Antifungal, antibacterial, antibiofilm and colorimetric sensing of toxic metals activities of eco friendly, economical synthesized Ag/AgCl nanoparticles using Malva Sylvestris leaf extracts

Sholeh Feizi¹, ElhamTaghipour², Parinaz Ghadam¹, ParisaMohammadi³

1-Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran

2-Department of Botany, Faculty of Biological Sciences, Alzahra University, Tehran, Iran

3-Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran

Abstract

Silver nanoparticles, one of the most popular nanomaterials, are used extensively in medicine and industries. The present study biosynthesized spherical Ag/AgCl nanoparticles with a size range of 10-50 nm in less than 5 min. The synthesis was performed in a single step, in a low-cost and eco-friendly manner, from the aqueous extract of Malva Sylvestris leaves. The aqueous extract had a large number of phenolic compounds and carbohydrates as reducing and capping agents. The nanoparticles also showed significant antibacterial and anti-biofilm activities against some multi drug resistant bacteria. They additionally showed antifungal activities on several Candida species. The highest concentration of Ag/AgCl-NPs (62.5 µg/ml) was required in order to inhibit P. aeruginosa B 52, C. glabrata and C. parapsilosis growth. The lowest concentration of Ag/AgCl-NPs (7.8125 µg/ml) inhibited the growth of C. orthopsilosis, P. aeruginosa ATCC 27853 and B. subtilis ATCC 6633. A total of 125 µg/ml of Ag/AgCl-NPs was used to prevent P. aeruginosa B 52 biofilm growth. The concentration of 62.5 µg/ml Ag/AgCl-NPs also eradicated both P. aeruginosa 48 and P. aeruginosa B 52 biofilms. The results showed that Hg2+ and Pb2+ contaminants in water could be colorimetrically detected by these nanoparticles.