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Abstract—Object detection is arguably one of the most impor-
tant and complex tasks to enable the advent of next-generation
autonomous systems. Recent advancements in deep learning tech-
niques allowed a significant improvement in detection accuracy
and latency of modern neural networks, allowing their adoption
in automotive, avionics and industrial embedded systems, where
performances are required to meet size, weight and power
constraints.

Multiple benchmarks and surveys exist to compare state-
of-the-art detection networks, profiling important metrics, like
precision, latency and power efficiency on Commercial-off-the-
Shelf (COTS) embedded platforms. However, we observed a
fundamental lack of fairness in the existing comparisons, with a
number of implicit assumptions that may significantly bias the
metrics of interest. This includes using heterogeneous settings for
the input size, training dataset, threshold confidences, and, most
importantly, platform-specific optimizations, that are especially
important when assessing latency and energy-related values. The
lack of uniform comparisons is mainly due to the significant
effort required to re-implement network models, whenever openly
available, on the specific platforms, to properly configure the
available acceleration engines for optimizing performance, and
to re-train the model using a homogeneous dataset.

This paper aims at filling this gap, providing a comprehensive
and fair comparison of the best-in-class Convolution Neural
Networks (CNNs) for real-time embedded systems, detailing
the effort made to achieve an unbiased characterization on
cutting-edge system-on-chips. Multi-dimensional trade-offs are
explored for achieving a proper configuration of the available
programmable accelerators for neural inference, adopting the
best available software libraries. To stimulate the adoption of
fair benchmarking assessments, the framework is released to the
public in an open source repository.

I. INTRODUCTION

Visual detection is a pervasively-used technique that con-
sists in finding, within digital images or video streams, in-
stances of semantic objects of some predefined categories.

An autonomous car driving application typically detects
road users, such as other cars, bicycles and pedestrians [1], [2].
An application in a highly-automated industrial machine [3]
instead, could detect objects to be manipulated, or defects to
be signalled. Many are the other applicative domains, ranging
from robotics [4], to avionics [5] or simply surveillance. Many
also are the vision tasks that can be built upon object detection,
such as instance segmentation, image captioning, or object
tracking.
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Since 2012, Deep Neural Networks (DNNs) have surpassed
the accuracy of classical methods, becoming the state-of-the-
art technology for vision task [6].

A. Conflicting Goals in Designing a Solution

a) Performance: A good object detector is characterised
by two main performance figures: latency, i.e. the time needed
for a single frame to be processed, and accuracy, i.e. the
quality of the output given the input. These represent a well-
known bi-dimensional trade-off: improving one often worsen
the other.

b) Power: When targeting embedded platforms, one-
stage detectors are preferable to two-stage ones, because they
are faster, and this leaves room for further trade-offs against
the limited resources of the computing platform. Some of
these constraints, like the platform’s physical characteristics
or price, are independent from performance indicators like the
ones above. The power absorption, instead, directly correlates
with the attainable precision and latency, hence compelling the
system design to a third trade-off dimension.

B. Strategies to Optimise Inference

Regarding fast inference on-device computation, three major
axes efforts have been identified [7] to maximise performances
or contain power consumption.

a) Network model design: Reducing the number of
parameters in the DNN model is very common ap-
proach to reduce memory and execution latency, while
aiming at preserving high accuracy. Some examples in-
clude MobileNets [8], Single-Shot Detectors (SSD) [9],
Yolo [10], and SqueezeNet [11], with the state of the art
that is evolving rapidly. We consider Yolov3 and Yolov3-
tiny [12], Mobilenetv2-SSDLite [13], Centernet-Resnet101
and Centernet-DLA34 [14], designed to achieve high through-
put.

b) Model Compression: DNN models can also be com-
pressed sacrificing a small accuracy loss compared with the
original model. There are several popular model compres-
sion methods: parameter quantization, parameter pruning, and
knowledge distillation. In this paper, we use quantization such
as half floating-point precision (FP16) or INT8 inference;

c) Platforms: The x86 CPU architectures offer the great-
est sequential performances (operation throughput and re-
sponse time) and easiest programmability, and have long been



dominating the high-end segment of industrial automation
domain to deliver central control systems. General-Purpose
computing on Graphics Processing Units (GPGPUs) revolu-
tionised the offer by providing order-of-magnitude improve-
ments in parallel throughput and in power usage, at a rea-
sonable programming cost; Field-Programmable Gate Array
(FPGA) platforms share a similar ambition, asking for higher
programming cost, but providing more flexible communication
paradigm and simpler computational units. There also is an
emerging class of AI-dedicated accelerator implemented with
Application-Specific Integrated Circuits (ASICs), e.g. Google
TPU, Huawei NPU, and Intel Nervana NNP. Their design
provides by construction the best inference efficiency, but we
leave them out of our scope for their limited flexibility and
evolvability, which is important for keeping the fast pace of
research on object detection and NNs.

C. The Need of a Systematic Assessment

Given the wideness of optimisation means currently em-
ployed, and the number of conflicting and diversely-relevant
goals, the existing reviews of the literature did not dare to
address a comprehensive inspection of a such fragmented state
of the art in embedded object detection. This paper goes
beyond by providing a systematic assessment, evaluating all
the combinations of aforementioned network, compression and
platforms, against all the aforementioned evaluation metrics.

D. Contributions

This paper deliver the followings.

• A review of the state-of-the-art (SOTA) regarding embed-
ded neural networks for Object Detection Convolutional
Neural Networks (ODCNN).

• An optimized implementation of 5 different SOTA OD-
CNNs, to better exploit the embedded boards, it is open-
source licensed and available for the Xavier AGX1 and
for the ZCU102 Ultascale+2.

• A fair comparison of 5 different SOTA ODCNNs, in
terms of mean Average Precision (mAP), latency and
power consumption on three different embedded boards,
i.e. the NVIDIA Xavier AGX, the Xilinx Zynq ZCU102
Ultrascale+ and an Industrial PC (IPC) i7-7700. To be as
fair as possible same input size, same training dataset,
same threshold for bounding boxes’ (BBs) confidence
and best implementation on each platform have been
considered.

E. Outline

The following section offers an overview of the SOTA and
tries to clarify what are the available results in the literature
and what is missing. Section III explains the platforms chosen
for the experiments and their major features, while Section
IV is focused on the details of the considered networks and
their porting on the chosen runtimes. Finally, all the results
are shown in Section V, where also all the conclusions are
reported.

II. RELATED WORKS

There exist several works that aim at improving a single
Neural Network (NN) on a specific embedded platform, but
not as many that offer a good comparison between different
methods on different boards. While the former task is a natural
process when developing a new method, the latter could
require more effort. We summarized a curated selection of
SOTA comparison works in Table I. Columns are grouped
in four macro-areas: (i) inference platforms considered, (ii)
ODCNN adopted for the task of object detection and classi-
fication, ordered by ascending release year, (iii) dataset used
for training, (iv) metrics adopted to evaluate the results.

It is not trivial to run correctly the same NNs on different
embedded platforms. An implementation from scratch could
be needed for the following reasons: (i) the framework needed
could not be supported,(ii) the framework needed is supported
but its performance is degraded on specific hardware, (iii)
great improvements can be obtained using a specific library
for specific target hardware. Moreover, when comparing NNs,
other factors should be taken into account and fixed to be fair,
i.e. adopting the same dataset for training, using the same input
size for the networks, consider the same thresholds to compute
the accuracy, use the same data-type for the weights. Finally,
a comparison could be performed for a single metric or, to be
more exhaustive, for many.

For example, Rungsuptaweekoon et al. evaluate in [15] the
power efficiency of the object detector Yolov2 on NVIDIA
Jetson TX1, Jetson TX2, and Tesla P40. The authors compare
mAP, accumulated energy consumption, mAP/Energy and
frame rate factors. Even though all the metrics are considered,
only one NN is investigated and only NVIDIA platforms. On
the other hand, Yu et a. compare in [17] real-time object
detection algorithms on several embedded platforms. They
measure power efficiency, latency and accuracy of Faster
RCNN, Yolo and SSD on NVIDIA TK1, Xilinx Zynq 7045
and Xilinx KU115. However the comparison is not very fair:
not all the networks are implemented on all the boards, the
datasets are different and they do not even mention the input
size of the networks. An extensive comparison is offered by
Lin et al. [20], where the authors benchmark several deep
learning frameworks and investigate the FPGA deployment for
performing traffic sign classification and detection. To evaluate
inference performance, they consider inference latency, accu-
racy, and power efficiency, by varying different parameters
such as floating-point precision and batch size. They show
that TensorFlow is always among the frameworks with the
highest inference accuracy. For object detection inference,
they compare six SSD models with different base networks
on an NVIDIA GTX 1050 Ti GPU and an Arria 10 FPGA
development board. Compared to the reference results on the
GPU, they notice that in most of cases inference speed on the
GPU is higher than the FPGA, as well as accuracy. However,
FPGA always achieves higher power efficiency than the GPU.
It is also worth mentioning MLPerf [22] and MLMark3 (main-

1https://github.com/ceccocats/tkDNN
2https://git.hipert.unimore.it/gbrilli/dpunn
3https://www.eembc.org/mlmark/scores.php



TABLE I: SOTA comparison for Object Detection and Classification Neural Networks.
Platform Object Detection and Classification Neural Network Dataset Metric
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[15] 3 3 3 3 3 3 3
[16] 3 3 3 3 3 3 3 3 3 3 3 3
[17] 3 3 3 3 3 3 3
[18] 3 3 3 3 3 3
[19] 3 3 3 3 3 3 3 3 3 3 3 3
[20] 3 3 3 3 3 3 3 3 3 3
[21] 3 3 3 3 3 3 3
MLPerf [22] 3 3 3 3 3
MLMark 3 3 3 3 3 3
this paper 3 3 3 3 3 3 3 3 3 3

tained Embedded Microprocessor Benchmark Consortium),
two efforts in gathering a considerable number of performance
records, offering a collection point for researchers. For both of
them, the comparison is however difficult or impossible, due
to the heterogeneity of collected tests, e.g. input size, dataset,
threshold, and other details are omitted. Moreover, only a few
CNN for object detections appear among the results, and the
chosen metrics are limited to latency for MLPerf, latency and
mAP for MLMark.

In this paper, three kinds of embedded platforms have been
chosen: an Industrial PC to compare with the latest embedded
board by NVIDIA and Xilinx, namely, the Xavier AGX and
the ZCU102 Zynq UltraScale+. Regarding the methods, we de-
cided to pick five of the most recent NNs, therefore we selected
Yolov3 (Yolov3-tiny) over Yolov2, Mobilenetv2-SSDLite over
Mobilenetv1-SSD and we also investigate two versions of
a newly released detector, Centernet, which has not been
evaluated on embedded platforms yet. Lastly, an exhaustive
analysis has been carried on, comprehensive of latency, mean
Average Precision (mAP) and power consumption.

III. INFERENCE PLATFORMS

A. GPGPU
The NVIDIA Xavier AGX is a recently released embedded

platform featuring a Tegra System on Chip (Xavier AGX
SoC) composed of 8 NVIDIA Carmel CPU Cores and an
integrated GPU based on the NVIDIA Volta architecture with
512 CUDA cores and 64 Tensor Cores. Tensor Cores are pro-
grammable fused matrix-multiply-and-accumulate units that
execute concurrently alongside CUDA cores and implement
HMMA (Half-Precision Matrix Multiply and Accumulate) and
IMMA (Integer Matrix Multiply and Accumulate) instructions
for accelerating various applications and, in our interest, deep
learning inference.

TensorRT is a framework provided by NVIDIA4 and written
in CUDA for optimizing the inference of deep learning models
on their GPU. Using TensorRT allows one to reduce the

4https://developer.nvidia.com/tensorrt

precision data type, performing inference at 8-bit integer
(INT8), or at half-precision floating-point (FP16) to replace
the single-precision floating-point (FP32) in representing the
weights and parameters of deep learning models. A common
result [16][19][23] is that the overall latency of the model can
be dramatically reduced, though the final accuracy could be
degraded. However, exploiting this framework is not always
trivial, especially if the networks that need to be ported
have unusual layers (e.g. deformable convolutional layers).
Therefore the effort of the programmer is not negligible and
several plugins need to be implemented.

Lastly, tkDNN is our open-source Deep Neural Network
library built with cuDNN and tensorRT primitives, specifically
thought to work on NVIDIA Jetson Boards, whose main goal
is to exploit those boards as much as possible to obtain the
best inference performance.

B. FPGA
As a point of reference for FPGA-based System-on-Chip,

we used the XCZU9EG SoC belonging to the Zynq Ul-
traScale+ family, through the Xilinx ZCU102 development
board [24]. Specifically, this SoC is composed of a Processing
System (PS) having 4 ARM Cortex A53 CPU Cores for the
user applications part and an ARM Cortex R5 dual-cores
processor to handle Hard Real-Time applications. Next to
the PS, there is a Programmable Logic (PL), which hosts
a processing unit for managing Deep Learning tasks, called
Deep Learning Processing Unit (DPU) [25]. This system is
a soft-processor (IP core) implemented in FPGA, containing
a certain number of specialized engines for typical Deep
Learning operations such as convolutions, pooling, etc. In
this case, the A53 cores of the PS part only deal with
(i) performing pre/post-processing operations and executing
layers not supported by the accelerator; (ii) transmitting the
images to the DPU; (iii) configuring the operations that the
DPU will carry out, encoded in a specific binary file.

As development frameworks, to create custom NN models,
Xilinx provides DNNDK [26] and Vitis-AI [27] suites, that
contain some commonly used network models, collected in



TABLE II: Comparison of the considered boards. N.U. stands for Not Used for the implementation.
Embedded IPC NVIDIA Xavier AGX Xilinx Zynq UltraScale+ MPSoC ZCU102

CPU Intel i7-7700 4 cores @3.60GHz NVIDIA Carmel (Arm v8.2) 8 cores @2.13GHz Arm Cortex-A53 (v8) 4 cores @1.5GHz
GPU - 512-core Volta GPU with Tensor Cores Mali-400 [N.U]

DNN Accelerator - 2 Deep Learning Accelerators (DLAs)[N.U.] 3 Deep Learning Processing Units Soft IPs (DPUs)
Memory 16 GB RAM 16 GB 256-bit LPDDR4x 4 GB DDR4 64-bit SODIMM w/ ECC (PS)

Supported datatype FP32 FP32, FP16, INT8 INT8
Operating system Windows 10 Enterprise LTSC, Version 1809 Ubuntu 18.04.3 LTS, Jetpack 4.3 Debian Buster 10.0
Framework used ONNX Runtime tkDNN with TensorRT DNNDK and Vitis-AI

their “model zoo” repository and tools that can be used to
quantize and deploy the networks. These suites are integrated
with Caffe [28] and Tensorflow [29] frameworks, through
which it is possible to define the model of a NN and export
the trained weights. Other NN engines for FPGA exists,
i.e. Neuraghe presented by Meloni et al. [30], CHaiDNN
developed by Xilinx [31] and FINN proposed by Umuroglu et
al. [32] (natively supported for SoCs that integrate the Pynq
framework e.g. Avnet Ultra96). However, in this work we
focus on DPU TRD IP, because: (i) it is directly supported
by Xilinx; (ii) it is well documented both for hardware design
and drivers API; (iii) through the Vitis-AI and the Vitis Model
Zoo repository it is possible to deploy a wide range of NNs,
including Yolov3 and Yolov3-Tiny.

C. IPC

In industrial automation there are many advantages to PC
based control: lower costs, maintainability, tried and true
hardware with extensive processor power and nearly unlimited
memory. In many cases there is a software layer that takes
control of the processor, creating a Real-Time processing
environment. Windows OS becomes a sub-process with limited
time slices of processor time, while control, visualisation and
motion tasks are multi-tasked on the processor. Compliance
with the global automation standard, IEC-61131–3 is another
advantage of PC control.

The development framework chosen for this platform is
ONNX Runtime [33], a cross-platform, high-performance
inference engine for ONNX (Open Neural Network Ex-
change [34]) for Machine Learning and Deep Learning mod-
els. It allows systems to integrate a single inference engine that
supports models trained from a variety of frameworks, while
automatically taking advantage of specific supported hardware
accelerators and runtimes available on different platforms. The
ONNX Runtime C++ API has been exploited, to guarantee
relevant performances during the pre-processing and post-
processing of the images. For ONNX Runtime the models have
been exported from Pytorch 1.4 [35]. Pytorch natively supports
ONNX layer export. All the conversions to the ONNX format
exploit the Constant Folding graph optimization technique.
A smooth conversion is guaranteed if Pytorch operators are
supported by ONNX. Custom Pytorch operators can be still
registered as ONNX operators through the ONNX Registration
API. ONNX stable opset supported by Pytorch 1.4 is version
9. We have encountered no problem to exploit also opset
version 11 for the conversion of the model studied. All the
specifications of the chosen IPC, and details of all the other
inference platforms are reported in Table II.

IV. NEURAL NETWORKS

When picking the ODCNNs we wanted to find the best
trade-off between execution time and mean average precision.
In literature, there exist several surveys [36][37][6] on object
detection, however, all of them focus on the mAP metric.
Eventually, we picked three kinds of NNs that are designed to
run in real-time, are well-established in literature and lead to
the best results5.

A. Yolo3

Yolov3 [12] is a one-stage detector which divides images
into grid cells and predicts BBs using dimension clusters
as anchor boxes. It adopts independent logistic classifiers to
output an object score for each BB. The BBs are predicted at
three different scales through extracting features from these
scales. Yolov3 uses a backbone network, named Darknet-
53, for performing feature extraction, which is a residual
network with 53 convolutional layers. Due to the introduction
of Darknet-53 and multi-scale feature maps, Yolov3 achieves
great speed improvement and improves the detection accuracy
of small-sized objects when compared with Yolov2 [38].

The porting of the original network, as it is, was possible
on the Xavier AGX, XCZU9EG and i7-7700 boards.

B. Yolo3-tiny

Yolov3-tiny is a lighter version of Yolov3. It uses the same
concepts (independent logistic and anchors), but the backbone
is composed of only 10 convolutional layers and there are
only two scales (therefore 6 anchors rather than 9). It has
been chosen for this evaluation for its high inference speed.

On the Xavier AGX platform, the porting of the original
model was possible. On the other hand, a small change has
been required for the XCZU9EG implementation. Precisely,
the last max-pool layer has been removed as it was not
supported during the deployment phase of the model on the
Xilinx DPU platform. The issue is caused by a mismatch
between how Darknet and Caffe frameworks handle max-
pooling layers of stride 1, with input size equal to output size.
However, removing this single layer did not affect too much
the performance of the network. The mAP of the network
has been measured with and without the aforementioned layer
and the tests showed a negligible accuracy drop (from a mAP
of 11, 9% to 11, 7%, computed on the Xavier AGX). The
conversion of Yolov3 and Yolov3-tiny to ONNX has been
done automatically by the Pytorch to ONNX exporter, without
adding new operators.

5https://paperswithcode.com/sota/real-time-object-detection-on-coco (Ac-
cessed 2019-10-08)



C. Mobilenetv2-SSDLite

MobileNetv2 [13] is an efficient CNN model with depth-
wise convolution layers, that have fewer weights compared
with normal convolution layers. It is one of the most used
models for embedded systems because it is lightweight and
can achieve high FPS also on mobile devices. SSD [9] is a
one-stage detector which divides images into grid cells, and
for each grid cell, uses a pre-generated set of anchors with
multiple scales and aspect-ratios to discretize the output space
of BBs. SSD predicts objects on multiple feature maps, and
each of them is responsible for detecting a certain scale of
objects, according to its receptive fields.

On the Xavier AGX platform, the porting of the original
model was possible. To obtain the original model on ONNX
Runtime, it is necessary to highlight the switch from the
ReLU6 Pytorch operator to the Clip ONNX operator with
minimum value 0 and max value of 6. Finally, regarding the
XCZU9EG we made a model conversion to Caffe [28] through
open-source code6, since Pytorch framework is currently not
supported by the Xilinx ecosystem. Subsequently, all the final
Reshape layers were replaced, in favor of Flatten type layers,
since the first ones are not supported by the DPU architecture.
In addition, the final Softmax layer has been removed from
the model and implemented in Software and accelerated with
OpenMP, because the memory movements between PL and
PS would have resulted in worse performance.

D. CenterNet

Centernet [14] proposes modeling an object as a single
point. It uses key point estimation to find center points and re-
gresses all other object properties including 3D location, pose
orientation, and size. In this model, an image is fed to a CNN
which generates a heatmap, whose maximum values represent
the centers of the objects in the image. The objects’ size and
pose are regressed from features of the image at the center
location. CenterNet was tested with four different backbones,
i.e. ResNet18, ResNet101, DLA34 and Hourglass, substituting
the convolutional layers with deformable convolutional layers
v2 [39]. Deformable convolutional networks (DCN) [40] are
detectors able to adapt to the geometric variations of objects.
Regular convolutional networks can only focus on features of
fixed square size (according to the kernel), thus the receptive
field does not properly cover each pixel of a target object
to represent it. The DCN produce a deformable kernel and
the offset from the initial convolution kernel (of fixed size) is
learned during training.

Based on the results of the paper, we picked the two
backbones with higher mAP and throughput. ResNet-18 was
excluded because it has lower mAP than Yolov3, and Hour-
glass because of its poor inference speed. Due to the particular
structure of this model, the porting on the NVIDIA platform
required a great implementation effort, while the porting on
the Xilinx platform was not possible. Indeed, at the moment
the DPU microarchitecture does not support deformable con-
volutional layers. Although the DNNDK / Vitis-AI ecosystem
supports the integration of software-implemented layers, the

6https://github.com/xxradon/PytorchToCaffe

resulting network could not achieve satisfactory performance
due to the inefficiency of the A53 cores in carrying out
convolution operations with respect to the DPU cores, and
due to the continuous shift of weights and activations from
PS to PL. Neither was it possible to convert and properly port
Centernet on ONNX Runtime. To the best of our knowledge,
there is no supported DCNv2 operator for Pytorch, ONNX
and ONNX Runtime for CPU. Further work involves the
implementation of DCNv2 as Pytorch custom operator for
CPU, its registration as a custom ONNX operator and as an
ONNX Runtime operator.

E. Training
To properly compare ODCNNs performances, the configu-

rations of all networks must be compliant. It is not fair to com-
pare the latency of the networks for different input sizes, nor
to compare the accuracy of networks trained for different input
image resolution or, even worse, different datasets. Hence,
we decided to choose one of the most widely used datasets
in object detection, i.e. COCO [41]. Input size and training
set were chosen after the newer network (CenterNet), using
COCO 2017 with input size 512x512. This input size allows
better discriminating the differences between the latencies,
while achieving a good accuracy. COCO 2017 is divided into
118K images for training and 5K images for validation, but the
classes are still the same 80 of the original version (2014). We
trained Yolov3, Yolov3-tiny and Mobilenetv2-SSDLite, while
for the Centernet networks we used the weights from the
SOTA, that satisfied already our settings. A single training
per network has been performed (in full-precision), and later
the weights have been exported for the different frameworks.

V. EXPERIMENTS

A. Experimental setup
All the tests have been performed on the COCO2017

validation tests (5K images). Worst-case end-to-end latency,
average power consumption and mAP have been taken over all
the 5K images. For the Xavier AGX platform, three data types
where considered : FP32, FP16, and INT8. Only INT8 was
considered for the XCZU9EG , and only FP32 for the i7-7700.
The INT8 quantizations have been obtained on 1000 images of
the COCO2017 training set. To maximize Xavier AGX perfor-
mance, the mode has been set to MAX N and jetson clocks
has been launched before the tests. The i7-7700 cores have
been divided into two groups: two are dedicated to a Real-
Time environment and two used for these tests. From now on
we will use CNet(D34) for Centernet-DLA34, CNet(R101) for
Centernet-Resnet101, Yolo3 for Yolov3, Yolo3tiny for Yolov3-
tiny and Mv2(SSD) for Mobilenetv2-SSDLite.

B. Metrics
For the sake of comparison, three metrics have been

adopted: (i) worst-case end-to-end latency [ms]; (ii) mean Av-
erage Precision (mAP) 0.5:0.95 [%]; (iii) efficiency [FPS/W].

The mAP 0.5:0.95 is the “de facto” metric for object detec-
tion [42] [43] and depends on two thresholds: (i) confidence
threshold tc, taking into account only BBs with a confidence
score greater than tc; and (ii) the IoU thresholds tIoU to
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Fig. 1: Comparison of mAP (y-axis) versus worst case post-processing latency (x-axis) using confidence threshold tc = 0.05
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Fig. 2: Worst case execution time divided in pre-processing,
inference and post-processing w.r.t. the end-to-end latency. *
stands for INT8, † for FP32.

discriminate two BBs representing the same object if their
classes match and if their IoU is greater than tIoU .

The execution time of a method can be divided into 3
phases, i.e. (i) pre-processing to convert the image in the NN
input, (ii) NN inference, (iii) post-processing to convert the
output of a NN into BBs. The end-to-end latency is then the
time elapsed between feeding an image to the detector and
obtaining the BBs. In each board, the pre-processing and the
post-processing is performed in full-precision (FP32), while
the inference can be quantized (FP16 or INT8). Pre-/post-
processing are performed on the CPU for every board, except
for Xavier AGX, where pre-processing of every network and
post-processing of CNet(D34) and CNet(R101) have been
optimized on GPU, implementing a CUDA version of the
corresponding (slower) OpenCV functions.

Finally, the efficiency is computed as Frame Per Seconds
(FPS) over the power consumption (W). We only considered
a batch of 1. The power has been sampled at 40Hz on the

Xavier AGX and the XCZU9EG using powerapp7, and at 1Hz
on the i7-7700 using Open Hardware Monitor 0.9.2.

C. Impact of threshold on mAP and latency

To compute the mAP of a method, tc is usually set to 0 (or
0.05, if the method does not allow 0, as for Yolo and SSD).
However, most of the ODCNNs are used in applications with
a tc = 0.3. For this reason, we consider both tc = 0.05 and
tc = 0.3. Figure 1 shows the results. In these charts, three
aspects are considered: (i) the mAP of the network (y-axis);
(ii) the worst-case post-processing latency of the network (x-
axis); (iii) the number of detections (radius of the points).
When changing the confidence threshold, more or less BBs
are returned, affecting only the post-processing time. Varying
the threshold affects the mAP and number of detections in
all three platforms: when tc = 0.05, mAP and number of
detections are higher, increasing the post-processing latency
to a different extent on the considered platforms. The Xavier
AGX board has the highest variance in the post-processing
phase, with a slowdown of 65× when using a smaller threshold
for Mv2(SSD). The i7-7700 is way more stable, showing only
a 3× slowdown with the smaller threshold for Mv2(SSD). The
XCZU9EG is the slower platform in terms of post-processing
time. The main reason for these differences is due to the post-
processing operation being a sequential operation executed
on the host side, with platforms having CPU clusters with
very different performances (the Intel processor on the i7-7700
board has faster sequential performance than the ARM-based
ones on the other two boards).

Considering mAP at full precision, it can be noticed that
Xavier AGX obtains higher values than the i7-7700. Given
that the models and the weights are the same, the small
accuracy gap (below 1-2%) is due to the different runtimes and
instruction sets architecture adopted – ONNX Runtime over
x86-64 Intel’s Kaby Lake, and TensorRT over PTX NVIDIA’s
Volta.

Regarding the networks, Yolo methods produce less BBs
than the others, even with small thresholds, while the num-

7https://git.hipert.unimore.it/tetra-pak/dl-arch/powerapp
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Fig. 3: Comparison of the different networks on the three platforms.

ber of detections for Mv2(SSD) explodes when using tc =
0.05. CNet(D34) and CNet(R101) have stabler post-processing
times, thanks to our optimization of this phase on the GPU.

In the following, we assume tc = 0.3 to consider a realistic
application scenario.

D. Platforms comparison

Figure 3a compares worst-case end-to-end latency in ms (x-
axis) with mAP % (y-axis). On the top left corner, the fastest
networks with higher accuracy can be found.

On the Xavier AGX, FP16 maintains the same mAP as
FP32, while being faster. Indeed, FP16 points are predominant
in the Pareto-optimality curve shown in grey-dashed lines.

The mAP of the different networks are similar on the
various platform. Xavier AGX achieves the highest mAP for
all networks except for Mv2(SSD) at INT8, where a higher
mAP is obtained on the XCZU9EG. The Xavier AGX is
also the platform that achieves the best latency performance
for every considered network. No dominance relation can
be extablished between the other two platforms in terms of
latency or mAP.

Figure 2 shows the time spent on pre-processing, inference,
and post-processing. For the XCZU9EG, the most expensive
part is never the inference, which is performed on the DPU, but
the pre- and post-processing, which are executed on a slower
CPU. One of the reasons for the long post-processing can
be found in the normalization functions. Due to missing API
on the DPU (e.g. sigmoid for Yolo3 and Yolo3tiny) or slow
implementations (i.e. softmax for Mv2(SSD)), those opera-
tions are executed on the CPU rather than on the accelerator
(as in the Xavier AGX case). For Xavier AGX and i7-7700,
inference represents the largest share of the end-to-end latency.
Note that, for space reasons, we showed only results related
to worst-case latencies. However, identical results have been
found for average-case latencies.

Figure 3b compares efficiency in FPS/Watt (x-axis) with
mAP in % (y-axis). On the top right corner, the most efficient

networks with higher accuracy can be found. The i7-7700 is
the platform that consumes the most. Being also slow, it is
therefore the least efficient board according to this metric. In
general, XCZU9EG is the board that consumes less. However,
due to the low FPS achieved, it is not the most efficient one.
Therefore, the Xavier AGX is confirmed as the most efficient
board that also achieves the best mAP. Again, the FP16 is
confirmed on the Pareto-optimality curve.

Regarding the power consumption, it is worth saying that
the difference in power consumed by XCZU9EG in inference
and idle mode is very small, as opposed to i7-7700 and Xavier
AGX, where such difference is significant.

E. Networks comparison
Figure 3a shows that CNet(D34) always achieves the highest

mAP. At FP32 it has a similar latency to CNet(R101) and
Yolo3, but it is slower when using FP16 or INT8. Considering
the Pareto optimality curve, it can be seen that Yolo3 is
obsoleted by CNet(R101), which achieves a better accuracy
and a lower latency. Yolo3tiny has always the lowest latency
in each board, for each precision.

From Figure 3b, it can be noticed that Yolo3tiny and
Mv2(SSD) are always the most efficient networks, with the
former dominating the others in terms of efficiency. Yolo3 is
again dominated by CNet(R101), and is the least efficient one
on all platforms.

VI. CONCLUSIONS

This work represented a further step towards a systematic
assessment of the performance of detection networks for high-
performance embedded platforms. The best real-time object
detection networks have been considered to be ported on three
representative cutting-edge embedded boards, exploiting the
corresponding ML frameworks. For the CenterNet models,
only the porting on the Xavier AGX was possible, due to
limitations of DPU and ONNX APIs.

An exhaustive evaluation of networks performance shown
that the Pareto-optimality curve intercepts four of the five



considered DNNs. Yolov3 is the only one that is dominated
by the other ones. CenterNet is the one achieving the highest
accuracy, while Yolov3-tiny is the best network in terms of
latency and power consumption. Mobilenetv2-SSDLite is the
most affected by the confidence threshold.

From a platform point of view, Xavier AGX is the clear
winner in all considered aspects, achieving the best power
efficiency as well as the highest mAP. The XCZU9EG has a
very stable power consumption for all considered networks,
and it dominates the i7-7700 in terms of efficiency and
inference latency. The i7-7700 is the least efficient board, but
it is also the one with better sequential performance, leading
to a smaller post-processing latency variance.

Finally, considering data types, FP16 only negligibly deteri-
orates the accuracy of the considered networks, but obtaining
much better real-time performance, always laying on the
Pareto optimality curve. A significant accuracy deterioration is
instead experienced with INT8. Therefore, FP16 represents our
recommended choice for platforms that support this precision.

The code and the power monitor for the NVIDIA and Xilinx
platforms have been made publicly available to stimulate
the adoption of fair benchmarking assessments for real-time
detection networks.
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