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Abstract. We study the problem of automatically proving parameter-
ized mutual exclusion algorithms mutually exclusive. In our first contri-
bution we show that the problem remains undecidable even for a very
weak model of computation. In this model agents have no identities but
can iterate over all agents. This iteration, however, is executed in an ar-
bitrary sequence which is only guaranteed to contain every agent at least
once. Further, we show that checking if a set of configurations describable
in first-order logic is an invariant is also undecidable.

In our second contribution we present an automatic procedure, based on
first-order theorem proving, that constructs small and readable inductive
invariants of a given algorithm. This procedure leverages invariants that
can be used to prove finite instances of the parametric algorithms correct.
Formulating generalizations of these invariants in first-order logic allows
us to use the mature tooling of automated theorem proving to discharge
required proof obligations. Moreover, we can give externally verifiable
certificates of positive results as a sequence of first-order problems which
collectively prove the desired property of the parameterized system. We
show that this technique is able to automatically produce modular proofs
of mutual exclusion for basic algorithms from the literature.
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1 Introduction

Replicated systems consist of a fully symmetric finite-state program executed
by an unknown number of indistinguishable agents, communicating by rendez-
vous or via shared variables with finite domain. They are a special class of
parameterized systems, that is, infinite families of systems that admit a finite
description in some suitable modeling language. In the case of replicated systems,
the (only) parameter is the number of agents executing the program.

Verifying a replicated system amounts to proving that an infinite family of
systems satisfies a given property. Despite this fact, some verification problems,
in particular many safety problems, have been proved decidable for numerous
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classes of systems using results from the theory of vector addition systems and
the theory of well-quasi-orders [7]. The classes are able to model numerous inter-
esting communication protocols and cache-coherence protocols. However, some-
what frustratingly, none of them can model the most prominent and famous set of
benchmarks for verification of concurrent systems: Mutual exclusion algorithms
for an arbitrary number of processes. Indeed, to the best of our knowledge all
formal models of replicated systems proposed so far are either too weak to model
mutual exclusion algorithms, or are Turing powerful. This result has prompted
the invention by Abdulla et al. of several semi-decision procedures that have
been able to successfully prove correctness of many properties for an arbitrary
number of processes [2,1, 6, 3], both for the simplified versions of the algorithms
and for the more faithful ones without global guards.

In this paper we present two contributions. First, we ask ourselves if there
can be a model of computation able to model mutual exclusion algorithms, and
for which checking the mutual exclusion property is decidable. At first sight, this
question could seem to have been answered by Emerson and Kahlon in [20]. They
present a formal model of computation by indistinguishable processes with global
guards in which a process can do an action if all other processes occupy certain
states, and show that it is Turing powerful. Since mutual exclusion requires that
a process checks the state of every other process, every formalism able to capture
mutual exclusion algorithms is deemed to be Turing powerful, qed. However, this
argument is invalid, because in [20] the process can check the state of all other
processes in a single atomic step, a capability that greatly simplifies the design of
mutual exclusion algorithms, and which none of the classical algorithms assumes.
In the first part of the paper, we present a far weaker model, in which processes
can loop over other processes, one at a time, with a termination guarantee but
with no guarantee that processes are visited in any order. We show that, de-
spite these constraints, deciding the mutual exclusion property is undecidable.
Interestingly, the proof makes extensive use of the fact that the model captures
mutual exclusion algorithms. This result provides strong evidence that for every
model of replicated systems able to capture mutual exclusion algorithms, the
parameterized mutual exclusion problem is undecidable.

Our second contribution addresses the question of producing explainable
proofs of mutual exclusion. Existing semi-decision procedures based on regu-
lar model-checking, or abstraction techniques plus well quasi-orders, are based
on symbolic state-space exploration; they automatically compute an overapprox-
imation of the set of reachable configurations of the system, which can be inter-
preted as one single, monolithic invariant implying the mutual exclusion property
[2,1,6,3]. While these techniques have had remarkable success, the invariant is
monolithic and difficult to understand by humans. For example [5] uses a set
of 222 words of length 2 to represent an abstraction of reachable states for Di-
jkstra’s algorithm for mutual exclusion. We propose an alternative approach.
Previous work has shown that in many mutual exclusion algorithms and other
systems, safety properties are implied by very simple syntactic invariants that,
for each fixed number of processes, can be automatically computed from the
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syntactic description of the algorithm, without state-space exploration [22,21].
The invariants are of the form “this set of states is always occupied by at least
one (exactly one) process”. Recently, we have even shown that for certain classes
of replicated systems the statement “for all instances, the syntactic invariants
imply the mutual exclusion property” can be formalized as formula of monadic
second-order logic on words and automatically checked, yielding automatic pa-
rameterized correctness proofs for several cache-coherence protocols and other
systems. However, this automatic approach cannot be applied to mutual exclu-
sion algorithms, because monadic second-order logic is not powerful enough in
this case. For this reason, we present a semi-decision procedure that computes
such invariants for instances of the algorithm with a small number of processes,
and attempts to generate parameterized invariants valid for any number of pro-
cesses. The parameterized invariants are captured by first-order formulae. A ded-
icated procedure generates invariant candidates, which are then checked using a
first-order theorem prover.

Our technique bears resemblance, and is inspired by, the work on invisible
invariants carried out by Pnueli et al. in the early 00’s [29, 8]. However, we align
our contribution more with recent observations regarding invisible invariants
from [38]. Rather than trying to obtain a sufficient abstraction from a single
instance of the parameterized system we inspect instances of increasing sizes and
try to abstract inductive invariants of finite instances to inductive invariants of
the parameterized system.

2 A very weak model of distributed programs

We introduce a program model to faithfully model classic mutual exclusion al-
gorithms but which is as weak as possible w.r.t. the communication of agents.

Syntazr. A program is a list g;: commy;...;q,: comm, of labelled commands
over a set V of Boolean variables. All labels are distinct, and we call @ =
{q1,-.-,qn} the set of local states. A program is executed by a finite but arbi-
trarily large set of indistinguishable agents, each of them with a local copy of all
the variables. At each moment in time, each agent is in a local state, and one
of the agents executes a command, while the others stay put. Commands are of
the form

v:=b goto q or if foreach v = b then goto ¢ else goto ¢’

where v € V, b € {0,1}, and ¢,¢" € Q. We call them assignments and loop
statements, respectively.

Informal semantics. The semantics of assignments is standard; an agent A exe-
cutes v := b goto ¢ by updating their local copy of v and moving to q. An agent
executes an loop statement by checking whether the variable v of all agents
has value b, and moving to state q or ¢’ depending on the result. However, the
agent does not perform the check in an atomic step. Instead, the agent, say A,
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repeatedly checks whether the variable v of some other agent B has value b until
A has inspected every other agent a least once. If vg = b, then A continues its
iteration (or if A has already inspected every other agent at least once moves
to q); if vp # b then A moves to ¢’. The semantics only guarantees that if A
only sees agents with v = b, then A will eventually pick all agents, and then A
will finally move to g. This behaviour is formalized in the next paragraph.

Formal semantics. The semantics of a program P assigns to each instance
(P,N) of P, in which N € N agents execute P, a set of runs. Intuitively,
[N]={1,..., N} is the set of process identities. A run is an infinite sequence of
configurations. In order to define Runy we introduce configurations and sched-
ules.

A configuration is a triple C' = (pc, val, S), where pc: [N] = Q is the state
mapping that assigns to each process its current local state; val: V' x[N] — {0,1}
is the variable mapping that assigns to each variable v of each process i € [N]
the current value val(v,i) of v in i; and S: [N] — 2Vl is the seen mapping. For
every i € [N], if pc(4) is the label of an loop statement, then S(7) is the set of
agents that process i has picked so far; if pc(4) is the label of an assignment, then
S(¢) = 0. Given i € [N], we define when the instance (P, N) can make an i-step
from C' = (pc,val,S) to C' = (pc/,val',S), denoted C = C’. Let pc(i) = q.
There are two possible cases.

— The command labeled by ¢ is ¢ : v := b goto ¢'.
Then C' = C" if pc’ = pe[i = ¢'], val’ = val[(v,i) + '], and S’ = S[i ~— 0)].
— The command labeled by ¢ is ¢: if foreach v = b then goto ¢ else goto ¢”.
Then C' % C” if val’ = val and additionally
o S(i) = [N]\ {i},pc’ = pcli = ¢'],S" = S[i — 0]; or
e there exists j € [N]\ {i} with val(v,j) # b,pc’ = pcfi = ¢"],S" = S[i —
0]; or
e there exists j € [N]\ {i} with val(v,j) = b,pc’ = pc,S’ = S[i = S(i) U
{F}],
where fle — 7](e) =7 and f[e — r](x) = f(x) for all x # e.

A schedule is a mapping o: N — [N] such that for every i € [N] there are
infinitely many ¢ € N with o(¢t) = 4. Intuitively o(¢t) = ¢ means that process i
is the one that executes a statement at time ¢t. A o-run is an infinite sequence
p = CyC1C5 - -+ of configurations such that

— () is the configuration in which all processes are at their initial locations
and all variables have value 0;

- Cj 24, Cj41 for every j > 0;

— every process makes infinitely many steps; and

— for every process ¢ € [N] there are infinitely many C; such that S;(i) = 0.
(This condition ensures that every loop statement terminates.)

A configuration is reachable if it is contained in some run.
Our language is powerful enough to implement the following mutual exclusion
algorithm, akin to the one in [18].
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Ezample 1 (Mutex algorithm). Consider the following program with one single
variable b, where noop is an instruction that does nothing, with the same sematics
as b:=10:

initial: b:=1 goto loop
loop: if foreach b=0 then goto critical
else goto break
break: b:=0 goto initial
critical: noop goto done
done: b:=0 goto initial

Proposition 1. The program P of Example 1 satisfies the mutual exclusion
property w.r.t. the local state critical, that is, |{i € [N] | pc(i) = critical}| <
1 holds for every reachable configuration of every instance (P, N) of P.

Proof. The following statements are inductive in P, i.e., if any reachable config-
uration C of any instance (N, P) satisfies the statement and C' — C’, then C’
also satisfies it:

— for all ¢ € [N]: val(b,i) = 1 or pc(i) = initial;
— for all i # k € [N] then either val(b,i) = 0 or val(b,k) = 0 or k ¢ S(i) or

These statements allow to deduce the inductivity of the mutual exclusion prop-
erty which gives the desired result.

3 Undecidability results

In this section we prove that even for the presented weak programming model
the problem whether a given algorithm maintains the mutual exclusion property
is undecidable. Moreover, we establish that checking hypothesis for inductive
invariants in the natural logical structure is undecidable.

3.1 Mutual exclusion is undecidable

We prove that whether a program in our very weak programming language
satisfies the mutual exclusion property is undecidable. Interestingly, the proof
makes heavy use of the fact that the language allows one to implement a mutual
exclusion algorithm.

For the proof we show that programs can simulate two counter machines. Ini-
tially, we choose a leader by running a mutual exclusion algorithms and electing
the first agent to enter the critical section. Then, this leader runs the algorithm
of the two counter machine with all other agents collectively storing the counter
values, and using mutual exclusion to ensure correctness of operations.

Proposition 2 (Undecidable mutual exclusion). Given a program P and
a local state q, the question whether P satisfies the mutual exclusion property
w.r.t. q is undecidable.
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Proof. To keep the presentation more concise we allow processes to check their
current state; i.e., we introduce a command

if v1 = b; then v, := by goto ¢; else goto ¢»

with the obvious semantics that a process checks its current vy value and if it co-
incides with b; executes the assignment v, := b; and otherwise moves on to label
q2- Note that this does not increase the expressive power of the programming
model since these checks can be statically resolved by introducing a separate
label for every of the finitely many possible valuation of local variables.

We simulate a two counter machine. For this, we initially elect a leader which
will simulate the behaviour of the machine while all other agents collectively rep-
resent the values of the counters. We will present how to simulate an increment
and a decrement of both counters and, additionally, how to check if any counter
currently holds value 0. The “zero checks” are easily carried out by simple itera-
tions of the leader over all other agents. The increment and decrement operations
are a little bit more involved. Generally speaking, these operations follow a call-
response pattern; i.e., the leader issues a command and all non-leader agents
react to this command. All these simulations crucially depend on the fact that
we can enforce that certain labels are mutually exclusive. This is essential not
only for the initial leader election but also to execute increments or decrements
only once. For this all non-leader agents compete in a mutual exclusion algorithm
to determine the order in which they may attempt to execute the currently issued
command. In the following, we will present the details of this overview.

We start by running the mutual exclusion algorithm presented in Example 1
to elect a leader. That is, we execute

initial: b:=1 goto loop
loop: if foreach b=0 then goto critical
else goto break
break: b:=0 goto initial
critical: if foreach leader=0 then goto grablLeader
else goto becomeFollower
grablLeader: leader:=1 goto ¢
becomeFollower: follower:=1 goto f

This gives us two labels ¢ and f which a process moves to after this initial
step. It is crucial to observe that exactly one process moves to the label ¢ while all
other processes move to f. Both labels start with a b:=e command which releases
the critical section and allows the other processes to proceed. From that point
onwards all follower agents execute the same steps in an infinite loop. Namely,
they

scan if there is an issued command,

compete in a mutual exclusion algorithm to execute the command,
try to execute the command,

signal success or failure,

and wait for the leader to globally synchronize and reset all followers.

SN

To this end, every follower repeatedly checks if the leader issued an command and
tries to execute it. The leader indicates that currently a command is executed
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by setting its commandIssued value. The followers constantly check if any agent set
this value (which only ever is the leader since followers do not set this value
ever). This is easily achieved using a foreach command:

waitForCommand: if foreach commandIssued=@ then goto waitForCommand
else goto executeCommand

Once an agent with the commandIssued bit is observed all followers compete in a
mutual exclusion algorithm to determine in which order they try to execute the
command.

executeCommand: f:=1 goto loop

loopCommand: if foreach f=0 then goto execute
else goto breakCommand

breakCommand: f:=0 goto executeCommand

execute: <executing-command-section>

This is again just a copy of the algorithm used in Example 1. In <executing-command-section>
the process checks which command was issued by inspecting which bit the leader
actually set. Hence, this section looks as follows

execute: if foreach successCommand=@ goto checkIncl
else goto failCommand

checkIncl: if foreach cmdInc1=0 then goto checkInc2
else goto incl
checkInc2: if foreach cmdInc2=0 then goto checkDec1
else goto inc2
checkDec1: if foreach cmdDec1=0 then goto checkDec?2
else goto decl
checkDec2: if foreach cmdDec2=0 then goto checkHalt
else goto dec?
checkHalt: if foreach cmdHalt=0 then goto checkIncl
else goto halt
incl: if valuel1=0 then valuel := 1 goto setSuccessCommand
else goto failCommand
inc2: if value2=0 then value2
else goto failCommand

1 goto setSuccessCommand

dec1: if valuel=1 then valuel := @ goto setSuccessCommand
else goto failCommand
dec2: if value2=1 then value2 := @ goto setSuccessCommand

else goto failCommand
halt: f:=0 goto halt

Moving to the label setSuccessCommand makes the process set its f value again to
0 to release the critical section, set its successCommand value to 1, and also set its
endCommand value to 1. Moving to the label failcommand only sets the f value to
0, and the endCommand value to 1. Eventually, both execution paths move to the
following section:

waitForReset: if foreach reset=0 then goto waitForReset
else goto resetl

resetl: successCommand := @ goto reset2

reset2: endCommand := @ goto waitForCommand

This section simply implements a mechanism for synchronization. That is, all
followers await the signal of the leader to end the execution of the current com-
mand and start a new one.

On the other hand, the leader, initially, waits for every other process to
become a follower by
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waitForFollowers: if foreach follower=1 then goto commandl
else goto waitForFollowers

where command1 is the first command of the considered two counter machine (in
the encoding that follows). This means the leader waits for all other processes
to set their follower bit making sure every process passed the first step.

The leader can now issue one of the following five commands:

increasing counter one by setting its cmdInc1 and commandIssued bits,
— increasing counter two by setting its cmdInc2 and commandIssued bits,

decreasing counter one by setting its cmdDec1 and commandIssued bits,
— decreasing counter two by setting its cmdbec2 and commandIssued bits, and

halting which moves all followers into the dedicated halt label.

Moreover, the leader can carry out checks for the value 0 in either counter by
executing

zeroCheckl1: if foreach valuel1=0 goto successfulZeroCheckl
else goto failedZeroCheck1l

or

zeroCheck2: if foreach value2=0 goto successfulZeroCheck?2
else goto failedZeroCheck2

respectively.

After issuing a command the leader needs to synchronize all followers again.
For this the leader waits until all followers signal the completion of the command,
issues the reset, and waits for the resets to be executed; i.e.,

waitForCompletion: if foreach endCommand=1 goto checkSuccess
else goto waitForCompletion

checkSuccess: if foreach successCommand=0 goto failedExecution
else goto issueReset

issueReset: reset := 1 goto waitForReady

waitForReady: if foreach endCommand=0 goto unissueReset
else goto waitForReady

unissueReset: reset := @ goto nextCommand

Here the label failedExecution indicates that no process was able to execute the
issued command. This can be the case if a counter is decremented beyond 0
or incremented over the size of the current instance. The leader can then just
choose to idle indefinitly.

If the leader eventually reaches a halting state it can indicate so by issuing
the halt command. Then every follower seeing this command being issued moves
into the dedicated halt label. This renders this program mutually exclusive w.r.t.
the label halt if and only if the simulated two counter machine does not halt.
The undecidability of the problem follows from the undecidability of the halting
problem for two counter machines.
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3.2 Inductive invariance is undecidable

Mutual exclusion can be proved by guessing a candidate for an inductive invari-
ant of the program, and then checking that the candidate is indeed inductive,
and that it implies the mutual exclusion property. In this section we show that,
unfortunately, checking inductiveness of sets of configurations expressible in a
natural logical language is undecidable.

For the rest of the section we fix a program P with sets C and B of control
states and variables.

Inductive invariants. For every N € N let Cn and Cyon denote the sets of config-
urations and initial configurations of the instance (P, N) of P. The sets of config-
urations and initial configurations of P are C = (JycnCn and Co = ey Con-
An inductive invariant of P is a set I C C such that C € C and C — C’ im-
plies C' € C. An inductive invariant I implies the mutual exclusion property if
Co C Mutex, where Mutex is the set of all configurations of P with at most one
process in the critical section.

Ezxpressing sets of configurations Inductive invariants that imply the mutual
exclusion property are infinite sets of configurations. In order to check the in-
ductiveness of a candidate we first need a formal language for describing the
candidate itself. The natural candidate is first-order logic over a signature cor-
responding to the structure of configurations. Given two sets C and B of local
states and variables, let FOL(C, B, S) be the set of first-order formulas over the
signature containing a unary predicate symbol for each element of CUB, and
a single binary predicate symbol S. A configuration C' = (pc, val,S) induces a
structure C over this signature. The universe of C is [N]. Further, ¢© contains the
processes that are at state ¢ in C; b¢ contains the processes for which variable
b is true in C; and SC contains the pairs (1,7) of processes such that j € S(7).
From now on we identify the configuration C' and the structure C. Further, given
a sentence ¢ of FOL(C, B, S), we let [[¢]] denote the set of configurations that
satisfy ¢.

Observe that the converse does not hold, not every model of a sentence ¢ of
FOL(C, B, S) induces a configuration. Only the models in which every process
occupies exactly one local state do.

Undecidability of inductiveness. We first prove that the problem whether a for-
mula of FOL(C, B, S) is satisfied by some configuration is undecidable.

Proposition 3. The following problem is undecidable: Given a sentence ¢ of
FOL(C,B,S), does [[¢]] = 0 hold? Moreover, the problem remains undecidable if
@ belongs to FOL(B,S), i.e., does not mention any local state.

Proof. Let ¢ be a formula of FOL(B,S), and let P be any program with one
single control state and B as set of variables. There is a bijection between the
models of ¢ and the configurations of P. So [[¢]] = 0 holds iff ¢ is satisfiable.
By definition, FOL(B, S) is the logic of one binary relation and arbitrarily many
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unary predicates. By [24, Theorem 4] this is a conservative reduction class, and
so the satisfiability problem is undecidable.

Using this proposition we can show:

Corollary 1. The following problem is undecidable: Given a program P and a
sentence ¢ of FOL(C,B,S), is [[¢]] an inductive invariant?

Proof. By reduction from the problem whether [[¢]] = () holds for a given formula
¢ of FOL(B,S). Given such a formula, let P be the result of appending to any
program over B the following two commands:

loop: if foreach b=0 then goto loop else goto halt
halt: noop

where b ¢ B. Let ¢ = ¢ AVz (b(z) A loop(z)). We claim that [[¢]] is an
inductive invariant of P iff ¢ is unsatisfiable. If ¢ is unsatisfiable, then so is ¢'.
So [[¢']] = 0, which is trivially inductive. If ¢ is satisfiable, then, since it is a
formula of FOL(B,S) and b ¢ B, [[¢']] contains at least one configuration C' of
P where all processes are in state loop and satisfy b=0. By the definition of P,
we have C' — C’ for a configuration C’ where at least one process satisfies is in
halt. So C’ ¢ [[¢']], and so [[¢']] is not inductive.

4 Automatically proving mutual exclusion using
parameterized invariants

Previous work co-authored by one of us has developed an invariant-based ap-
proach to the verification of safety properties of finite-state distributed systems
with a fixed number of processes [22, 21]. (A similar approach is also used in [10].)
The invariants are extracted from the syntactic representation of the system,
without the need for state space exploration. The approach iteratively computes
a configuration C, reachable or not, that satisfies the invariants computed so far
but still violates the property. If no such C' exists, the property is proved. Oth-
erwise, an SMT-solver efficiently computes a new invariant that is not satisfied
by C, thus proving C' unreachable from the initial configuration.

This technique has been extended to certain restricted classes of parame-
terized systems in [14, 13]. In those systems, the problem whether the set of all
invariants for all instances satisfies the mutual exclusion property can be reduced
to the satisfiability problem for monadic second order logic on words. However,
even though our programming language is very weak, programs written in it do
not fit within these classes. This is because non-atomically checked global con-
ditions require individual bookkeeping of the agents about which participants
they already have inspected. This is modelled in [29, 8] as “unstratified” type
structures, in [6] by a graph based representation and in [5] by a binary relation
which is incorporated into views of the configurations. Drawing inspiration from
[38] we present in the following an approach which is mostly aligned with invisi-
ble invariants. In contrast to the specifically tailored abstractions of graphs and
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views from [6] and [5] respectively, we formulate the behaviour of our system as
a first-order theory and our inductive invariants as formulae within this theory.
Hence, we obtain a certificate for our proofs; namely, a sequence of first-order
formulae which formulate every necessary proof obligation. These formulae are
concise; even to the point that a user can read and comprehend the concepts
expressed by the formulae. Moreover, every proof can be externally and indepen-
dently verified by the constantly improving tools of automated theorem proving.

Since we have to give up decidability of inductiveness for invariants, we can
consider the standard language used to describe mutual exclusion algorithms,
more powerful than our very weak one. In the standard language agents have
identities, which we assume to be the numbers 1,..., N, and agents use loop
variables to loop over all agents in the order given by their identities.

Let P be such a program, and let (P, N) denote the program instance with
N agents. We proceed as follows.

(1) Starting with the smallest meaningful value for N (usually 2), we compute a
set I of inductive invariants proving the property for the finite-state instance
(P, N) using the approach of [21].

(2) We use an abduction technique to generalize I to a set of candidates for
parameterized inductive invariants. A candidate is a formula of first-order
logic that can be interpreted over configurations of any instance of P.

(3) We use a first-order theorem prover to confirm that a given candidate ¢ is
inductive. For this we construct a first-order formula stating that if a config-
uration C' of some instance satisfies ¢ and C” is its successor configuration,
then C' also satisfies (.

(4) We check, again with the help of a first-order theorem prover, if the param-
eterized invariants computed so far imply the property. If so, we are done.
If not, we increase N and go to step (1).

p=self or b(p)=0 ?

b:=0 p>N7?

Fig. 1. Natural formalisation of Example 1 in the standard computation model with
agent identities and ordered iteration.

In the rest of the section we describe the steps (1)-(4) in a semiformal but
hopefully precise way. We use as running example the mutual exclusion algorithm
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for N agents from Example 1, but with the standard loop semantics in which
an agent loops through all agents in order 1,..., N; that is, we assume a linear
topology for the parameterized system. For the presentation it is convenient to
represent the program as an automaton with transitions operating on variables.
The automaton is shown in Figure 1. Variable p is a loop iterator ranging over
{0,1,...,N,N + 1}, and self € {1,...,N} is the identity of the agent. This
means there are three variables for every agent: b, p, and pc. The corresponding
specification for our tool can be seen in Figure 2.

local b [false, truel
local pc [initial, toloop, loop, break, crit, donel
local p [@ - succ(N)]

Fig. 2. Specification of variables for Example 1 from Figure 1; here succ describes the
function (-) + 1.

For example, agent p; can execute the transition going from state loop to
state loop if either the current value of p is 0 or py, or p(p1) points to an agent
and the variable b of the agent p(p;) has value false; in any case taking the
transition increases the value of p by 1. We let D denote the complete program
of Figure 1.1

4.1 Computing disjunctive invariants of specific instances

Once we fix a value for N we obtain for the variable p the possible values P =
{0,..., N, N + 1}. Regardless of the value of N the variables pc and b have
finite sets of values; namely, @ = {initial, toloop, loop, break, crit, done}, and B =
{true, false} respectively. Consequently, we can capture the state of an instance
using propositional variables

Sy ={pc=ali€{l,.... N}, a €@}
U{b@G=v|je{l,...,N},ve B}
U{pG=k|je{l,....,N},ke P}

YRR

with the obvious intended meanings: “agent j is in state ¢”, “variable b of agent
j is true (false)”, and “loop variable p of agent j has value k”.

An inductive invariant of the instance (D, N) is a propositional formula ¢
over Sy such that for every two configurations C,C’ of (D, N), if C' = ¢ and
C — ', then C' £ ¢. Let us see how to use the technique of [21], to compute the
following two inductive invariants for the instance (D, 3) directly from Figure 1,
without exploring the reachable configurations of (D, 3):

(I1) : b(1)=true V pc(1)=initial

! The specification of D can be found as the example dijkstra-cutdown.her in the
publication of our tool heron [37].
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pc(3)=toloop V b(3)=false V p(3)=1
(Ig) . | Vpc(1)=toloop V b(1)=false V p(1)=1
Vp(1)=2V p(1)=3

Intuitively, the technique searches for subsets R C S5 such that every transi-
tion of (D, 3) that sets some variable of R to false also sets at least one variable
of R to true. Such subsets are called traps in [21], and can be easily computed
using a SAT-solver. If R is a trap, then the disjunction of the variables of R
is an inductive invariant. For example, R = {b(1)=true,pc(1)=initial} is a trap,
because a transition sets b(1) to false iff it also sets pc(1)=initial to true. This
trap leads to invariant (I;). On the other hand, (I3) is the manifestation of the
second statement in the proof of Proposition 1 (adapted to the linear topology).
Its inductiveness is mainly rooted in the fact that process 1 can move its p-
pointer past the value 3 only if process 3 has not set its b-flag. The same applies
for process 3 w.r.t. process 1. Both processes set their b-flag whilst moving into
the toloop state where both process set the p-pointer to 1. This establishes the
inductiveness of (I3).

4.2 Generating candidates

We present a heuristic abduction technique to guess candidates for parameter-
ized inductive invariants (PINs) of D from inductive invariants of the instances
(D,N) for N =1,2,3,.... (While illustrated for D, the general technique can
be applied to any program. In fact, all following examples are adapted manifes-
tations from actual executions of our implementation.)

Let us briefly discuss which logical language we use to formulate PIN-candidates.
Mainly, we aim for a logical theory as concise as possible while maintaining
enough expressiveness for the required program semantics. This semantics re-
solves around the linear topology of our parameterized systems and the con-
secutive iteration over this topology. Therefore, we choose the first-order the-
ory of a totally ordered set with a minimal element: we fix the signature o =
(0, N, succ, <,b,p,pc) and introduce a set of axioms 7 which states that < is a
total linear order with minimal element 0, succ is the unique successor (w.r.t. <)
for every element, N is an element strictly larger than 0, and b, p, pc are function
symbols. In the following, we will use constant symbols 1,2,... to refer to the
terms succ(0), succ(succ(0)), . ... For p we add Vz . 0 < p(x) Ap(x) < succ(N) to
T while for the enumeration types of b and pc we simply treat

— false as 0 and true as 1, and
— initial as 0, toloop as 1, loop as 2, and so on.

This can easily be encoded as axioms in 7T .

We introduce the notion p(z) € [t1,t2] as an abbreviation for ¢; < p(x) A
p(c) < to. Formulae over this signature are interpreted on configurations in
the expected way, where C' |= ¢ denotes that configuration C' satisfies . For
example, if

po=Vr.(1<xAz<N)—=p) €|z, N]
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and C = (pc,val,p) is a configuration of (D,3), then C | ¢ iff p(1) € [1, 3],
p(2) € [2,3], and p(3) € [3,3]. A closed formula ¢ is a PIN of a program if for
every two configurations C,C’ of any instance, if C | ¢ and C — C’, then
C' E .
We present a heuristic abduction technique to guess PIN-candidates of the
form
Vay ... Ve, . diff (x1,...,2,) = guess(zy,...,2Ty)

where diff expresses that all of x1,...,x, are different, and guess(z1,...,z,) is
a quantifier-free formula, which (hopefully) captures inductive invariants of con-
crete instances. W.l.o.g. we can assume that the invariants for concrete instances
obtained from traps (like the invariants I; and I5 of (D, 3)) are in the following
normal form:

— Each disjunct is of the form
pc(i)=q, p(i) € [t1, ta], Or b(i)=v

fori € [1,N], t1,to € P, g€ @, and v € B.

— If p(i)€ [t1,t2] and p(i)€E [t3, t4] are both disjuncts, then the intervals [t1, ¢s]
and [ts,ts4] do not overlap and are not adjacent; i.e., their union is not a
larger interval.

Note that this gives for Is the equivalent formula

pc(3)=toloop V b(3)=false V p(3) € [1, 1]
Vpc(1)=toloop V b(1)=false V p(1) € [1, 3].

Initially, we check all occuring variables and collect the process indices these
belong to. For the invariant I this gives the process indices {1, 3} since p(1), (1)
and, respectively, p(3), b(3) are part of I5. Similarly to [29, 8] we then substitute
the actual occurences of 1 and 3 with variables 27 and zo. This substitution as
well as the value of N is logged in an interpretation {z; — 1,29 — 3, N — 3}
which we call a context. Actually, we include in the current context also constants
for all terms restricting a domain; e.g. context additionally contains the inter-
pretation of a constant symbol ¢y — 4 which corresponds to the term succ(N) in
the domain restriction of p. Now, we formulate for guess(xy, z2) formulae which
— when instantiated with this context — yield again I5:

— We replace the array arguments 1 and 3 by variables x1 and x5 respectively,
which gives us

]é =pc(x2)=toloop V b(xo)=false V p(x3) € [1, 1}

Vpe(x1)=toloop V b(x1)=false V p(z1) € [1, 3].

— Then, we generate candidates for the intervals [1, 3] and [1, 1]. Since context(N) =
3 we generate, among others, the candidates [x1, 2], and |21, N] for [1, 3].
Conceptually, we try for any [c1, c2] elements in

{[tl,tg]: (t1,t2) € context ™ (¢1) U {e1} x context ™! (¢c) U {cz}} ,
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and also we try open intervals which lead to the instance [c1, c2]; e.g., 1 and
to from the current context such that [c1, ¢o] conincides with (¢4, o], [t1, t2),
or (tl, tQ).

The following PIN-candidates are, among others, examples which are generated
for I, in context {z1 — 1,29+ 3, N — 3}:

pe(x1) = toloop V b(x1) = false
Vo Vay . k1 # x9 — \/pC(CCQ) = toloop V b(z2) = false (1)
Vp(z1) € [1, 2] V p(x2) € [71, 71]

pe(x1) = toloop V b(x1) = false
Vo Vay . k1 # x9 — V pe(xa) = toloop V b(xza) = false (2)
Vp(21) € [1,22] V p(z2) € [1,24]

We can exclude some of these candidates by checking if they yield induc-
tive invariants for all possible values of z; and z5. For example, the context
{z1+— 2,29 — 3, N — 3} gives for candidate (1)

pc(2)=toloop V p(2) € [2, 3] V b(2)=false
Vpc(3)=toloop V p(3) € [2, 2] V b(3)=false.

(3)

This, however, is not an inductive invariant of (D, 3) because a valid execution
can put the second and third process both into the state loop and their respective
p variables to value 1. Since this configuration is not captured by (3) it cannot
be an inductive invariant.

Also, we refine our procedure for the formula diff (z1, ..., z,) by trying PINs
which order 1 to x, linearly. Additionally, if this is consistent with the observed
trap diff (z1, ..., z,) can also be used to enforce that z; = 1 or &, = N (or both).

We now proceed to the question how to use a first-order theorem prover to
check that a candidate is a PIN.

4.3 Proving that a candidate is a PIN

We embed the execution steps of our programs in first-order logic. For this we
introduce a second primed copy of every function symbols. That is, we consider
the signature

7 = (0, N,succ, <,b,p,pe, b, p’, pc’) .

Transitions can now easily be axiomatized as 7-formulae which relate a state
with its successor state. That is, values of the primed function symbols are
related to the values of the unprimed function symbols to express the changes.
For example, any transition of state loop which advances p then contains the
axiom p’(p1) = suce(p(p1)). Now, a PIN-candidate ¢ is a PIN if

{T,¢,Step} ¢’ (4)

where ¢’ is obtained from ¢ by replacing every occuring function symbol of a
variable by its primed copy and Step is a disjunction of all possible transition
formulae.
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4.4 Proving mutual exclusion

Attempting to prove mutual exclusion is essentially very similar to Formula (4).
Basically, we want to prove the inductiveness of the formula

Y =Var1Vary . pe(zy) = cApe(z) =c— xp = 29

where c is the state which is considered “critical”’. However, for this inductiveness
check we add the set of all identified inductive invariants to our “knowledge base”.
That is, if I is the set of all identified PINs we dispatch

{T,¢,Stepy UTU{p": p e I} E o (5)

to a theorem prover.

5 Results

We built a prototype, called heron, to test our approach on well-known examples
from the literature. This prototype and all examples are available at [37]. We
consider the mutual exclusion algorithms of

— Dijkstra [18],

— Example 1,

— de Bruijn [16],

— Eisenberg and McGuire [19],

— Knuth [25],

— Szymanski [34], and

— Burns [27].

— Taubenfeld, which is a variant of the bakery algorithm with bounded values
for every variable [35],

We extend the logical representation with constant symbols to model global vari-
ables. We find sufficiently strong PINs to prove mutual exclusion for all examples
for which the method of [21] proves the instantiations. This is possible for all
examples but Taubenfeld’s variant of the bakery algorithm, and the algorithms
of Szymanski and Burns. For these examples the method of [21] cannot prove
the mutual exclusion property even for only two agents. We present the results
of our tool in the table of Figure 3. All experiments were carried out on a 8th
generation i7 processor on a single core which — during running the experiments
— operated with a clock speed between 3.7 and 3.8 GHz.

5.1 Evaluation

In comparison to [5] we fail to prove the algorithms of Burns as well as Szyman-
ski. There are no data for the algorithms of Knuth, Eisenberg-McGuire and de
Bruijn in [5]. For a direct comparison we use the non-atomic version of Dijkstra’s



Invisible invariants in the spotlight 17

Example Result Time (ins) | max. N | # traps |# used invariants
Dijkstra Success 82 (041, 124) (3.4 (3, 4)[12.6 (11, 14) 4.1 (4, 5)
Knuth Success 111 (070, 243)4.2 (4, 6)[21.5 (17, 31)| 6.0 (5, 7)
Eisenberg-McGuire Success 081 (080, 083)[4.0 (4, 4)[12.3 (11, 14) 5.2 (4, 6)

de Bruijn Success 270 (211, 562)(4.0 (4, 4)|18.1 (16, 24) 6.0 (5, 8)
Example 1 Success 048 (033, 065)|3.5 (3, 4)|09.6 (08, 11) 3.0 (3, 3)
Bakery Failed (finite instance) - 2 - -
Szymanski Failed (finite instance) - 2 -

Burns Failed (finite instance) - 2 - -

Fig. 3. The results of heron. Values are the mean of ten computations. The minimum
and maximum value are given in brackets. The second column states the result, and
the following columns report the required time (as given by the time command), the
maximum value of N for which the system was instantiated and the number of found
traps across all instantiations, and the number of invariants required to establish the
mutual exclusion property. We used Vampire to compute proofs for all inductiveness
checks. The values for “used invariants” are determined by the number of distinct
occurring in these proofs.

algorithm. Here [5] reports success with 222 views. Since “the set of views col-
lectively represent a set of reachable configurations” [5] we argue that the four
or five invariants formulated in first-order logic, which are necessary to estab-
lish the inductiveness of mutual exclusion, are easier to understand by a user
than a set of 222 views. This is where we see the crucial distinction between
view abstraction and heron. Essentially, the set V' of 222 views of size 2 describes
one formula of the form Vo Vay . 21 < 22 — /e View (21, v2) where view
is a formula describing the current state of the processes at position z; and
xo (and potentially their relative state to each other regarding iteration vari-
ables). On the other hand, heron computes multiple individual invariants of the
form Vzi...Vx, . ¢ where ¢ is a disjunction of simple atoms. The abstraction
heron computes is then the conjunction of all these individual invariants. Since
the invariants are of a simple structure they can be individually examined and
understood. Noteworthingly, we observe that for all examples heron computes in-
variants Vz; ... Vz,, . ¢ where n < 2. The comparison with [6] follows the same
pattern. Here Dijkstra’s algorithm is proven mutually exclusive by computing 41
constraints in form of upward-closed sets of graphs. We re-iterate that we believe
our first-order formulae are a more readable abstraction. To illustrate this point
we show a set of invariants for our running example in Figure 4 which suffices to
prove the mutual exclusion property. However, it is important to observe that we
pay a hefty price w.r.t. computation time for the readability of our invariants;
namely, at least two orders of magnitude in comparison with [5, 6].

In contrast to previous work around invisible invariants [8, 29] heron iteratively
inspect larger and larger instances of the parameterized system to gradually re-
fine its abstraction. Again, heron needs a small set of invariants with at most two
quantified processes to establish the mutual exclusion property for the examples
above while in [8] the examined instances have at least four processes and, con-
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Vi1 . b(z1) = true V pe(x1) = initial (6)
pc(z1) = break V pc(z1) = loop
Vpc(x1) = toloop V pe(z1) = initial V p(x1) = succ(N)

VriVzo . <x1 10— [ b(z1) = false V pc(z1) = toloop V p(z1) € [1,x2]:|> ®

Vb(x2) = false V pc(xz) = toloop V p(x2) € [1, 1]

Fig. 4. The invariants occurring in the proof for the inductiveness of the mutual ex-
clusion property of Example 1 by Vampire.

sequently, the synthesized inductive invariants are monolithic formulae with (at
least) four universally quantified variables.

In [36] also universally quantified invariants are considered. However, the
considered programming model and its logical embedding is based on reasoning
about cardinalities of sets. Hence, the considered mutual exclusion algorithms
are based on ticketing which is out of scope for our contribution but also does
not allow for modelling of the iteration structure as honestly as we do.

5.2 Implementation details

In the following we discuss shortly some decisions we made regarding the actual
implementation of the steps which we lay out in Section 4. In general, heron is
implemented in the Python programming language. It implements the proving
procedure for instances from [21] using z3 [17] for finding integer solutions for
linear equations and clingo [23] for SAT-solving.

In order to employ automated theorem proving for the Formula (4) and
Formula (5) we render both in the commonly used TpTP format [33]. Since TPTP is
a generally used format to represent first-order formulae it is supported by most
automated theorem provers (cp. [9,26,32]). Moreover, since the formula Step is
a disjunctive formula (where every disjunct models one transition), we actually
perform these checks by individual calls to a theorem prover for every transition
separately. This also helps to keep the problems which are dispatched to the used
theorem provers concise. Separating these checks for Formula (5) allows us to
leverage the increasing precision we get with more and more invariants; namely,
as soon as we can establish the inductiveness of mutual exclusion with a set
of PINs we do not need to check this transition again. Secondly, heron provides
for all inductiveness checks a set of TPTP files: one to witness that the desired
property is initially true and one to witness the inductiveness for every possible
transition. We refer to the collection of these files as certificate of the proof.
That is, heron does not only prove the mutual exclusion property but provides a
readable and verifiable chain of reasoning — a certificate — for it.

heron relies mainly on cvcs [9] as theorem prover. To approach the inherent
undecidability of the checks for Formula (4) and Formula (5) we set timeouts
for these checks. If these timeouts are exceeded we consider the check as failed.
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Empirical knowledge led to timeouts of 1s for Formula (4) and 30s timeouts for
Formula (5) (both per transition). Although cvcs proves very powerful in most
cases, it sometimes fails to perform crucial checks. Therefore, we choose to check
Formula (5) also by vampire [26]. Thanks to the wide adoption of the TpTP format,
only minimal code changes are needed to try another prover.

We do not take any measures to request deterministic behaviour from the
tools we use. This means that different runs can find different traps and, conse-
quently, different PINs. Regardless, all the successes in the above table are robust
(as illustrated by running ten successive computations of the same examples to
obtain the data for Figure 3).

6 Conclusion

In this contribution we proved the undecidability of safety properties for a very
restricted programming model. This suggests that programming models which
can model classical mutual exclusion algorithms honestly, necessarily are Turing
complete.

Regardless, we developed a semi-decision procedure which is aimed at honest
models of mutual exclusion algorithm. Implemented as the tool heron, this pro-
cedure produces readable and verifiable proofs for mutual exclusion algorithms
by generalizing inductive invariants of finite instances to inductive invariants of
the parameterized system.

Moreover, these invariants are concise. Consequently, formulating them in
first-order logic or, more specifically, in the widely adopted 1pTP format, allows
us to provide readable invariants for the parameterized system. Additionally,
we can leverage the mature tools of automated theorem proving to discharge
necessary proof obligations and provide externally verifiable explanations of our
proofs.

In contrast to comparable approaches which use specifically tailored abstrac-
tions we are outgunned regarding computation time. However, we provide a more
readable explanation of proofs. This gives transparency and high reliability of
the established results since they can be externally verified.

7 Future Work

Since our work was initially inspired by the success of the proving procedure
in [21] for mutual exclusion algorithms, and by the promising results regarding
generalized notions of “traps” in parameterized systems [13] we focused our work
on mutual exclusion algorithms. An expansion to general safety properties is a
natural next step. Additionally, the logical embedding allows for more elaborate
semantics; e.g., non-deterministic assignments and unbounded domains. For the
latter though fixing N does not yield a finite state space for an instance. Thus,
the method to prove finite instances has to be altered. Moreover, all negative
examples in our benchmark always fail while proving finite instances of the
parameterized system. Hence, different instantiations of the used framework of
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proving finite instances, generalizing obtained explanations and proving them
via first-order theorem proving can be explored.

Also we believe that exploring the limitations of logical invariants is an in-
teresting area for further research. For example it is observed in [4] and [28] that
proving the correctness of a non-atomic version of Szymanski’s algorithm by ab-
straction requires to account for the existence of a “blocking” agent in certain
configurations. We strongly believe that this renders correctness proofs of honest
representations of Szymanski impossible for universally quantified inductive in-
variants. This raises the question if there are conceptual properties of algorithms
which relate them to the syntactic logical class required (or sufficient) to prove
them correct.

Data Availability Statement and Acknowledgements. This work has re-
ceived funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 787367
(PaVeS).

The tool heron with examples is available at https://doi.org/10.5281 /zenodo.4088630.
The most recent version is maintained under https://gitlab.lrz.de/i7 /heron.
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