0010 0.0009 0.0011 0.0010

MNIST-50
Mean 0.5529 0.4411 0.5055 0.5100 0.5057 0.5096 0.5018 0.4889 0.5025 0.4949 0.5013

Var 0.0015 0.0004 0.0007 0.0007 0.0017 0.0010 0.0008 0.0008 0.0008 0.0009 0.0009

MNIST-100
Mean 0.5419 0.4837 0.5226 0.5250 0.5309 0.5159 0.5058 0.5428 0.5059 0.5157 0.5190

Var 0.0007 0.0003 0.0005 0.0005 0.0006 0.0005 0.0007 0.0006 0.0006 0.0006 0.0006

SdA

MNIST-10
Mean 0.6004 0.4145 0.5601 0.5528 0.5112 0.5446 0.5561 0.4897 0.5507 0.4987 0.5279

Var 0.0021 0.0009 0.0017 0.0026 0.0025 0.0021 0.0027 0.0019 0.0016 0.0015 0.0021

MNIST-50
Mean 0.6290 0.4265 0.5909 0.5584 0.5226 0.5610 0.5701 0.5208 0.5623 0.5124 0.5454

Var 0.0027 0.0018 0.0017 0.0027 0.0050 0.0033 0.0033 0.0026 0.0025 0.0037 0.0030

MNIST-100
Mean 0.5979 0.4456 0.5836 0.5671 0.5357 0.5406 0.5555 0.5040 0.5728 0.5152 0.5418

Var 0.0019 0.0030 0.0014 0.0018 0.0024 0.0026 0.0021 0.0023 0.0018 0.0025 0.0022

45

CHAPTER 5. RESULTS

5.5 Mapping of the internal representations (F-Mapping)

As described in section 4.3.4, sorting the filters Fi and Fj of the same layer of two different
architectures i and j, one can obtain a mapping function fM of their internal representations
(F-Mapping). All the F-Mapped filters are analyzed in this section.

5.5.1 Comparison of sorted filters using MSE

Two sets of filters Fi and Fj, corresponding to the same layer of architectures i and j, are first
normalized in range [−2, 2]. For each row, namely one filter, the mean of the first three values
and last three values is used as background value. This allows to center the background at
value zero (see figure 5.5.1).

Figure 5.5.1: Third layer normalized filters respectively for a DBN (left), SA (center) and SdA
(right), trained on MNIST-100.

Successively, the two filters are F-Mapped, i.e. sorted with the algorithm described in
section 4.3.4, in order to minimize the Mean Squared Error (see figure 5.5.2). The MSE gives
more importance to the values in ranges [−2,−1] and [1, 2], that are the filters’ white and black
marks, leaving what is closer to the background, range [−1, 1], less relevant. Also, positive and
negative values are treated equally. At the end of this process an F-Mapping function fM for
the two sets of filters is obtained, the original filter sets can be shown coupled together using
their F-Mappings (see figures 5.5.3, 5.5.4 and 5.5.5).

As expected, the numerical results show that the total sum of Mean Squared Errors for two
sets of filters in the third layer is reduced by the sorting algorithm (see tab 5.3). In particular,
the filters produced with more training samples and produced by the SdA w.r.t. the SA are
more accurately compared one another.

46

CHAPTER 5. RESULTS

Table 5.3: Sum of Mean Squared Errors applied to couples of architectures’ third layer filters,
before and after the F-Mapping.

Compared Architectures Dataset Sum of Mean Squared Errors
Before F-Mapping After F-Mapping

DBN and SA
MNIST-10 68.2926 50.6575
MNIST-50 64.5213 46.7702
MNIST-100 60.9511 43.0220

DBN and SdA
MNIST-10 70.9706 43.9734
MNIST-50 61.5818 38.7536
MNIST-100 56.5720 33.6455

Figure 5.5.2: Third layer normalized and sorted filters. The top row contains respectively a
DBN filter set (left) sorted to match a SA filter set (right). The bottom row contains respectively
the same DBN filter set (left) sorted to match a SdA filter set (right). All architectures are
trained on MNIST-100.

47

CHAPTER 5. RESULTS

Figure 5.5.3: Third layer original sorted filters. The top row contains respectively a DBN filter
set (left) sorted to match a SA filter set (right). The bottom row contains respectively the same
DBN filter set (left) sorted to match a SdA filter set (right). All architectures are trained on
MNIST-10.

48

CHAPTER 5. RESULTS

Figure 5.5.4: Third layer original sorted filters. The top row contains respectively a DBN filter
set (left) sorted to match a SA filter set (right). The bottom row contains respectively the same
DBN filter set (left) sorted to match a SdA filter set (right). All architectures are trained on
MNIST-50.

49

CHAPTER 5. RESULTS

Figure 5.5.5: Third layer original sorted filters. The top row contains respectively a DBN filter
set (left) sorted to match a SA filter set (right). The bottom row contains respectively the same
DBN filter set (left) sorted to match a SdA filter set (right). All architectures are trained on
MNIST-100.

50

CHAPTER 5. RESULTS

5.5.2 Comparison of sorted internal representations using MSE

Once an F-Mapping fM is defined for each architecture, the internal representations of different
architectures are compared to each other with MSE (see table 5.4). The reduction of MSE
after the F-Mapping suggests that the procedure can make a better comparison of two different
internal representations more significant, by aligning the information corresponding to same
features. A visual comparison is provided for MNIST-100 but it is still not very helpful (see
figure 5.5.6).

Table 5.4: Sum of Mean Squared Errors applied to couples of third layer first-10-digits samples
(one for each digit), before and after the F-Mapping.

Compared Architectures Dataset Sum of Mean Squared Errors
Before F-Mapping After F-Mapping

DBN and SA
MNIST-10 3.4568 2.4632
MNIST-50 3.8427 2.5062
MNIST-100 3.3708 2.6395

DBN and SdA
MNIST-10 3.5851 2.4489
MNIST-50 3.6783 2.4457
MNIST-100 3.6795 2.4540

Figure 5.5.6: F-Mapped internal representations in the third layer of the first 10 digits of the
MNIST-100 test set, respectively for a DBN (top), a SA (middle) and a SdA (bottom).

5.6 Input reconstruction

In this section, all the input reconstructions are presented and numerically compared using
MSE.

51

CHAPTER 5. RESULTS

5.6.1 Reconstruction of single activations

All the internal representations with the single activations (see Methods, subsection 4.3.6.1)
are reconstructed as inputs (see figures from 5.6.1 to 5.6.9).

This reconstruction of the single activations didn’t prove to be very useful to understand
neither the information encoded in the internal representations nor the similarity of the archi-
tectures, since the images produced are difficult to read and quite confusing, both in the first
layers and the deepest ones. In spite of this, the single activations are related to the filters and
may eventually be used, in conjunction with the filters, to achieve a better understanding of the
internal representations. One algorithm proposed in literature is the activation maximization
(Erhan et al., 2010).

52

CHAPTER 5. RESULTS

Figure 5.6.1: 100 random out of 900 input reconstructions of the single activations in a first
layer respectively for a DBN (left), SA (center) and SdA (right), trained on MNIST-10.

Figure 5.6.2: 100 random out of 900 input reconstructions of the single activations in a first
layer respectively for a DBN (left), SA (center) and SdA (right), trained on MNIST-50.

Figure 5.6.3: 100 random out of 900 input reconstructions of the single activations in a first
layer respectively for a DBN (left), SA (center) and SdA (right), trained on MNIST-100.

53

CHAPTER 5. RESULTS

Figure 5.6.4: 100 random out of 400 input reconstructions of the single activations in a second
layer respectively for a DBN (left), SA (center) and SdA (right), trained on MNIST-10.

Figure 5.6.5: 100 random out of 400 input reconstructions of the single activations in a second
layer respectively for a DBN (left), SA (center) and SdA (right), trained on MNIST-50.

Figure 5.6.6: 100 random out of 400 input reconstructions of the single activations in a second
layer respectively for a DBN (left), SA (center) and SdA (right), trained on MNIST-100.

54

CHAPTER 5. RESULTS

Figure 5.6.7: Input reconstructions of the single activations in a third layer respectively for a
DBN (left), SA (center) and SdA (right), trained on MNIST-10.

Figure 5.6.8: Input reconstructions of the single activations in a third layer respectively for a
DBN (left), SA (center) and SdA (right), trained on MNIST-50.

Figure 5.6.9: Input reconstructions of the single activations in a third layer respectively for a
DBN (left), SA (center) and SdA (right), trained on MNIST-100.

55

CHAPTER 5. RESULTS

5.6.2 Reconstruction of digits

A reconstruction of the first-10-digits samples used before is shown in figure 5.6.10. This
confirms that all the structures are able to reconstruct their internal representations, but the
SA obtains a worse reconstruction.

Original Input
DBN on MNIST-10
SA on MNIST-10

SdA on MNIST-10
DBN on MNIST-50
SA on MNIST-50

SdA on MNIST-50
DBN on MNIST-100
SA on MNIST-100

SdA on MNIST-100

Figure 5.6.10: Reconstruction of the input, by each of the three architectures, starting from
the third layer internal representations of the first-10-digits in the test sets for MNIST-10,
MNIST-50 and MNIST-100.

5.6.2.1 Reconstruction of the mean-digits

The mean-digits are internal representations artificially made in order to test the capacity of
the architectures to generalize over the internal representations learnt. The reconstructions of
the mean-digits are provided in figure 5.6.11.

Since the test is successful, it is possible to take into consideration hand-made modified
versions of the internal representations originally produced by the architectures. The DBN
appears less able than the SdA to reconstruct this kind of internal representations. The SA
fails to reconstruct the input in a good shape.

56

CHAPTER 5. RESULTS

DBN on MNIST-10
SA on MNIST-10

SdA on MNIST-10
DBN on MNIST-50
SA on MNIST-50

SdA on MNIST-50
DBN on MNIST-100
SA on MNIST-100

SdA on MNIST-100

Figure 5.6.11: Reconstruction of the input, by each of the three architectures, starting from the
third layer internal representations of the mean-digits in the test sets for MNIST-10, MNIST-50
and MNIST-100.

5.6.2.2 Filtering the mean-digits

Since the histograms on the mean-digits show that the activations are less sparse when the mean
is performed on the internal representations, it is interesting to filter the mean-digit internal
representations in order to restore proper values for the high (1) and low (0) activations.

The reconstructions of the filtered mean-digits are provided in figure 5.6.12 and the images
appear better than the reconstructions of the mean-digits. Only the SA fails to reconstruct the
input in a good shape.

DBN on MNIST-10
SA on MNIST-10

SdA on MNIST-10
DBN on MNIST-50
SA on MNIST-50

SdA on MNIST-50
DBN on MNIST-100
SA on MNIST-100

SdA on MNIST-100

Figure 5.6.12: Reconstruction of the input, by each of the three architectures, starting from the
third layer internal representations of the filtered mean-digits in the test sets for MNIST-10,
MNIST-50 and MNIST-100.

57

CHAPTER 5. RESULTS

5.6.3 Feeding internal representations to other architectures

A first look at the reconstructions of the first-10-digits (see figure 5.6.13), the mean-digits (see
figure 5.6.15) and the filtered mean-digits (see figure 5.6.15) gives an idea of the plasticity of
the internal representations.

The images obtained are clearly not the expected input. This means that the raw internal
representations are not good to be used by other architectures.

Original Input
SA restored by DBN on MNIST-10

SdA restored by DBN on MNIST-10
DBN restored by SA on MNIST-10

DBN restored by SdA on MNIST-10
SA restored by DBN on MNIST-50

SdA restored by DBN on MNIST-50
DBN restored by SA on MNIST-50

DBN restored by SdA on MNIST-50
SA restored by DBN on MNIST-100

SdA restored by DBN on MNIST-100
DBN restored by SA on MNIST-100

DBN restored by SdA on MNIST-100

Figure 5.6.13: Reconstruction of the input of another architecture, by each of the three archi-
tectures, starting from the third layer internal representations of the first-10-digits in the test
sets for MNIST-10, MNIST-50 and MNIST-100.

58

CHAPTER 5. RESULTS

SA restored by DBN on MNIST-10
SdA restored by DBN on MNIST-10
DBN restored by SA on MNIST-10

DBN restored by SdA on MNIST-10
SA restored by DBN on MNIST-50

SdA restored by DBN on MNIST-50
DBN restored by SA on MNIST-50

DBN restored by SdA on MNIST-50
SA restored by DBN on MNIST-100

SdA restored by DBN on MNIST-100
DBN restored by SA on MNIST-100

DBN restored by SdA on MNIST-100

Figure 5.6.14: Reconstruction of the input of another architecture, by each of the three archi-
tectures, starting from the third layer internal representations of the mean-digits in the test
sets for MNIST-10, MNIST-50 and MNIST-100.

SA restored by DBN on MNIST-10
SdA restored by DBN on MNIST-10
DBN restored by SA on MNIST-10

DBN restored by SdA on MNIST-10
SA restored by DBN on MNIST-50

SdA restored by DBN on MNIST-50
DBN restored by SA on MNIST-50

DBN restored by SdA on MNIST-50
SA restored by DBN on MNIST-100

SdA restored by DBN on MNIST-100
DBN restored by SA on MNIST-100

DBN restored by SdA on MNIST-100

Figure 5.6.15: Reconstruction of the input of another architecture, by each of the three archi-
tectures, starting from the third layer internal representations of the filtered mean-digits in the
test sets for MNIST-10, MNIST-50 and MNIST-100.

5.6.3.1 Inverse F-Mapped representations

Using the inverse F-Mappings (see methods, subsection 4.3.7.1), it is now possible to reconstruct
the F-Mapped internal representations of the first-10-digits (see figure 5.6.16), the mean-digits

59

CHAPTER 5. RESULTS

(see figure 5.6.17) and the filtered mean-digits (see figure 5.6.18) in order to evaluate if there
is a gain in the reconstruction.

The results are not always correct, but some input images are quite good reconstructions
of the respective internal representations. In particular, while the first-10-digits are not recon-
structed at all, the mean-digits work quite well for the SdA, and partially for the SA, but the
DBN fails. Using the filtered mean-digits instead, the DBN is finally able to restore some of
the hybrid internal representations.

Original Input
SA restored by DBN on MNIST-10

SdA restored by DBN on MNIST-10
DBN restored by SA on MNIST-10

DBN restored by SdA on MNIST-10
SA restored by DBN on MNIST-50

SdA restored by DBN on MNIST-50
DBN restored by SA on MNIST-50

DBN restored by SdA on MNIST-50
SA restored by DBN on MNIST-100

SdA restored by DBN on MNIST-100
DBN restored by SA on MNIST-100

DBN restored by SdA on MNIST-100

Figure 5.6.16: Reconstruction of the input of another architecture, by each of the three archi-
tectures, starting from the F-Mapped third layer internal representations of the first-10-digits
in the test sets for MNIST-10, MNIST-50 and MNIST-100.

60

CHAPTER 5. RESULTS

SA restored by DBN on MNIST-10
SdA restored by DBN on MNIST-10
DBN restored by SA on MNIST-10

DBN restored by SdA on MNIST-10
SA restored by DBN on MNIST-50

SdA restored by DBN on MNIST-50
DBN restored by SA on MNIST-50

DBN restored by SdA on MNIST-50
SA restored by DBN on MNIST-100

SdA restored by DBN on MNIST-100
DBN restored by SA on MNIST-100

DBN restored by SdA on MNIST-100

Figure 5.6.17: Reconstruction of the input of another architecture, by each of the three archi-
tectures, starting from the F-Mapped third layer internal representations of the mean-digits in
the test sets for MNIST-10, MNIST-50 and MNIST-100.

SA restored by DBN on MNIST-10
SdA restored by DBN on MNIST-10
DBN restored by SA on MNIST-10

DBN restored by SdA on MNIST-10
SA restored by DBN on MNIST-50

SdA restored by DBN on MNIST-50
DBN restored by SA on MNIST-50

DBN restored by SdA on MNIST-50
SA restored by DBN on MNIST-100

SdA restored by DBN on MNIST-100
DBN restored by SA on MNIST-100

DBN restored by SdA on MNIST-100

Figure 5.6.18: Reconstruction of the input of another architecture, by each of the three ar-
chitectures, starting from the F-Mapped third layer internal representations of the filtered
mean-digits in the test sets for MNIST-10, MNIST-50 and MNIST-100.

A table of the sum of Mean Squared Errors (MSEs) between the first-10-digits original
input and all the reconstructions described in this section is provided (see table 5.5). The error
always decreases when the F-Mapping is applied to an internal representation.

61

CHAPTER 5. RESULTS

Table 5.5: Sum of Mean Squared Errors on the first-10-digits original input and the reconstruc-
tions, before and after the F-Mapping.

Architecture Dataset Sum of Mean Squared Errors
First-10-digits Mean-digits Filtered Mean-digits

DBN
MNIST-10 0.3863 0.7483 0.7935
MNIST-50 0.3082 0.7283 0.8590
MNIST-100 0.3164 0.7662 0.8602

SA
MNIST-10 0.2454 0.7355 0.8042
MNIST-50 0.3765 0.7846 0.8555
MNIST-100 0.4308 0.8768 0.9830

SdA
MNIST-10 0.4256 0.8664 0.9884
MNIST-50 0.3958 0.8795 1.1516
MNIST-100 0.3691 0.8368 1.0857

No F-M F-M No F-M F-M No F-M F-M

SA restored by DBN
MNIST-10 0.9632 0.7339 0.9994 0.9111 0.8659 0.7923
MNIST-50 1.0280 0.8120 1.0404 0.9890 0.9881 0.7758
MNIST-100 0.9929 0.8780 1.0373 1.0031 0.9303 0.9192

SdA restored by DBN
MNIST-10 0.9463 0.6623 0.9953 0.8268 0.8730 0.7848
MNIST-50 0.9762 0.6796 1.0434 0.9172 0.9987 0.9394
MNIST-100 1.0051 0.7611 1.0086 0.9299 0.9523 0.7906

DBN restored by SA
MNIST-10 0.9965 1.0146 0.9863 0.8443 1.0515 0.9128
MNIST-50 1.0315 1.0079 1.0306 0.7947 1.1065 0.9396
MNIST-100 1.1264 1.1638 1.0852 0.9030 1.2019 1.0354

DBN restored by SdA
MNIST-10 1.0155 1.0567 0.9339 0.8505 1.1258 0.9759
MNIST-50 0.9078 1.1368 0.9032 0.8805 1.1194 1.1039
MNIST-100 1.0781 0.9935 0.9779 0.8927 1.2478 1.1426

62

Chapter 6

Discussion and conclusions

The goal of this work is to understand the extent of the similarities and the overall pros and
cons of using either Restricted Boltzmann Machines (RBMs), Autoencoders (AE) or denoising
Autoencoders (dAs) in deep networks.

The three architectures have been finely designed and implemented to perform the state-of-
the-art classification of MNIST digits and evaluated mainly on that task.

6.1 Overview of the results

For what concerns the robustness to corrupted input, none of the architectures seems to be
outstanding in the classification of noisy inputs. For highly corrupted inputs the Stacked
denoising Autoencoder (SdA) and the Stacked Autoencoder (SA) both perform better than the
Deep Belief Network (DBN). For highly corrupted inputs with more training data available, the
stacked autoencoder happened in this one case to perform better than the stacked denoising
autoencoder. Otherwise the DBN has a slightly better performance.

So, quite surprisingly, the SA could be less prone to errors on corrupted inputs than the
SdA, when enough data is available, but further work is required to confirm such a result. In
general, SdAs and RBMs suffer of the same sensitivity to noisy input data.

When some filters are visualized, there is no doubt that the SdA can have more defined
features than the SA. The details appearing in the filters always increase w.r.t. the training
data available, and DBNs filters are practically comparable with SdA filters.

On the deep internal representations there are two aspects to discuss, the way they look if
shaped as images and their numerical composition.

The first does not say much about how good or bad an internal representation is w.r.t.
another one, but this layout makes more sense for the purpose of comparing different architec-
tures. In order to achieve this, the F-Mapping - presented as a novel approach - can be applied

63

CHAPTER 6. DISCUSSION AND CONCLUSIONS

to the different internal representations to obtain aligned (feature-wise) representations (see
figure 5.5.6). This method led to an experimental proof (hybrid input reconstructions) that the
internal representations produced by different architectures are very similar to each other, and
surely comparable.

The second aspect, on the other hand, can reveal useful characteristics, such as the sparsity
and the number of activations. All internal representations, for the three architectures, show
the same amount of sparseness. The histograms reveal fewer high (1) activations than low (0)
activations in all the internal representations.

6.2 Conclusions

The results reported in this thesis confirm a fact that seems to be implicitly known in litera-
ture: if no improvement is given to the basic algorithms of restricted Boltzmann machines and
autoencoders, it is just a matter of preference which one to use because the performance is
comparable.

An important point is that the various internal representations produced by the three ar-
chitectures on the same dataset are also quite similar in terms of features encoded, because the
filters converge to the same details.

The input reconstruction data is encouraging, but it is also affected by a lot of different
factors. One that needs to be mentioned is the fine-tuning, which changes the weights of the
deep network, thus it alters the reconstruction functions of the single-units. This is allowed
because the classification unilaterally goes from the input to the classification output and there
is no need, after the layer-wise training, of an output from each single layer when only hidden
layers are used to propagate the encoding to a next hidden layer or the final classification layer.
The reconstruction is not even specifically optimized during the fine-tuning, since the training
error is evaluated on the final classification.

Despite this, the results allow to make some conclusions: since hybrid input reconstructions,
i.e. feeding internal representations to other architectures, were not possible on raw internal
representations but they have been successfully obtained with the F-Mapping, the method
proposed in this thesis appears to be valid and the internal representations are proved to
be indeed very similar and comparable. In case one needs to use an hybrid architecture,
interchangeability is feasible.

6.3 Future work

Since all the filters in this thesis have been produced by linear combination of the previous units,
a good idea for future work is to apply Activation Maximization(Erhan et al., 2010) hoping for

64

CHAPTER 6. DISCUSSION AND CONCLUSIONS

better filters. It can directly influence the quality of the F-Mapping, which is executed above
the filters and can be absolutely improved with further research. Then a new study on the
internal representations could give better results.

The same analysis can also be extended to other types of architectures, especially the new
ones mentioned in section 1.2, that could eventually diverge from the behavior hereby described.

All the architectures surely need to be tested on other datasets in order to collect more data
and add more details to the conclusions proposed in this thesis.

Finally, it is just a matter of curiosity but the fine-tuning stage of a deep network seems to
disrupt the inverse ability of the architectures to reconstruct the deep internal representations
as good input images. It could be useful to balance this in order to achieve bidirectional deep
networks. It would empower the idea that biological neural networks are able to project their
signals back, in order to produce synthetic low level inputs that are fed to other neural pathways
(Damasio, 2008).

65

Bibliography

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron, A., Bouchard,
N., & Bengio, Y. (2012). Theano: new features and speed improvements. Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop.

Bengio, Y. (2007). Learning deep architectures for AI. Technical Report 1312, Dept. IRO,
Universite de Montreal. Preliminary version of journal article with the same title appearing
in Foundations and Trends in Machine Learning (2009).

Bengio, Y. (2009). Learning deep architectures for ai. Foundations and trends in Machine
Learning, 2(1), 1–127.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new
perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(8), 1798–
1828.

Bengio, Y. & Delalleau, O. (2008). Justifying and generalizing contrastive divergence. Neural
Computation, 21(6), 1601–1621.

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al. (2007). Greedy layer-wise training
of deep networks. Advances in neural information processing systems, 19, 153.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J.,
Warde-Farley, D., & Bengio, Y. (2010). Theano: a CPU and GPU math expression compiler.
In Proceedings of the Python for Scientific Computing Conference (SciPy).

Bourlard, H. & Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular
value decomposition. Biological Cybernetics, 59(4-5), 291–294.

Chen, M., Weinberger, K. Q., Sha, F., & Bengio, Y. (2014). Marginalized denoising auto-
encoders for nonlinear representations. In Proceedings of the 31st International Conference
on Machine Learning (ICML-14) (pp. 1476–1484).

66

BIBLIOGRAPHY

Coates, A., Ng, A. Y., & Lee, H. (2011). An analysis of single-layer networks in unsupervised
feature learning. In International conference on artificial intelligence and statistics (pp. 215–
223).

Cohen, W. W., McCallum, A., & Roweis, S. T., Eds. (2008). Proceedings of the Twenty-fifth
International Conference on Machine Learning (ICML’08). ACM.

Damasio, A. (2008). Descartes’ error: Emotion, reason and the human brain. Random House.

Deng, L. & Yu, D. (2014). Deep learning: methods and applications. Foundations and Trends
in Signal Processing, 7(3–4), 197–387.

Erhan, D., Courville, A., & Bengio, Y. (2010). Understanding representations learned in deep
architectures. Universit e de Montr eal/DIRO, Montr eal, QC, Canada, Tech. Rep, 1355.

Goodfellow, I., Lee, H., Le, Q. V., Saxe, A., & Ng, A. Y. (2009). Measuring invariances in deep
networks. In Advances in neural information processing systems (pp. 646–654).

Hinton, G. (2002). Training products of experts by minimizing contrastive divergence. Neural
Computation, 14(8), 1771–1800.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief
nets. Neural computation, 18(7), 1527–1554.

Hinton, G. E. & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural
networks. Science, 313(5786), 504–507.

Hinton, G. E. & Zemel, R. S. (1994). Autoencoders, minimum description length, and helmholtz
free energy. Advances in neural information processing systems, (pp. 3–3).

Hubel, D. H. & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey
striate cortex. The Journal of physiology, 195(1), 215–243.

Hurley, N. & Rickard, S. (2009). Comparing measures of sparsity. Information Theory, IEEE
Transactions on, 55(10), 4723–4741.

Krizhevsky, A. & Hinton, G. (2009). Learning multiple layers of features from tiny images.

Krizhevsky, A., Hinton, G. E., et al. (2010). Factored 3-way restricted boltzmann machines for
modeling natural images. In International Conference on Artificial Intelligence and Statistics
(pp. 621–628).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

67

BIBLIOGRAPHY

Lee, H., Battle, A., Raina, R., & Ng, A. Y. (2006). Efficient sparse coding algorithms. In
Advances in neural information processing systems (pp. 801–808).

Lee, H., Ekanadham, C., & Ng, A. Y. (2008). Sparse deep belief net model for visual area v2.
In Advances in neural information processing systems (pp. 873–880).

Lorenz, M. O. (1905). Methods of measuring the concentration of wealth. Publications of the
American statistical association, 9(70), 209–219.

Olshausen, B. A. et al. (1996). Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381(6583), 607–609.

Olshausen, B. A. & Field, D. J. (2004). Sparse coding of sensory inputs. Current opinion in
neurobiology, 14(4), 481–487.

Poultney, C., Chopra, S., Cun, Y. L., et al. (2006). Efficient learning of sparse representations
with an energy-based model. In Advances in neural information processing systems (pp.
1137–1144).

Ranzato, M. & Hinton, G. E. (2010). Modeling pixel means and covariances using factorized
third-order boltzmann machines. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on (pp. 2551–2558).: IEEE.

Rasmus, A., Raiko, T., & Valpola, H. (2014). Denoising autoencoder with modulated
lateral connections learns invariant representations of natural images. arXiv preprint
arXiv:1412.7210.

Rumelhart, D., Hinton, G., & Williams, J. (1986). Learning internal representations by error
propagation. parallel distributed processing, vol. i, rumelhart, d. e. and mcclelland, jl.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61,
85–117.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony
theory.

Sohn, K. & Lee, H. (2012). Learning invariant representations with local transformations. arXiv
preprint arXiv:1206.6418.

Tan, C. C. & Eswaran, C. (2008). Performance comparison of three types of autoencoder
neural networks. In Modeling & Simulation, 2008. AICMS 08. Second Asia International
Conference on (pp. 213–218).: IEEE.

68

BIBLIOGRAPHY

Tieleman, T. (2008). Training restricted boltzmann machines using approximations to the
likelihood gradient. In Proceedings of the 25th international conference on Machine learning
(pp. 1064–1071).: ACM.

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing
robust features with denoising autoencoders. In Cohen et al. (2008), (pp. 1096–1103).

Yang, J., Yu, K., Gong, Y., & Huang, T. (2009). Linear spatial pyramid matching using sparse
coding for image classification. In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on (pp. 1794–1801).: IEEE.

69

Index

A
Autoencoder, 1, 6, 20

B
Backpropagation, 5

C
Contrastive Divergence, 10

D
Deep Belief Network, 1, 13
Deep Learning, 1, 13
Denoising Autoencoder, 8, 20

F
Filters, 22, 32
F-Mapping, 25, 46

G
Gibbs Sampling, 10
Gini Coefficient, 24, 45
Gradient descent, 5

I
Input Reconstruction, 27, 51
Internal Representation, 23, 37
Inverse F-Mapping, 28, 59

M
Multi-Layer Perceptron, 4

P
Persistent Contrastive Divergence, 11

R
Restricted Boltzmann Machine, 1, 8, 20

Robustness to noise, 21, 31

S
Single Activation, 52
Stacked Autoencoder, 1, 15
Stacked denoising Autoencoder, 15

70

www.kth.se

	1 Introduction
	1.1 Context and purpose
	1.2 Related work
	1.2.1 Performance of basic architectures
	1.2.2 Invariance in internal representations

	1.3 Overview of the thesis

	2 Autoencoders and Restricted Boltzmann Machines
	2.1 Multi-Layer Perceptron
	2.1.1 Training
	2.1.2 Logistic regression

	2.2 Autoencoders
	2.2.1 Structure
	2.2.2 Training

	2.3 Denoising Autoencoders
	2.4 Restricted Boltzmann Machines
	2.4.1 Structure
	2.4.2 Gibbs sampling
	2.4.3 Contrastive Divergence (CD-k)
	2.4.4 Persistent Contrastive Divergence
	2.4.5 Training

	3 Deep Learning
	3.1 Deep Belief Networks
	3.2 Stacked Autoencoders
	3.3 Stacked denoising Autoencoders
	3.4 Relation between models

	4 Methods
	4.1 Dataset
	4.2 Implementation of the Deep Networks
	4.2.1 Programming language and framework
	4.2.2 Hardware and experiments
	4.2.3 Training parameters
	4.2.3.1 Number of layers
	4.2.3.2 Layer-wise training
	4.2.3.3 Fine-tuning of the deep networks

	4.3 Evaluation of the Deep Networks
	4.3.1 Test robustness to noise
	4.3.2 Create filters
	4.3.3 Exploit the internal representations
	4.3.3.1 Histograms
	4.3.3.2 The Gini coefficients: a measure of sparseness

	4.3.4 Map the internal representations (F-Mapping)
	4.3.5 Comparison of sorted internal representations with F-Mapping
	4.3.6 Verify the input reconstructions
	4.3.6.1 Single activations
	4.3.6.2 Reconstruction of digits
	4.3.6.3 Reconstruction of the mean-digits
	4.3.6.4 Filtering the mean-digits

	4.3.7 Feeding internal representations to other architectures
	4.3.7.1 Inverse F-Mapping

	5 Results
	5.1 Training
	5.2 Robustness to noise
	5.3 Filters
	5.4 Internal representations
	5.4.1 Histograms
	5.4.2 Sparseness

	5.5 Mapping of the internal representations (F-Mapping)
	5.5.1 Comparison of sorted filters using MSE
	5.5.2 Comparison of sorted internal representations using MSE

	5.6 Input reconstruction
	5.6.1 Reconstruction of single activations
	5.6.2 Reconstruction of digits
	5.6.2.1 Reconstruction of the mean-digits
	5.6.2.2 Filtering the mean-digits

	5.6.3 Feeding internal representations to other architectures
	5.6.3.1 Inverse F-Mapped representations

	6 Discussion and conclusions
	6.1 Overview of the results
	6.2 Conclusions
	6.3 Future work

	Bibliography
	Index

