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Note S1. Theoretical Analysis of Coil Folding 

To investigate how the inductance of a planar coil changes when it is folded into two halves, we 

looked into the simplest case: a single-turn rectangle made of round wire. As illustrated in Figure 

S1A, trace A’B’CD represents the planar coil, while trace ABQCDP is the coil folded into two equal 

halves by an angle of β. The length and width of the planar coil are a and b (b=2c), respectively. The 

diameter of the round wire trace is dw (radius is r), assuming that it is much smaller than the 

dimension of the rectangle. It also should be noted that all the calculations below are for low 

frequency only, which means that the electrical current is evenly spread over the cross-section of the 

wire (skin effect is negligible). The angle between the two halves of the folded coil is θ = π- β. Then, 

the inductance of the flat and folded rectangular coil can be calculated by equations presented in F. 

W. Gover’s book (31), with page number indicated for each cited equation in the text below. 

Inductance of a planar rectangular coil 

Self-inductance of this rectangular coil can be calculated by (Page 60): 
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with a =10 mm, b = 5 mm, and dw = 0.1 mm, Lrect = 26.2698 nH 

On another aspect, the inductance of the rectangle is the combination of the self-inductance of these 

four straight wires and the mutual inductance between them. 
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The self-inductance of a straight round wire can be calculated (Page 35): 
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While, the mutual inductance between two straight round wires is (Page 31): 
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Using the same parameter, we can calculate: 

LA’B’ = 10.4829 nH, LB’C = 4.5483 nH, MA’B’-CD = 1.6512 nH, MB’C-A’D = 0.2451 nH 

Then Ltotal = 26.2698 nH, which is exactly the same as direct calculation from Eq. (S1). 

Inductance of a folded rectangular coil 

When the coil is folded by angle β, the total inductance still can be calculated by the same method 

by: 

                                     (S5) 

The self-inductance of the folded trace BQC can be calculated by 
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Where the mutual inductance between two equal wires (length of c) meeting at a point with an angle 

of θ is (Page 48): 
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However, the mutual inductance between two folded wires (BQC-APD) is more complex: 
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       can be calculated by equation (S4),        can be calculated by (Page 56): 
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in which, 
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where d1 is the distance of BD, and d2 is the distance of BP, which can be calculated by: 
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Self and mutual inductances of each part in Eq.(S5), and the total inductance of the folded coil, were 

calculated and plotted in Figure 1B for a rectangular coil of 10 mm × 5 mm. The curve shows that 

inductance variation is rather low at small folding angles (98.2% at 45°), and it starts accelerating 

when the angle is greater than 90°, from 92.1% at 90° down to 78.7% at 135°; then, it drastically 

decreases to 31.2% at 175°. 

In order to validate the results calculated above, a FE model (planar PCB coil model, AD/DC 

module, COMSOL
®
 Multiphysics) was also created to investigate the inductance changes against 

different folding angles. The FE model gives an inductance of 28.8244 nH for the same planar 

rectangular coil (9.7% larger than the theoretical calculation). The difference may be due to the thin-

sheet trace used in the FE model, which is different from the round wire assumption used for these 

equations. As detailed in the next section, numerical analysis was also deployed to calculate the 

inductance for this single-turn rectangular coil, in order to compare the results from different 

approaches. As shown in Figure S1B, for the three approaches, the inductance changes have similar 

trends against the folding angle, with the theoretical analysis resulting in a larger decrease compared 

to FE modeling, 70.2% and 74.1% at 150°, respectively. 

To further investigate the factor of the coil shape, rectangular coils with different length to width 

ratio (1:2, 1:1, 2:1, and 4:1) were investigated. The results (Figure S1C) indicate that inductance 

variation is larger for longer coils than for short ones, with inductance decreases to 70.9% and 75.8% 
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at 150° for the rect-2:1 and 1:2 coils, respectively. Curves of the 4:1 and 2:1 rectangular coils are 

almost completely overlapped (70.2% vs 70.9% at 150°), indicating that the inductance changes for 

rectangular coils having a length to width ratio greater than 2:1 do not further increase. It should be 

acknowledged that eq. (S5) is significantly complex for rectangular coils with more than one turn, 

making such theoretical analysis impractical. 
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Note S2. FE Modeling 

Simplified 2D FE models were built (using Magnetic fields (mf) study, AC/DC module in 

COMSOL
®
 Multiphysics) to simulate the cross-section of a long rectangular coil (length is far 

greater than the width). The coil studied has a width of 10 mm, with 10 turns. The conductive trace 

has a thickness of 35 µm and a width of 100 µm, with 300 µm space between traces (400 µm pitch). 

The folding/bending angle controlled geometries of these conductors were created, then a parameter 

study was performed to calculate the magnetic field for each folding/bending angle (with 0.1 A 

current as coil excitation), as shown in Figure S2. For the dual-coil case, each coil has a width of 5 

mm with only 5 turns, while all other parameters are the same as the single-coil. Finally, the distance 

between the two coils is 2 mm. 
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Note S3. Numerical Analysis Methodology 

According to Dengler’s work (34), the self-inductance of a wire loop can be written as a curve 

integral akin to the Neumann formula for the mutual inductance of two wire loops: 
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where µ0= 4π×10
-7 

H/m is the magnetic permeability of vacuum. r denotes the wire radius and l for 

the total length of the wire. The variable s measures the length along the wire axis. The lY part 

represents the internal inductance of the wire loop. The constant Y depends on the distribution of the 

current in the cross-section of the wire: Y = 0 if the current flows in the wire surface, Y = 0.5 when 

the current is homogeneous across the wire. The ellipse O represents terms like O (µ0r) and O (µ0r/l), 

which are negligible for l >> r.  

Building on Eq. (S12), the inductance of any planar or 3D coil loop can be calculated by 

dividing the loops into thousands of small segments (filaments), and then performing numerical 

integration. In this work, MATLAB code was developed for self-inductance calculation of any 3D 

coil loops by: 
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where i and j are segments’ index of the wire loop, Vi (Vj) is the vector of i
th

 segment, and Si are the 

coordinates (x, y, z) of the centre point of the i
th

 segment. The inductance value calculated by Eq. 

S13 is given in µH. To comprehensively investigate the inductance variations of any planar coil in 

folded/bent condition, the following steps (Figure S2) have been adopted in the numerical analysis: 

I. Creation of coil loop pattern based on the coil shape (circular or rectangular), associated 

dimensions, number of turns N, and pitches P; 

II. Discretization of the coil loops into hundreds to thousands of small segments, with the (x, y) 

coordinates of all terminals; 

III. Coordinate transformation of the planar coil to a folded one, or a bent one. Based on the 

illustration and equations in Figure 1(D, E, F), 3D coordinates of the folded (xF, yF, zF) or bent 

(xB, yB, zB) coil at a specific angle can be calculated from 2D coordinates of the original planar 

coil; IV. With the input of the 3D coordinates of segments representing the 3D coil loop, self-

inductance of the folded/bent coil can be calculated by a double layer loop structure in 

MATLAB (Eq. S13).  
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Note S4. Electronics for Simultaneous Sensing and Actuation 

In Figure 5A, a self-sensorized origami structure was demonstrated by utilizing the flex-coil both to 

heat the shape memory polymer (SMP) and sense the angle variations of the structure caused by the 

thermal actuation and/or external stimuli. Ideally, a signal combining the DC part (for heating) and 

AC signal (for inductance measurement) should be applied to the coil, subsequently the phase and 

amplitude of the AC current can be analyzed using the AC voltage as reference to obtain the 

impedance, thereby the resistance and inductance of the coil.  In this case study, a simplified method 

was used to validate the concept by directly connecting a DC current isolation capacitor (CISO) to 

block the DC current flow into the LCR meter.  

As illustrated in Figure S9A, a 10 µF capacitor (CISO) was connected in series with the flexible 

coil, and the DC power supply (including power cables with 1 m length) was connected in parallel 

with the coil. The LCR meter applied a 2 MHz AC excitation to measure the total impedance (Ztotal) 

of the network with the output of an inductance and a resistance connected in series. 

                               (S14) 

The power supply and cable can be modeled as a resistor and a capacitor connected in parallel, then 

with an inductor connected in series, the total impedance is: 

        || (
 

        
)           (S15) 

From direct measurement at low frequency (1 kHz, 2πfLPS is negligible) we obtained that: CPS ≈ 

200 µF, RPS ≈ 3 Ω. At f=2 MHz, the capacitance reactance is negligible (0.8 mΩ), then ZPS can 

be simplified as 

              (S16) 

The impedance of the coil can be written as: 

                   (S17) 

and capacitive reactance of the CISO is: 

    
 

         
 (S18) 

where CISO = 10 µF, we can calculate XC = -8 mΩ∙j, which is negligible. Thus, the main 

contributions of the total impedance of this network at 2 MHz are the coil and the power supply: 
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(S19) 



                                                                                                

8 

 

When the coil is folded by 100°, we measured LC= 6.78 µH, RC = 7.93 Ω. Also, direct 

measurement of the power supply including cable resulted in LPS ≈ 2.80 µH. Thus, it can be 

concluded: 

                 
  (S20) 

In this case, the total impedance can be rewritten in a simplified form: 
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Therefore, the total inductance is: 
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and the total resistance is: 
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From Eq. (S19) and Eq. (S20), Ltotal (Rtotal) would be significantly smaller than LC (RC), as confirmed 

by the results presented in Figure 5A. Thus, once the total inductance is measured, the coil’s 

inductance can be obtained by 

    
         

          
 (S24) 

and the coil’s resistance can be obtained by 
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)
 

       (  
      

          
)
 

 (S25) 

However, parasitic parameters (e.g.: cables/wires used to connect these components, energy loss 

of components at 2 MHz) would contribute to the measured total inductance and resistance (which 

can be considered as unknown constant values), introducing errors in the calculation of coil’s 

inductance and resistance. Therefore, the total inductance variation measured is: 
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For the origami structure presented in Figure 5A, the coil’s inductance is 6.78 µH and 7.45 µH 

for the pre-deformed shape and remembered shape, respectively. Thus, the total inductance variation 

can be calculated as 0.054 µH, which is comparable to the experimental results (0.050 µH) shown in 

Figure 5A. Finally, the coil’s inductance variation can be retrieved from the measured total 

inductance variation and initial inductance values directly: 
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Supporting Figures 

 

Figure S1. Theoretical analysis of coil folding. (A) Sketch of a single-turn rectangular coil folded 

into two equal halves; (B) Comparison of inductance calculation from theoretical, numerical, and FE 

analysis; (C) Theoretical inductance calculation of the folded rectangular coils with different length 

to width ratios (1:2, 1:1, 2:1, and 4:1). 
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Figure S2. FE modeling of planar coil folding and bending (a cross-section of long rectangular coils). 

(A) Magnetic field (MF) of a single coil folded at different angles; (B) MF of a single coil bent at 

different angles/curvatures; (C) MF of a dual-coil with opposite current flow at different folding 

angles; (D) MF of a dual-coil with same current flow at different folding angles.  
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Figure S3. Procedure of the numerical analysis 
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Figure S4. Planar coil design and images of tested FPC coils. (A) Design of single layer coils 

(circular and rectangle); (B) Design of double layer coils; (C) Cross-section view of double layer 

FPC coils; (D) Photos of FPC coils with different shapes; (E) Photos of single and dual-coils; (F) 

Images of coils with the same size but different pitches (square and circular); (G) Rectangular coils 

with the same design across 10 times scale (100 mm to 10 mm length).  
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Figure S5. Static characterization methods for coil folding and bending. (A) Folding 

characterization: (I) Images of 3D printed angle profiles (0° to 175°); (II) Image of a folded FPC coil 

with two acrylic plates attached; Images of a prepared FPC coil on the 80° angle profile for testing: 

side view (III) and end view (IV); (V) Image of a LM coil on the 120° angle profile for testing; (B) 

Inductance variation comparison of folded LM and FPC coils with the same design; (C) Results of 

repeated folding tests of the same coil. (D) Bending characterization: (I) Images of 3D printed 

curvature profiles (rods, tubes and cylindrical surfaces with diameters from 8 mm to 300 mm); (II) 

Image of a square FPC coil on a 100 mm diameter cylinder surface; (III) Image of a square FPC coil 

wrapped on a rod with a diameter of 12 mm.  
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Figure S6. Numerical analysis results of planar coils with different design parameters. (A) Folding 

of coils with different shapes; (B) Bending of coils with different shapes; (C) Folding of single and 

dual-coils with opposite/same current directions; (D) Folding of rectangular coils with different 

pitches; (E) Folding of circular coils with different pitches; (F) Folding with a 1.6 mm arc of 

rectangular coils with different sizes. 
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Figure S7. Dynamic bending experiments setup and cyclic testing results. (A) Sketch of the FPC coil 

bending test setup; (B) Image of a FPC coil at flat state (top view); (C) Image of a FPC coil at 

bended state (perspective view); (D) Inductance variations of 5 bending-releasing cycles; (E) 

Inductance variations of 1000 bending-releasing cycles (5 mm/s). 
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Figure S8. Dynamic folding experiments setup and cyclic testing results. (A) Sketch of the FPC coil 

folding test setup; (B) Images of LM coils folding tests: (I) the whole experimental setup; (II) top 

view of the folded LM coil; (III) side view of the LM coil; (C) Images of folded FPC coils: (I) top-

side view; (II) side view; (III) magnified image of the folded double layer FPC coil (side); (IV) 

magnified image to show the delamination of a FPC coil after hundreds of repeated folding cycles 

(29°-30°); (D) Inductance and resistance variations of a LM coil during a 10000 cycles of 1° folding-

unfolding (29°-30°); (E) Inductance and resistance variations of a FPC coil before and after the 

copper trace breaks under a cyclic 1° folding-unfolding test. 
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Figure S9. Electronic circuits of inductance measurement systems. (A) Electronic circuits to 

simultaneously measure the inductance and to heat the coil; (B) LC oscillator-based electronic 

system with high sampling rate inductance measurement (500 Hz) for vibration detection. 
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Supporting Tables 

Table S1. List of all planar coils and their parameters 

Coil  “Label” 
Length 

(mm) 

Width 

(mm) 

Pitch 

(length) 

Pitch 

(width) 

L 

(µH) 

R 

(Ω) 
Notes 

FPC coils- 

Rectangle 

L10W20P0.5 10 20 0.5 0.5 5.0572 5.3662  

L20W20P0.5 20 20 0.5 0.5 10.133 7.5742  

L40W20P0.5 40 20 0.5 0.5 18.876 12.607  

L20W20PL0.3PW0.3 20 20 0.3 0.3 14.336 8.5621  

L20W20PL0.8PW0.3 20 20 0.8 0.3 9.3259 7.2001  

L20W20PL0.3PW0.8 20 20 0.3 0.8 9.1121 7.1921  

L20W20PL0.8PW0.8 20 20 0.8 0.8 6.2141 6.3885  

L10W05P0.2 10 5 0.2 0.2 3.2162 2.7214  

L20W10P0.4 20 10 0.4 0.4 6.4217 5.4932  

L30W15P0.6 30 15 0.6 0.6 9.6314 8.2832  

L50W25P1.0 50 25 1.0 1.0 16.177 14.428  

L75W16P0.5 75 16 0.5 0.5 28.636 12.385  

L100W50P2.0 100 50 2.0 2.0 32.421 28.283  

LM Coils- 

Rectangle 

L50W25P1.0 50 25 1.0 1.0 4.2754 124.55 1 layer 

L30W30P1.2 30 30 1.2 1.2 2.5612 63.052 1 layer 

FPC Coils 

Dual-

rectangle 

DualCoil_CW-CW 40 10 0.4 0.4 6.3053 9.5591 1 layer 

DualCoil_CW-CCW 40 10 0.4 0.4 7.4144 10.228 1 layer 

Coils “Label” Diameter (mm) Pitch (mm) L R Notes 

FPC coils- 

Circle 

D20P0.5 20  0.5  8.0336 6.0684  

D20P0.2 20  0.2  14.008 6.2607  

D20P0.4 20  0.4  9.5799 5.8545  

D20P0.6 20  0.6  6.7464 5.5201  

D20P0.8 20  0.8  4.7376 4.5128  

D5P0.2 5  0.2  1.3524 1.2862  

D10P0.4 10  0.4  2.4789 2.4188  

D30P1.2 30  1.2  7.0425 6.7703  

D50P2.0 50  2.0  11.808 11.881  

Note 1: All coils have 10 turns per layer, and 2 layers except for these marked as 1 layer. 

Note 2: All the inductance and resistance were measured with a LCR meter (Agilent E4980A) at 200 

kHz. A pair of short leading wires were used between the coils and LCR meter probes, which 

contributes to an inductance value of 0.3722 µH, and resistance of 0.2876 Ω (in average) to the L and R 

values listed in this table. 
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Supporting Movies (.MP4 format) 

Movie S1. FE modeling of planar coil folding and bending 

Movie S2. Numerical analysis of planar coil folding and bending 

Movie S3. Dynamic bending test of FPC coil 

Movie S4. Dynamic folding test of LM coil 

Movie S5. Vibration detection with a folded FPC coil 

Movie S6. Self-sensing origami 

Movie S7. Sensorized soft pneumatic actuator 

Movie S8. Wearable sensing 

 


