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Abstract This paper presents an efficient and automated optimization process, where the parameters defining the 

features in a feature based CAD model are used as design variables. The process exploits adjoint methods for the 

computation of gradients, and as such the computational cost is essentially independent of the number of design 

variables, making it ideal for optimization in a large parameter spaces. The novelty of this paper lies in linking 

the adjoint surface sensitivity information with geometric sensitivity values, referred to as design velocities, 

computed for CAD models created in commercial CAD systems (e.g. CATIA V5 or Siemens NX). This process 

computes gradients based on the CAD feature parameters, which are used by the optimization algorithm, which 

in turn updates the values of the same parameters in the CAD model. In the paper the design velocity and resulting 

gradient calculations are validated against analytical and finite difference results. The proposed approach is 

demonstrated to be compatible with different commercial CAD packages and CFD solvers. 
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1. Introduction 

In the context of the industrial design process, a product design typically starts with a CAD geometry and has to 

eventually deliver the optimised geometry in CAD. However, currently there is no practical way of either 

optimising directly on CAD geometries or generating a CAD model from the optimization results. The current 

techniques to capture the geometry are inefficient and lose important geometric details. Hence, there is a need to 

use CAD models within the optimization framework to strengthen the industrial workflow. Current research in 

this area aims to enable shape optimization by using either a dumb geometry, which is a non-parametric CAD 

model from which the construction history has been removed, or using a CAD model with all of its construction 

history, features and parameters included. For the latter, the shape of a model can be updated by changing values 

of the parameters that define it. The main advantage of the parametric approach is that the optimized model 

produced can be directly used for downstream applications including manufacturing and process planning. Of 

course, the main disadvantage is that the final design will just be a parametric variation of the initial one rather 

than a radically different shape. 

The successful integration of a CAD model in an optimization loop requires an efficient CAD-based optimization 

methodology. In the field of computational fluid dynamics (CFD), a typical runtime for an industrial component 

ranges from hours to days on high performance clusters [1]. In this regard, the use of a gradient-based optimization 

approach which requires very few iterations to reach an optimum is a desirable option, but this will require the 

gradient of the objective function with respect to the design variables. The typical way to get the derivatives for 

each design variables is to employ a finite difference technique [2, 3] where the effect of a parameter change is 

computed by analysing both the baseline and perturbed geometries and comparing the results. For each parameter, 

a perturbed geometry is created in the CAD system and then used for analysis (including the need for geometry 

healing and mesh generation processes), where the resulting difference in performance enables the derivative 

calculation. It is clear, this strategy will be subject to the so called “curse of dimensionality” and quickly becomes 

impractical for large, high-fidelity models [4]. 

To address the issue of gradient calculation, adjoint based techniques have shown very promising results and have 

been an area of extensive research over the last two decades [2, 5-11]. The primary attraction of adjoint methods 

is their ability to compute gradient information at a computational cost which is essentially independent of the 
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number of design parameters. This, in turn, opens up the possibility to explore significantly larger design spaces 

than those with traditional approaches, in time-scales which are acceptable for industrial design. Adjoint methods 

provide the sensitivities of a function of interest with respect to mesh nodal movements. The straightforward route 

to optimization would be to directly use the mesh nodal displacements as design variables. The main drawback 

for all mesh based approaches is that the mesh topology must remain constant as the model updates, and that it is 

the mesh that reaches the optimum shape. Using this approach, it can be difficult to achieve an optimized geometry 

for manufacture as mesh nodes are typically positioned independently and quite often the resulting model shape 

is not smooth. For these reasons many researchers have attempted to use CAD geometry within the optimization 

process, which will result in a better quality model shape and aligns with the industrial ambition of having a more 

integrated design process. 

The integration of a parametric CAD model in an adjoint based optimization framework requires the calculation 

of parametric design velocity, i.e. the boundary shape movement resulting from a change in a CAD parameter. A 

number of approaches have been proposed in the literature for the computation of the design velocity. Chen and 

Torterelli [12] used an approach based on the parametric position of points/nodes on the boundary of the un-

optimized CAD model. After a parameter perturbation the new point positions are computed based on the 

parametric values recorded on original model. Alternatively, Truong et al. [13] presented an approach for the 

movement of surface mesh by comparing the parametric definition of surface mesh nodes with respect to 

tessellation of faces in the original and perturbed CAD model. Hardee et al. [14] applied a hybrid of a finite 

difference method with the boundary displacement method for the computation of design velocity directly from 

the CAD model. This involved comparing the parametric description of the faces in the original CAD model with 

the parametric description after the perturbation of one of the design parameters. All of these approaches work on 

the condition that the topology of the geometry model remains constant after the model is perturbed i.e. the same 

arrangement of surfaces, edges and vertices over the model boundary. Such a constraint is hard to enforce in 

practice. An example of a topology change is shown in Fig. 1, where Fig. 1(a) shows the unperturbed CAD model 

and Fig. 1(b) shows the same model after a parameter has been perturbed. In this example the topology change is 

demonstrated by the introduction of the new shaded faces. Also, for such approaches the mesh used for the analysis 

cannot be varied. 

 

Fig. 1: Topology change after a parameter perturbation where two new faces are created [15] 

Kripac [16] computed the design velocity from the CAD geometry by assigning certain identities (IDs) to the 

topological entities in the unperturbed model, and computing velocities from the entities with the same IDs when 

the model is re-evaluated after a parameter perturbation. This approach is hampered by the persistent naming 

problem where the IDs applied to the entities in the CAD model change after it is regenerated after a parameter 

perturbation. In the cases where ID’s are not persistent, techniques are described to rebuild/remap entities based 

on the construction order of the features in the model, and using adjacency information. An alternative approach 

to deal with the persistent naming problem is found in Ref. [17]. It is unlikely either approach will be robust where 

the model changes significantly, or where the features or the order of construction change, hence Chen et al. [18] 

concluded that the persistent naming problem remains unsolved. Nemec and Aftosmis [15] present an approach 

for computing the displacement of the boundary based on an embedded boundary Cartesian mesh method, where 

the movement of the intersections between a Cartesian mesh and a mesh of the component geometry are used to 

determine the boundary movement. This approach is again restricted to problems where the topology remains 

constant. 

Other authors [19, 20] have attempted to achieve the CAD link through development of processes based on non-

uniform rational B-splines (NURBS), where the NURBS control point locations are the design parameters. Key 
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benefits of these approaches are that NURBS are capable of representing a wide variety of surfaces, and topology 

changes do not occur. Authors have also attempted to use Free-form deformation (FFD) techniques to 

parameterise deformation instead of geometry [21, 22]. It originated from computer graphics [23] where FFD 

boxes are used to deform solid geometrical body. The downside of these approaches, compared to a model created 

in a feature based CAD system, is that the design intent and parametric associativity captured in the choice of 

features and parameters when the model was created is lost. 

It is possible to calculate the design velocities from the CAD system analytically [24, 25]. Analytical approaches 

to calculate shape sensitivity have significant advantages in that they do not require a geometry or mesh to be 

recomputed, which is both efficient and robust against topology changes. Analytical sensitivities also avoid 

difficulties with numerical accuracy associated with finite difference approaches. That said, these approaches are 

still in the early stages of development and are currently unavailable for general application. Furthermore, they 

require specialist access to the underlying CAD system kernel, which is unlikely to become an industrial reality 

for the major CAD packages in the near future. 

To overcome the restrictions associated with topology changes and with the persistent naming problem, Robinson 

et al. [26] used geometric faceting in the Virtual Reality Modelling Language (VRML) format exported directly 

from the CAD package. The design velocity was then calculated at the nodes of the facetted model and associated 

back to the CAD geometry. The key limitation of this approach is that it was not able to calculate design velocity 

for shape changes which the initial faceting was unable to represent. This can occur when the parameterisation 

allows a face to curve at a much greater resolution than the faceting of the model can recreate. For example in 

Fig. 2(a) the top face of the block was initially flat and modelled by two facets with nodes at the corners. These 

facets are unable to capture the subsequent curvature of the face, Fig. 2(b). 

 

Fig. 2: Top surface represented by two facets with all nodes at surface corners (b) Modified shape of the top 

surface not captured by the faceting (design velocities is zero at all nodes) 

Another example is when the perturbation causes the model to update such that the normal at a point on original 

model lies outside the perturbed model. In Fig. 3 the symbol “Δ” represents facets for which there is no obvious 

projection after the perturbation shown (from dashed to solid). 
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Fig. 3: Geometrical movement when the design velocity fails: original (solid line) & perturbed model (dashed 

line) 

This paper builds on the work of Robinson et al. [26], and aims to overcome its aforementioned limitations. The 

remainder of the paper will first summarize the integration of the adjoint based sensitivity calculation with the 

design velocity. Section 3 presents the methodology proposed to compute the design velocity; the new method is 

exercised using a turbomachinery static component and a transonic wing and the corresponding results are shown 

in section 4; the proposed methodology and results are discussed in section 5; finally the paper terminates with 

the main conclusions. 

2. Theory 

2.1. Adjoint methods 

The underlying theory and implementation of adjoint methods is well documented in the literature [2, 5-11]. An 

overview of the approach follows. 

Consider a semi-discrete system of fluid conservation laws described as 

                                                           
𝑑𝑼

𝑑𝑡
= 𝑹(𝑼, 𝑿).                                                              (1) 

Eqn.1 is referred to as the primal solution, where 𝑿 represents the mesh coordinates and 𝑼 is the vector of the 

fluid system variables. During the convergence of the primal solution, the non-linear residual 𝑹 for each equation 

is driven to zero. The objective function 𝐽 depends on the system variables, 

                                                           𝐽 = 𝐽(𝑼, 𝑿(𝜃)).                                                            (2) 

The change in performance 𝑑𝐽 due to a change in the value of the design parameter, 𝑑𝜃 can be defined in terms 

of the surface mesh coordinates 𝑿𝑠 

                                                           
𝑑𝐽

𝑑𝜃
=

𝑑𝐽

𝑑𝑿

𝑑𝑿

𝑑𝑿𝑠

𝑑𝑿𝑠

𝑑𝜃
.                                                       (3) 

The volumetric sensitivity term 𝑑𝐽/𝑑𝑋𝑠 can be obtained by differentiating Eqn.2 with respect to 𝑿 as 

                                                                    
𝑑𝐽

𝑑𝑿
=

𝜕𝐽

𝜕𝑿
+

𝜕𝐽

𝜕𝑈

𝑑𝑈

𝑑𝑿
 .                                                 (4)     

The solution of Eqn.4 using finite differences requires the solution of Eqn.1 for each design variable. 

Alternatively, it can be shown that by selecting an arbitrary vector 𝜓, Eqn.4 can be re-written as [27] 

                                                            
𝑑𝐽

𝑑𝑿
=

𝜕𝐽

𝜕𝑿
+ 𝜓𝑇

𝜕𝑹

𝜕𝑿
.                                                      (5) 

Using this method, only one set of additional equations needs to be solved for each objective function (known as 

the adjoint solution), regardless of the number of design parameters. The adjoint volumetric sensitivities are then 

combined with the inverse operation of a mesh moving algorithm to yield the adjoint surface sensitivities 𝜙 as 
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                                                                 𝜙 =
𝑑𝐽

𝑑𝑿𝑠

=
𝑑𝐽

𝑑𝑿
 

𝑑𝑿

𝑑𝑿𝑠

.                                                 (6) 

In recent years several adjoint solvers have been developed including adjointFoam [3], SU2 [28], HELYX [29], 

DLR-TAU [30], HYDRA [31]. These adjoint solvers are capable of producing the sensitivity of a measure of 

performance with respect to a shape change. The parametric sensitivities 𝑑𝐽/𝑑𝜃 are then calculated using Eqn.3 

and Eqn.6 as 

                                                                   
𝑑𝐽

𝑑𝜃
= 𝜙

𝑑𝑋𝑠

𝑑𝜃
.                                                           (7) 

2.2. Design Velocity 

Design velocity quantifies the boundary movement with respect to a change in a parameter value 𝑑𝜃, i.e. 𝑑𝑿𝑠/𝑑𝜃. 

This measure was first developed in the context of adjoint shape sensitivity and optimization in a structural 

analysis context [12]. In Fig. 4, the arrows represent the design velocity as the boundary changes from solid line 

to the dashed line. In particular, this paper is concerned with computing the normal component of the design 

velocity on the boundary of the model as 

                                                                   𝑽𝑛 = 𝛿𝑿𝑠. �̂�,                                                          (8) 

where 𝛿𝑿𝑠 is the boundary movement and �̂� is the surface normal direction. For each location on the domain 

boundary the design velocity is represented by a single value. The convention adopted throughout this paper is 

that a positive design velocity represents an outward movement of the boundary, and negative is inward. Once the 

adjoint sensitivity (𝜙) and design velocity (𝑽𝑛) are computed, the total change in objective function can be 

calculated as the summation over the boundary as 

                                                                ΔJ = − ∫𝜙𝑽𝑛𝑑𝐴
𝐴

.                                                     (9) 

Knowing the change in objective function due to the parametric perturbation in question, the gradient ∇J can then 

be calculated by normalizing this value with respect to the size of the parameter perturbation used to perturb the 

boundary as 

                                                                       ∇J =
Δ𝐽

Δ𝜃
.                                                               (10) 

 

Fig. 4: A two-dimensional design velocity field 

3. Methodology 

Throughout this work the feature parameters represent the input, the change in shape of the CAD model is the 

output and the CAD modelling system is treated as a black box. The critical aspect treated here is the calculation 

of the design velocity due to the perturbation of the CAD feature parameters. This can then be combined with the 

adjoint sensitivities over the model boundary to calculate the gradient value. Furthermore, this methodology is 

designed to be applicable to any feature-based CAD modelling package, e.g. SIEMENS NX [32], CATIA V5 

[33], can cater for any boundary topology changes due to parametric change and avoids the need to access the 
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CAD kernel. Hence, this makes it suitable for implementation within an industrial setting, where closed-source, 

commercial CAD packages are widely used.  

The optimization work follows a CAD centric approach in which the CAD parameters that define the geometric 

features in the CAD modelling system are considered as design variables. A typical CAD model is shown in Fig. 

5, comprising individual features which are combined to represent an overall shape. These features are classified 

as sketch-based features which are created by defining a 2D sketch profile and sweeping it to generate a 3D model, 

and dress-up features such as fillets and chamfers which are created directly on the solid model,. 

 
Fig. 5: Feature tree as in CATIA-V5 

As it is common for industrial CAD models to be defined by hundreds (or even thousands) of parameters, using 

a computationally expensive approach is infeasible for optimization. Herein the design velocity is calculated using 

a finite difference based on the CAD model before and after a parameter perturbation. Such operations performed 

directly on the CAD geometry are computationally expensive, even for simple CAD models. In this work, CAD 

geometries are represented using a surface tessellation of linear triangular elements. This is referred to as faceting 

to differentiate it from the analysis mesh used to compute the CFD and adjoint solutions. A faceted representation 

of CAD geometries is created by employing the open-source meshing tool GMSH [34]. The displacement of the 

model due to a parameter perturbation is approximated by calculating how much a point at the centre of each facet 

in the unperturbed model has to move to reside on the boundary of the perturbed model. The required facet density 

to replicate the CAD model depends on the complexity of the model, its parameterisation and on the curvature 

discretization by the facets. Fig. 6(b, c) shows the coarse and fine surface facet representation of ONERA-M6 

CAD model shown in Fig. 6(a). 

 

Fig. 6: ONERA M6 (a) CAD model, (b) coarse surface facets, and (c) fine surface facets 

To incorporate various CAD design software tools, a generic representation of CAD model (STEP) format is used 

as the CAD format input to the calculation of design velocities. Using the CAD design software, STEP files are 

created for each parametric perturbation to be used for the calculation of design velocities. The perturbation of a 

model feature parameter and the export of the corresponding STEP file, is automated using the CAD system API. 

The algorithm for calculating the design velocity from the resulting STEP files is described in Algorithm 1 and is 

implemented in Python [35]. 
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The projection test 

The displacement of the model due to a parametric perturbation is calculated by projecting a point at the centroid 

of each facet in the unperturbed model onto the facets in the perturbed model in the normal direction. 

 

Fig. 7: Projection from unperturbed facet centroid C0 to perturbed facet with centroid Cp to get the projection 

point Pp 

In Fig. 7, a facet on an unperturbed model defined as ΔO1O2O3 has its centroid 𝐶0 projected onto the facet 

ΔF1F2F3 in the perturbed model to find a projection point 𝑃𝑝. The coordinates of 𝑃𝑝 are computed using: 

                                                           𝑃𝑝 = 𝐶0 + {
(𝐶𝑝 − 𝐶0). �̂�𝐶𝑝

�̂�𝐶𝑝
. �̂�𝐶0

 } �̂�𝐶0
                                     (11)   

To determine if a given point 𝑃𝑝 lies inside the perturbed facet, consider the barycentric coordinates shown in Fig. 

8. 𝑃𝑝 lies inside the perturbed model facet if {𝜁, 𝜂 > 0 ∧ 𝜁 + 𝜂 < 1}. The Barycentric coordinates 𝜁, 𝜂 𝑎𝑛𝑑 𝜉 are 

computed using the procedure described by Ericson [36]. If a projection is found to be contained within the 

boundaries of a triangular facet, then the normal vectors of the facet in the unperturbed and perturbed models are 

compared to check that they lie within an angular threshold. If both the conditions are satisfied, i.e. the projected 

point lies within the triangular facet and the surface normal is within the specified tolerance, the projection is 

deemed to be successful. If not, then a search is conducted on an adjacent perturbed facet using the same criteria. 
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Fig. 8: Using Barycentric coordinates to determine which facet to test next 

Determining which facet in the perturbed model to test first 

One of the goals of this approach is to overcome two limitations: (1) the need for the model topology to remain 

constant before and after a parameter perturbation; (2) the need for the facet labels and their correspondence to 

the model geometry to guide the projection. This is achieved by projecting the unperturbed facet centroid onto the 

perturbed facets after each parameter change. To determine which facet on the perturbed model to use in the 

projection requires a search operation over the facet discretization. This is achieved by setting up a 

multidimensional binary search tree (KD-tree). For each perturbed model, a KD-tree of its centroid point 

coordinates is created [37]. A KD-tree query returns for each centroid in the unperturbed model, the closest facet 

centroid in the perturbed model. The first projection test is performed using this facet. If the projection test is 

successful, the facet label and coordinates of the projection point are recorded. 

Determining which facet in the perturbed model to test next 

If the projection is unsuccessful for the selected perturbed facet, the Barycentric coordinates are used to determine 

which facet to use for the next projection test. With reference to Fig. 8, the next facet to test is selected according 

to: 

 𝜁 < 0 the adjacent facet which shares the points 𝐹1 and 𝐹3 should be tested next. 

 𝜂 < 0 the adjacent facet which shares the points 𝐹1 and 𝐹2 should be tested next. 

 𝜁 + 𝜂 > 1 the adjacent facet which shares the points 𝐹2 and 𝐹3 should be tested next. 

This sequence of projection and facet identification tests should continue until the projection test is successful. If 

the number of unsuccessful projections reaches a threshold value, a brute force approach is employed. This 

involves the centroid being projected onto all the facets in the perturbed model and selecting the closest facet 

which it projects onto with a similar face normal. In order to limit the number of facets to test, only a subset of 

elements within a defined radius from the unperturbed facet centroid is tested. This threshold value depends on 

the complexity of geometry and also on the surface facet density. Numerical experiments have shown that a radius 

of twice the length of the maximum parametric perturbation gives adequate results. 

It is possible for the brute force approach not to yield a successful projection. This is a possibility in cases where 

the perturbation causes the model to update such that the normal at a point on original model lies outside the 

perturbed model, as depicted in Fig. 3. In these cases, the nearby facets in the perturbed model are tested using 

the surface normal and if found to lie within a prescribed tolerance (approximately 5∘), the unperturbed facet 

centroid is projected onto the centroid of that element and the design velocities in the normal direction are 

calculated accordingly.  

A final condition is introduced in the event that facets of the unperturbed model are still unable to be projected 

onto the perturbed model. In such cases the design velocity for these facets is interpolated from those of the 

neighbouring facets in the unperturbed model which share the common vertex with the original facet. 

Computing design velocity 

Once the unperturbed facet centroid (𝐶0) is successfully projected in the normal direction (�̂�𝐶0
) to obtain the 

projection point (𝑃𝑝), the design velocity at 𝐶0 is calculated using Eqn.8, which results in 
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                                                           𝑽𝑛,0 = (𝑃𝑝 − 𝐶0). �̂�𝐶0
                                                  (12) 

It should be noted that neither the face or facet labels, nor the correspondence of the CAD model topology between 

the perturbed and unperturbed model are necessary to compute the design velocity. Hence, making this strategy 

more attractive and robust than the current alternatives discussed in the Introduction section. 

4. Results 

4.1. Validation of Design Velocity 

To validate the accuracy of the calculation of the design velocities, the methodology described in the preceding 

section is compared against analytical results for the parameterisation of a plate test case. The plate was created 

by extruding a profile created using three straight lines (bottom and sides) and a B-Spline along the top. The spline 

was controlled using five control points, evenly distributed along the top edge as shown in Fig. 9. 

 
Fig. 9: Plate model with B-Spline control points 

The purpose of this simple parameterisation is that it allows the analytical calculation of design velocities based 

on the mathematical description of a Bezier curve 

                                                        𝑋(𝜍) =  ∑ 𝛽𝑖𝐵𝑖𝑛(𝜍),                                                (13)

𝑛

𝑖=0

 

where 𝑋 is the point on the curve, 𝛽𝑖 is the 𝑖𝑡ℎ control point, and 𝐵𝑖𝑛(𝜍) is the Bernstein polynomial of degree 𝑛 

and 𝜍 ∈ [0,1]. Using Eqn.13, the 𝑧-displacement can be calculated at each surface mesh node for a perturbation 

of the control points. A series of design velocity fields were calculated for the CAD model by perturbing each 

control point in 𝑧-direction. A vector plot of the design velocity field corresponding to the movement of a control 

point at the centre of B-Spline is shown in Fig. 10. 

 
Fig. 10: Design velocity vectors for parameter perturbation of +1mm 

The design velocity field computed using the CAD-based approach is compared to the analytical solution for the 

movement of two control points and shown in Fig. 11. It can be seen that the two approaches give identical results, 

with the maximum error of the order of 10−7𝑚 for a perturbation of 10−3𝑚. 
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Fig. 11: Comparison between analytical and CAD based design velocity (CAD results plotted for every other 

point): (a) X=0.5; (b) X=0.75; 

4.2. Validation of performance gradients 

In order to evaluate the developed approach for industrial geometry, gradients were calculated for a state-of-the-

art nozzle guide vane (NGV) of a high pressure turbine (HPT) developed by Rolls-Royce. A 3D parametric CAD 

model of NGV geometry was built using Siemens NX. The NGV has fillets at both ends and a cooling slot feature 

at the trailing edge (TE). This geometry is also investigated in [38], which illustrates different methods in order 

to quantify the impact of geometric variations on the NGV performance with focus on the capacity. Typically, the 

engine mass flow (and by association the turbine capacity, 𝑄) is governed by the NGV design, which defines the 

narrowest cross section of the turbine. As a result, in this test case the capacity is considered as the objective 

function. After convergence, the capacity at the inlet is calculated as 

                                                                               Q = �̇�
√𝑇𝑡

𝑝𝑡

 ,                                                               (14) 

where �̇� denotes the inlet mass flow, 𝑇𝑡 the total temperature and 𝑝𝑡  the total pressure at the inlet using mass 

averaged values. The resulting capacity for the baseline geometry was found to match the expected capacity value 

and is taken as the reference value for all subsequent comparisons with perturbed geometries [38]. 

 

Fig. 12: 3D CAD model of NGV geometry in Siemens NX 

Due to the symmetries in the model, the CFD simulation was conducted on one periodic section of the engine's 

annulus. Consequently, the sector domain shown in Fig. 12 was used for both CFD and design velocity 

computation. Further details on the test case and results are given by Vasilopoulos [27]. 
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Fig. 13: CAD feature parameters considered as design variables (not to scale) 

A total of twelve CAD parameters were used in this problem. The parameters were perturbed and associated 

geometries created using an iSIGHT workflow. Fig. 13 shows some of the CAD parameters considered in this test 

case, where SS represents the suction side and PS represent the pressure side of the blade profile. 

The primal and adjoint CFD results were obtained using the Rolls-Royce in-house CFD solver HYDRA, solving 

the steady state RANS equations with the Spalart-Allmaras turbulence model and wall functions and its 

corresponding discrete adjoint solver [31]. The nonlinear flow solver uses a node-based finite-volume 

discretisation method and the pseudo-time-marching to steady state is accelerated by a block-Jacobi pre-

conditioner and a geometric multigrid technique. The convergence criteria used required the residual to reduce by 

nine and five orders of magnitude for the primal and adjoint solutions, respectively. 

The mesh for each new geometry was created automatically using the BOXER meshing software [39] and 

contained approximately 9 million nodes and 13 million cells. A typical example of the mesh is given in Fig. 14, 

including a detailed view of the mesh around the trailing edge. 

 
Fig. 14: (a) NGV CFD domain, and (b) mesh around trailing edge 

The adjoint sensitivity map is illustrated in Fig. 15 where areas of extreme sensitivity are shown in red and blue, 

representing areas where the boundary of the model should be displaced outwards or inwards respectively, to 

achieve an increase in objective function. Areas of low sensitivity (shaded in grey) show that the objective function 

is insensitive to changes to the boundary in those areas. 
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Fig. 15: NGV Adjoint sensitivity map 

For each design variable, a design velocity field was calculated using the approach developed in this work and 

linked with the adjoint sensitivity maps. The design velocity contours for the casing fillet, SS profile and hub fillet 

are shown in Fig. 16. Finally, the change in performance caused by each parametric perturbation is predicted by 

taking the inner product of the sensitivity map with the corresponding design velocity field, using Eqn. 9.  

 
Fig. 16: Design Velocity contours for NGV 

Fig. 17 compares the gradients obtained using the adjoint and finite-differences approaches. All gradients have 

the same direction and for most parameters both methods are in close agreement in terms of magnitude. For 

parameters controlling the trailing edge shape, the magnitude of the finite-difference gradients are consistently 

lower than the adjoint predictions. These differences may be related to the step size used in the finite-differences, 

or in accuracies in the adjoint solution near the TE discontinuity. Further investigation is required to obtain a 

definitive answer. 

 

Fig. 17: Validation of gradient of capacity predicted by adjoint results 
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To perform one CFD analysis takes approximately 24 hours using 20 cores, consequently the finite difference 

approach using the 12 design variables requires approximately two weeks of effort. The design velocity approach 

took two days, solving one primal and one adjoint solution. The computation of design velocities is carried out in 

parallel to the flow analysis and takes 45 minutes for all parameters on a 3.60GHz workstation with 16GB RAM. 

4.3. Optimization test case 

To further test the robustness of the methodology the application to the shape optimization of a transonic wing is 

exploited. The aim is to minimize the drag of the ONERA M6 and illustrate the efficacy of the gradient calculation 

throughout the several iterations of the optimization process. 

Numerical optimization involves the minimization of a chosen objective function through the manipulation of a 

set of design variables. Within gradient based optimization methods, the gradient is used to guide the design 

towards a local optimum over multiple optimization steps. With each new step a new set of design variables is 

produced, causing a change in the objective function. A general optimization can be defined as: 

Minimize:      𝑓(𝜃), 

          Subject to:      𝑔(𝜃)  ≥ 0,                                                              

                                  ℎ(𝜃) = 0 

where 𝑓(𝜃), is the objective function to be minimised (maximised), 𝑔(𝜃) is the inequality constraint and  

ℎ(𝜃) represents equality constraints. The optimization algorithm used in this work is the “Sequential Least 

Squares Programming” (SLSQP) implementation in Scipy [40]. 

For the purpose of optimization, a parametric CAD model for ONERA M6 was constructed in CATIA V5, using 

three different cross-sections along the wing span. Each cross-section is defined using two Bezier curves each 

defined by five points, one defining the upper surface and the other defining the lower surface. The design 

variables are the 𝑧-coordinates of each control point of the Bezier curves, with the following constraints: the 

leading edge and trailing edge points are fixed, and the first control point on each surface after the leading edge 

are constrained to move in equal and opposite directions, vertically offset from the leading edge point. This is in 

order to preserve 𝐶2 continuity at the leading edge and gives a total of 27 parameters (three sections) to be used 

for optimization. The wing is then constructed by sweeping a surface through the section curves as shown in Fig. 

18(a). 

 
Fig. 18: (a) ONERA M6 CAD model showing Bezier control points for section profiles. (b) CFD mesh 

An unconstrained optimization problem for the following flow conditions is defined 

 Freestream Temperature = 288.15 K 

 Freestream Mach number = 0.8395 

 Angle of attack (AoA) = 3.06∘ 

 Objective Function = 𝑚𝑖𝑛(𝐶𝐷) 

 No. of design variables = 27 

An unstructured mesh was created in GMSH with 154,617 nodes and 707,115 tetrahedral elements, the respective 

surface mesh is shown in Fig. 18(b) and used for both flow and adjoint analysis. For this problem the SU2 analysis 

framework [28] was used to solve the compressible Euler fluid equations and the respective adjoint equations 

using its continuous adjoint formulation. This required no modification to the gradient calculation method, only 
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the ability to process the output from SU2. SU2 is a finite volume, node based solver and has several options to 

discretize the equations in time and space. For this test case an implicit Euler method was used to march the 

equations forward in time and the Jameson-Schmidt-Turkel scheme with scalar artificial dissipation is used for 

the spatial discretization. 

 

Fig. 19: Pressure contours for initial and optimized ONERA M6 

The pressure flow field in Fig. 19 shows the formation of shock on the upper surface of the wing, which is similar 

to results available from the literature [41-43]. The convergence of the residuals of the density and correspondent 

adjoint variable equations for the initial wing is shown in Fig. 20. 

 

Fig. 20: Residual convergence for initial ONERA M6 

The perturbed geometries required for the calculation of the design velocity was created using a CAD system API 

developed in this work. The design velocity contours for six of the parameters controlling the upper surface of the 

wing is shown in Fig. 21. 

 
Fig. 21: Design Velocity contours for ONERA M6 

Thereafter, the performance gradient with respect to CAD parameters is calculated using Eqn. 9 and Eqn. 10, and 

are used in the SLSQP optimization algorithm. The drag coefficient for the wing was reduced from 0.012135 to 

0.00303 in 12 optimization steps as illustrated in the optimization history plot in Fig. 22. 
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Fig. 22: Optimization history for drag minimization on ONERA M6 

A comparison of the pressure coefficient between the initial and optimized geometry at two different cross-

sections is shown in Fig. 23. During the optimization process, a reduction of thickness at the leading edge is 

observed and the point of maximum camber moves slightly aft, resulting in a weakened system of shocks or the 

elimination of the rear shock, as observed at 60% span. Note as well that the lift is significantly reduced by 

increasing the aft camber. Both reductions in shock strength and lift contribute to limit the total drag produced. 

 
                                             (a)                                                                                  (b) 

Fig. 23: Cp distribution along the wing span: (a) Y=0.30, (b) Y=0.60 

5. Discussion 

The main objective of this work is to present an automated workflow to efficiently calculate the design velocity 

with respect to the parameters which define the shape of a feature based CAD model. The design velocity is then 

linked with adjoint surface sensitivities to output gradients of performance with respect to CAD parameters by 

the chain rule. The robustness of the developed approach is demonstrated through the application to a 

turbomachinery component and a 3D transonic wing model. The two models analysed in this work were created 

in two different CAD modelling packages, (SIEMENS NX and CATIA V5), and resolved with different CFD 

solvers (HYDRA and SU2). This substantiates its applicability to industrial Computer Aided Engineering (CAE) 

systems where models which are generally built using commercial CAD packages or other in-house tools, and 

have different CFD solvers. 

The primary benefit of this work is the efficient and robust computation of design velocity for a parametric CAD 

model built with any CAD modelling package. In terms of computational efficiency, calculating design velocities 

is computationally inexpensive and enhances the ability of adjoint methods to reduce the optimization time for 

industrial size test cases using large parameter spaces. Furthermore, the proposed approach to compute the design 

velocity is unaffected by changes in topology which hamper alternative approaches, but which are likely to occur 

during shape optimization of complex models. This was observed for the NGV test case where the parametric 

perturbations lead to the appearance of new sliver faces in the trailing edge slot region, while during the 
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optimization of the ONERA M6 wing sliver faces appeared near to the leading edge of the wing where the surface 

curvature is high. 

In order to facilitate the linkage with different CAD packages, the STEP format of the CAD model is used for 

each perturbed model. The facets required for the computation of design velocity can be directly generated using 

STEP files by a suitable mesh generator. Alternatively, the user can generate a STL (STereoLithography) file and 

generate the surface facets using a compatible mesh generator, e.g. SnappyHex [44] (which does not support STEP 

files). The applicability of design velocity for prediction of gradients is given by a combination of Eqn. 8 and Eqn. 

9, which requires design velocity to be computed accurately in regions of high surface sensitivity. This was 

achieved by using a dense geometrical faceting in these regions which was controlled by surface mesh generators. 

An optimization problem using a transonic wing with 27 design variables was investigated. In this case, a CAD 

system API was developed to link CATIA V5 with the optimization framework, which automatically updates the 

CAD parameter values with new values from the optimizer, and exports a new CAD model for the CFD and 

adjoint calculations. The advantage of using this approach lies in the fact that the optimization is performed 

directly on the CAD model, and consequently the optimized model is available in the CAD package and can be 

directly used for other design applications. 

6. Conclusion 

The following conclusions have been drawn from this work: 

 An efficient procedure to calculate performance gradients with respect to CAD parameters, using adjoint 

methods, was presented. 

 The gradients obtained using this approach can be used in an optimization framework to produce an 

optimized CAD model geometry in a feature based CAD system.  

 The projection methodology using a surface tessellation of CAD geometries overcomes several 

limitations of alternative approaches, such as the persistent naming problem or changes in the model's 

topology. 
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