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ABSTRACT
Automatic gesture generation is a field of growing interest, and a
key technology for enabling embodied conversational agents. Re-
search into gesture generation is rapidly gravitating towards data-
driven methods. Unfortunately, individual research efforts in the
field are difficult to compare: there are no established benchmarks,
and each study tends to use its own dataset, motion visualisation,
and evaluation methodology. To address this situation, we launched
the GENEA gesture-generation challenge, wherein participating
teams built automatic gesture-generation systems on a common
dataset, and the resulting systems were evaluated in parallel in a
large, crowdsourced user study. Since differences in evaluation out-
comes between systems now are solely attributable to differences
between the motion-generation methods, this enables benchmark-
ing recent approaches against one another and investigating the
state of the art in the field. This paper provides a first report on the
purpose, design, and results of our challenge, with each individual
team’s entry described in a separate paper also presented at the
GENEA Workshop. Additional information about the workshop
can be found at genea-workshop.github.io/2020/.
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1 INTRODUCTION
In human communication, nonverbal behaviour plays a key role in
conveying a message. A large part of nonverbal behaviour consists
of so called co-speech gestures, spontaneous hand gestures that
have a close relation with the content of speech, and have shown to
improve understanding [8]. Embodied conversational agents (ECAs)
fare well with gesticulation, as gesticulation improves interaction
with for example social robots [21]. For ECAs to have gesticulation,
knowledge of how and when to gesture is needed.

Producing gestures used to be based on rule-based systems, but
more recently, data-driven approaches are emerging. Recent work
[1, 12, 16, 27] shows the improvement in gesticulation production
for ECAs. However, the results of these studies are not one-by-one
comparable since a variety of objective and subjective evaluation
metrics are used. In this paper, we present the GENEA Challenge
2020. The aim of the challenge is not to select the best team, but
∗Equal contribution and joint first authors.

to be able to compare different approaches and outcomes, which
could lead to new standardized evaluation and generation methods.
Unique for this field is the cross-comparison of different systems
by different researchers on one and the same dataset.

The contributions of the Gesture Generation Challenge are:
(1) Evaluating several state-of-the-art gesture generation mod-

els on a common dataset with a common rendering pipeline.
(2) Two large-scale user studies evaluating human-likeness and

appropriateness of submitted motions.
(3) Bringing together researchers in order to advance the state

of the art in gesture generation.
(4) Making code and other challenge material publicly available

in the spirit of reproducible research.1

2 RELATEDWORK
Most of the previous work proposing new gesture generation meth-
ods, presented evaluation results to show the merits of their meth-
ods. There is nowidely accepted objectivemeasure due to the highly
subjective aspect of human gestures, so most of them conducted
human assessment. However, previous subjective evaluations had
several drawbacks, the main ones being: the number of systems
being compared and the study scale. Proposed models were com-
pared only with a few previous or ablated models [16, 20]. Yoon et
al. [26, 27] failed to show statistical significance for the majority of
pairs of compared systems, due to the low number of evaluation
participants.

Wolfert et al. [25] conducted a benchmarking user study for
beat gestures. They compared the data-driven gesture generation
method [15] and manually crafted beat gestures. However, only
one generation model using speech audio context was used and the
video stimuli were realized as stick figures which made it difficult
to assess gestures.

Although there is no directly related work on challenges that
benchmark co-speech gestures in ECAs, other fields have shown
to do well with challenges to standardize evaluation techniques
and benchmarks. For example, the Blizzard Challenge [14] has
since its inception in 2005 lead to improvements in research on
text-to-speech generation. Participants in the Blizzard Challenges
are provided a dataset of speech audio and associated text tran-
scriptions, and use these to build a synthetic voice (text-to-speech

1See zenodo.org/communities/genea2020/.
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system). This challenge is defined by the use of common data and
its open participation. This has lead to the development of new and
novel methods, driven by past results, and since participants had
access to the same data, great steps have been made.

Challenges are active also in the computer vision community.
In the CLIC [23] and AIM [18] challenges, participating systems
for image compression and super-resolution were compared, by
incorporating subjective human assessment similar to the challenge
described in this paper.

3 TASK
Wepose the problem of speech-driven gesture generation as follows:
given a sequence of speech features 𝒔 (which could involve either
audio or text or the combination of the two) the task is to generate
a corresponding pose sequence �̂� of gestures that an agent might
perform while uttering this speech.

The task we focus on with the GENEA Challenge was to compare
recent data-driven gesture generation in a fair way. To do so we
made sure that every system participating in the evaluation was
trained on the same gesture-speech dataset and was visualized on
the same virtual avatar.

3.1 Dataset
We used the Trinity Speech-Gesture Dataset [4], comprising 244
minutes of audio and motion capture recordings of one male actor
speaking freely on a variety of topics. We removed lower-body data,
retaining 15 upper-body joints out of the original 69. Finger motion
was also removed due to poor capture quality.

To obtain verbal information from the speech, we first tran-
scribed the audio recordings using Google Cloud automatic speech
recognition (ASR) [6], followed by a thorough manual review to
correct recognition errors and add punctuation for both the train-
ing and test parts of the dataset. All names of non-fictive persons
were removed and replaced by unique tokens. The data used in the
challenge has been made publicly available in the original dataset
repository2.

For a better understanding of the vocabulary used in the database
a table of word frequencies is provided at tinyurl.com/y22h6rtt.

3.2 Challenge Rules
3.2.1 Limits of participation. Each participating team could only
submit one system per team for evaluation.

3.2.2 Challenge timeline. We followed the following timeline:
(1) 1st July 2020 – Challenge dataset released to participants
(2) 7th Aug 2020 – Test inputs released to participants
(3) 15th Aug 2020 – Participants submit generated gestures

After generated gestures were submitted we conducted the evalu-
ations.

3.2.3 Synthesising test motion. Synthetic gesture motion was sub-
mitted at 20 frames per second (fps) in a format otherwise identical
to that used by the challenge gesture database (BVH format, same
skeleton, etc.). To prevent optimising for the specific evaluation used
in the challenge and to encourage motion generation approaches

2trinityspeechgesture.scss.tcd.ie

with long-term stability, participants were asked to synthesise mo-
tions for 20 min of test speech in long contiguous segments, from
which a subset of clips were extracted for the user studies, similar to
many Blizzard Challenges. Manually tweaking of the output motion
was not allowed, since the idea was to evaluate how systems would
perform in an unattended setting. All the submitted motion in BVH
format is publicly available at zenodo.org/record/4088324.

4 SYSTEMS AND TEAMS
We recruited challenge participants from a public call for participa-
tion. Sixteen teams were signed up for the challenge. Five teams
completed the challenge and the remaining 11 teams dropped out.
Two of the withdrawing teams explained it was due to their lack
of capacity to complete the challenge and to their unsatisfactory
results; there were no reported withdrawals due to the challenge
data or task.

The challenge evaluation contained 9 different conditions: 2
toplines (which are the best possible motion in terms of natur-
alness or appropriateness), 2 previously published baselines, and 5
challenge entries/submissions. Table 1 lists all conditions, together
with participating team names and (abbreviated) affiliations. We
anonymized the teams in the present paper by not revealing team
ID assignments.

The two toplines were:
N Natural motion capture from the actor for the input speech

segment in question. Surpassing this system would essen-
tially entail superhuman performance.

M Mismatched natural motion capture from the actor, corres-
ponding to another speech segment than that played to-
gether with the video. This was accomplished by permuting
the motion segments from condition N in such a way that no
segments remained in its original position. This represents
the performance attainable by a system that produces very
high-quality motion (same as N, so a topline), but whose
behaviour is completely unrelated to the speech (making it
a kind of bottom line).

Since there has been no previous general study that compares
systems to each other and what the state of the art is, it is hard to
choose a “best” baseline system. Therefore the choice was more
subjective and based on code availability. The two baseline systems
we compared against were chosen from recent data-driven gesture
generation papers which had their code available and were easy to
reproduce. The baselines used were the following:
BA The system from [15], which only takes speech audio into

account when generating system output. This model uses
a chain of two neural networks: one maps from speech to
pose representation and another decodes representation to
pose.

BT The system from [27], which only takes text transcript in-
formation (which includes word timing information) into
account when generating system output. This model con-
sists of a encoder for text understanding and a decoder for
frame-by-frame pose generation.

We also intended to have another baseline from Ginosar et al.
[5], but we could not get any good results with this system using
our dataset, and it was therefore omitted from the evaluation.

https://preview.tinyurl.com/y22h6rtt 
https://trinityspeechgesture.scss.tcd.ie/
https://zenodo.org/record/4088324
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These baselines systemswere taken directly from previous gesture-
generation publications [15, 27] and adapted to the challenge data-
set by their original authors. Source code and hyperparameters for
both baseline systems are available on Github3. These implementa-
tions and hyperparameterswere alsomade available to participating
teams during the challenge.

In BA, the representation of upper-body poses in the challenge
dataset was different from the dataset used in the original pub-
lication and hence a new hyperparameter search was conducted
to find optimal hyperparameters. Another change was that the
resulting motion was represented using exponential map and was
smoothed using Savitzky–Golay filter [22] with window length 9
and polynomial order 3.

In BT, the representation of upper-body poses in the challenge
dataset was different to the TED dataset used in the original pub-
lication. Accordingly, the pose representation was changed from
2D Cartesian coordinates of 8 upper-body joints to 3x3 rotational
matrices for each of 15 joints. The data dimension for a pose was
135 (3x3x15). The number of layers and loss function were the same
to the original paper. The hyperparameters of learning rate and loss
term weights were adjusted manually. Also, pretrained FastText
word vectors [2] were used instead of GloVe [19].

The individual challenge entries are described in detail in sep-
arate workshop papers submitted by the participating teams and
published in the GENEA Workshop 2020 proceedings.4

5 EVALUATION
We conducted a large-scale, crowdsourced, joint, and parallel evalu-
ation of themotion submitted by the participating teams, alongwith
some other conditions. The evaluation focused on gesture quality
of the various submitted systems. The systems were evaluated in
terms of human-likeness of the motion as well as appropriateness
of the gestures for a given input speech. The central difference
from other gesture-generation evaluations is that all systems in the
GENEA evaluation used the same motion data, the same visualisa-
tion/embodiment, and were scored together using the same evalu-
ation methodology; only the motion-generation systems differed
between the different entries that were compared. This allows the
performance of systems to be compared directly, and the design
aspects that influence performance can be traced more efficiently
than in most previous publications.

Jonell & Kucherenko et al. [13] recently showed that the results
from crowdsourcing evaluations were not significantly different
from in-lab evaluations in terms of results and consistency. We
therefore adopted an entirely crowdsourced approach, as opposed
to for example the Blizzard Challenge, which has used a mixed
approach. We employ attention checks as a means of finding parti-
cipants which were not paying attention (explained below).

5.1 Stimuli
The organisers selected 40 non-overlapping speech segments from
the test inputs (average segment duration 10 s) to use in the user-
study evaluation. These speech segments were selected across the
3BA: github.com/GestureGeneration/Speech_driven_gesture_generation_
with_autoencoder/tree/GENEA_2020
BT: github.com/youngwoo-yoon/Co-Speech_Gesture_Generation
4See zenodo.org/communities/genea2020/.

Figure 1: A screenshot of a page with stimuli from the eval-
uation interface. The question asked in the image (“How
well do the character’s movements reflect what the charac-
ter says?”) is fromapre-studyused to validate the evaluation
paradigm on stimuli with known differences from a previ-
ous work, and was changed for each of the two evaluations
detailed in this text.

test inputs to be full and/or coherent phrases. The motion from the
corresponding intervals in the BVH files submitted by participating
teams was extracted and converted to a motion video clip using
the visualisation server (described in Section 5.1.2) provided to
participants (albeit at a higher resolution of 960×540). All the stimuli
used are publicly available at zenodo.org/record/4080919.

5.1.1 Virtual avatar. We used the same virtual avatar for all ren-
derings during the challenge (during the challenge, and for the
evaluation). The avatar can be seen in Fig 1. The avatar had ori-
ginally 71 joints (full body including fingers) but only 15 joints,
corresponding to the upper body and excluding fingers, were used
for the challenge. The hands and fingers had a static pose, in which
the hands were lightly cupped (see Fig 1).

5.1.2 Visualization server. For the challenge we developed a visu-
alization server for the participants. The purpose was for all the
participating teams to be able to produce visualizations which were
identical (except of the resolution) with the stimuli that were go-
ing to be evaluated. The visualization was implemented using a
python-based web-server which interfaced Blender 2.835. The par-
ticipants were able to send a BVH file to the visualization server
and it would be put in a queue and processed in order as soon as a
5www.blender.org

https://github.com/GestureGeneration/Speech_driven_gesture_generation_with_autoencoder/tree/GENEA_2020
https://github.com/GestureGeneration/Speech_driven_gesture_generation_with_autoencoder/tree/GENEA_2020
https://github.com/youngwoo-yoon/Co-Speech_Gesture_Generation
https://zenodo.org/communities/genea2020/
https://zenodo.org/record/4080919
https://www.blender.org


Taras Kucherenko, Patrik Jonell, Youngwoo Yoon, Pieter Wolfert, and Gustav Eje Henter

Inputs used? Representation or features Stochastic

Name or description Origin ID Aud. Text Input speech Output motion output?

Natural motion - N ✓ ✓ – – ✓

Mismatched motion - M ✗ ✗ – – ✓

Audio-based baseline Kucherenko et al. [15] BA ✓ ✗ MFCC Exp. map ✗

Text-based baseline Yoon et al. [27] BT ✗ ✓ FastText† Rot. matrix ✗

AlltheSmooth CSTR lab, UEDIN, Scotland S... ✓ ✗ MFCC Joint pos. ✗

Edinburgh CVGU CVGU lab, UEDIN, Scotland S... ✓ ✓ BERT† and mel-spectrogram Rot. matrix ✓

FineMotion ABBYY lab, MIPT, Russia S... ✓ ✓ GloVe† and mel-spectrogram Exp. map ✗

Nectec HCCR unit, NECTEC,
Thailand S... ✓ ✓

Phoneme, Spacy word
vectors†, and audio features Exp. map ✗

StyleGestures TMH division, KTH, Sweden S... ✓ ✗ Mel-spectrogram Exp. map ✓

Table 1: Conditions participating in the evaluation. Teams are sorted alphabetically by name. The anonymised IDs of submitted
entries begin with the letter ‘S’ followed by a second, randomly-assigned letter in the range A through E, but which letter is
associated which each team is not revealed in order to preserve anonymity. † indicates a use of word vectors pretrained on
external data.

rendering-worker became available. The same visualization server
was used for the final stimuli, however, the resolution was increased
to 960×540 instead of 480×270. The lower resolution was used in
order to increase performance and throughput of the visualization
server, since there were sixteen teams competing initially. The input
to the visualization server was expected to be 20 fps. Upon paper
publication, a link to the code for the visualization server will be
provided.

5.2 Evaluation interface
In order to efficiently evaluate a large number of relatively similarly-
performing systems in parallel, we used a methodology inspired
by the MUSHRA test (MUltiple Stimuli with Hidden Reference and
Anchor) [10], which is a standard published by the International
Telecommunication Union (ITU). However, there are numerous dif-
ferences between a MUSHRA test for audio and our evaluation, for
instance the reference and anchor are both missing, corresponding
to the letters R and A.

Fig. 1 shows an example of the user interface used for rating
stimuli in the subjective evaluation. The participants were first
met with a screen with instructions and how to use the evaluation
interface. They were then presented with 10 pages where on each
page they would evaluate all of the participating systems, toplines,
and baselines, as seen in the figure. The order of the conditions was
generated randomly and it was not identified which was which.
Randomly coloured sliders and video borders were used to make
it easier to know which slider the currently-playing video was
associated with. After the 10 pages of stimuli, raters were presented
with a page asking for demographics and their experience of the
test.

As can be seen in Fig. 1, the 100-point rating scale was anchored
by dividing it into successive 20-point intervals labelled (from best
to worst) “Excellent”, “Good”, “Fair”, “Poor”, and “Bad”. These labels
were based on those associated with the 5-point scale used for

Mean Opinion Score (MOS) [11] tests, another evaluation standard
developed by the ITU.

5.3 Study design
Each study was balanced using a greedy procedure such that each
segment appeared on each page with approximately equal fre-
quency (segment order), and each condition was associated with
each slider with approximately equal frequency (condition order).
For any given participant and study, each page would use different
speech segment. Every page would contain condition N and (where
relevant) condition M, but one other condition was randomly omit-
ted from each page to limit the maximum number of sliders on a
page to 8 or less, depending on the study.

Three attention checks were incorporated into the pages for
each study participant. These either displayed a brief text message
over the gesticulating avatar reading “Attention! Please rate this
video XX.”, or they temporarily replaced the audio with a synthetic
voice speaking the same message. XX would be a number from 5
to 95, and the participant had to set the corresponding slider to the
requested value, plus or minus 3, to pass the attention check. The
numbers 13 through 19, as well as even multiples of 10 from 30 to 90,
were not used for attention checks due to their acoustic ambiguity.
Which sliders on which pages that were used for attention check
was uniformly random, except that no page had more than one
attention check, and condition N and M were never replaced by
attention checks.

We evaluated two aspects of the gesture motion, each in a separ-
ate study:
Human-likeness This study asked participants to rate “Howhuman-

like does the gesture motion appear?”, with the intention
of measuring the quality of the generated motion while ig-
noring its link to the input speech. This study did not have
speech in the stimulus videos (they were silent).

Appropriateness This study asked participants to rate “How ap-
propriate are the gestures for the speech?” This was intended
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to investigate the perceived link between motion and speech
(both in terms of rhythm/timing and semantics), ignoring
motion quality as much as possible. This study contained
speech audio in the stimulus videos.

5.4 Test-participant recruitment
Study participants were recruited through the crowdsourcing plat-
form Prolific (formerly Prolific Academic), restricted to a set of
English-speaking countries (UK, IE, USA, CAN, AUS, NZ). There
was no requirement to be a native speaker of English, since Prolific
does not support screening participants based on that criterion. A
participant could take either study or both studies, but not more
than once each. Participants were remunerated 5.75 GBP for com-
pleting the human-likeness study (median time 33 min) and 6.50
for the appropriateness study (median time 34 min).

5.5 Objective evaluation metrics
Since subjective evaluation is costly and time-consuming it would
be beneficial for the field to agree on objective evaluations to be
used. As a step in this direction we use the numerical measures in-
troduced in previous work. Namely we use two numerical objective
evaluation measures:
Average jerk used extensively to evaluatemotion smoothness [15,

17, 24]. We report average values of absolute jerk (defined
using finite differences) for different motion segments.

Distance between velocity histograms used previously to eval-
uate gesture quality [15, 16] since well trained models should
produce similar motion properties as the actor it was trained
on and hence it should have a similar motion speed profile.

5.5.1 Average jerk. The third derivative of the coordinates 𝑥 (𝑡)
is called jerk and can be mathematically formulated as following:
𝑗𝑒𝑟𝑘 (𝑥) = 𝑥 ′′′(𝑡). In our experiments we report absolute average
values of jerk for different motion segments.

5.5.2 Comparing velocity histograms. This metric is based on the
assumption that synthesised motion should follow a similar velocity
distribution as the ground truth motion. To evaluate this we calcu-
late velocity distribution histograms for all the systems and compare
them to the velocity distribution of the ground truth by calculation

Hellinger distance between the two:𝐻 (ℎ1, ℎ2) =
√
1 −∑

𝑖

√
ℎ1
𝑖
· ℎ2

𝑖
.

For both of the numerical evaluation above the motion has been
first converted from joint angles to 3D coordinates that are publicly
available at zenodo.org/record/4088319. To enhance reproducibility
the code for numerical evaluations is also available, at https://github.
com/Svito-zar/genea_numerical_evaluations.

6 RESULTS OF CHALLENGE EVALUATION
This section describes the results of the subjective and objective
evaluations, with discussion and interpretation of the results re-
served for Sec. 7. First, Sec. 6.1 introduces demographic and other
information gathered from the recruited participants. Sec. 6.2 then
reports the results of the subjective evaluation of challenge condi-
tions, which also are visualised in a number of different figures. Sec.
6.3 complements the subjective findings with numerical results that
quantify different aspects of the motion evaluated in the challenge.

Table 2: Summary statistics of user-study ratings for all con-
ditions in the two studies, with 0.01-level confidence inter-
vals. The human-likeness of M was not evaluated explicitly,
but is expected to be very close to N since it uses the same
motion clips.

Human-likeness Appropriateness
ID Median Mean Median Mean

N 72 ∈ [70, 75] 67.6 ± 1.8 81 ∈ [79, 83] 73.8 ± 1.8
M " " 56 ∈ [53, 59] 53.3 ± 2.0
BA 46 ∈ [44, 49] 46.2 ± 1.7 40 ∈ [38, 41] 40.4 ± 1.8
BT 55 ∈ [53, 58] 54.6 ± 1.8 38 ∈ [35, 40] 38.5 ± 1.9
SA 38 ∈ [35, 41] 40.1 ± 1.9 35 ∈ [31, 37] 36.4 ± 1.9
SB 52 ∈ [50, 55] 52.8 ± 1.9 43 ∈ [40, 45] 43.3 ± 2.0
SC 57 ∈ [55, 60] 55.8 ± 1.9 50 ∈ [48, 52] 50.6 ± 1.9
SD 60 ∈ [57, 61] 58.8 ± 1.7 49 ∈ [46, 50] 48.1 ± 1.9
SE 49 ∈ [47, 51] 49.6 ± 1.8 47 ∈ [44, 49] 45.9 ± 1.8

6.1 Data on test participants
Each of the two user studies recruited 125 participants that passed
all attention checks they encountered. In study 1 onHuman-Likeness,
the average age was 31.50 years (SD: 10.7), with 66 men, 57 wo-
men, and 2 others. There were in total 116 native speakers, and 9
non-native speakers of English. We asked participants on which
continent they lived, and 69 participants were from Europe, 1 from
Africa, 48 from North America, 2 from South America, and 5 from
Asia. In study 2 on Appropriateness, the average age was 31.14 years
old (SD: 11.7), with 60 men, 64 women, and 1 other. We asked parti-
cipants on which continent they resided, and 78 answered Europe,
1 answered Africa, 39 answered North-America, 3 answered Asia,
and 4 answered Oceania.

Participants that did not pass all attention checks (23 test-takers
in the human-likeness study and 40 test-takers in the appropriate-
ness study) were omitted from the analysis, as were scores from
sliders used for attention check. The median successful completion
time for the rating portion of the study (excluding reading instruc-
tions and answering the post-test questionnaire) was 24 minutes
for the human-likeness study and 27 minutes for the appropriate-
ness study, with the shortest successful completion times being 12
minutes in both studies.

6.2 Analysis and results of subjective
evaluation

The study results are available at at zenodo.org/record/4088250.
Summary statistics (sample median and sample mean) for all condi-
tions in each of the two studies are shown in Table 2, together with
a 99% confidence interval for the true median/mean. The confid-
ence intervals were computed either using a Gaussian assumption
for the means (i.e., with Student’s 𝑡-distribution cdf, and rounded
outward to ensure sufficient coverage), or using order statistics for
the median (leverages the binomial distribution cdf, cf. [7]).

The ratings distributions in the two studies are further visualised
through box plots in Fig. 2. The distributions are seen to be quite
broad. This is common inMUSHRA-like evaluations, since the range
of numbers not only reflects differences between systems, but also

https://www.prolific.co/
https://zenodo.org/record/4088319
https://github.com/Svito-zar/genea_numerical_evaluations
https://github.com/Svito-zar/genea_numerical_evaluations
https://zenodo.org/record/4088250
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(a) Human-likeness ratings

A
p
p
ro
p
ri
at
en
es
s
ra
ti
n
g

N M SC SD SE SB BA BT SA
0

20

40

60

80

100

(b) Appropriateness ratings

Figure 2: Box plots visualising the ratings distribution in the two studies. Red bars are the median ratings (each with a 0.01
confidence interval); yellow diamonds are mean ratings (also with a 0.01 confidence interval). Box edges are at 25 and 75
percentiles, while whiskers cover 95% of all ratings for each system. Conditions are ordered descending by sample median,
which leads to a different order in each of the two plots.

variation, e.g., between stimuli, in individual preferences, and in
how harsh different raters are in their judgements. In contrast, the
plotted confidence intervals are seen to be quite narrow, due to the
large number of ratings collected for each condition.

Despite the wide range of the distributions, the fact that the
conditions were rated in parallel on each page enables using pair-
wise statistical tests to factor out many of the above sources of
variation. To analyse the significance of differences in sample me-
dian between different conditions, we applied two-sided pairwise
Wilcoxson signed-rank tests to all pairs of distinct conditions in
each study. This closely follows the analysis methodology used
throughout recent Blizzard Challenges. Unlike Student’s 𝑡-test, this
test does not assume that rating differences follow a Gaussian
distribution, which would be inappropriate as we can see from
the box plots in Fig. 2 that ratings distributions are skewed and
thus likely non-Gaussian. For each condition pair, only pages for
which both conditions were assigned valid scores were included in
the analysis. Recall that not all systems were scored on all pages
due to the limited number of sliders and the presence of attention
checks. This meant that every statistical significance test was based
on at least 796 pairs of valid ratings in each of the studies. The
𝑝-values computed in the significance tests were adjusted for mul-
tiple comparisons using the Holm-Bonferroni method [9] (which is
uniformly more powerful than regular Bonferroni correction) to
keep the family-wise error rate (FWER) at or below 0.01 in each of
the two studies. This statistical analysis found all but 4 out of 28
condition pairs to be significantly different in the human-likeness
study, which the corresponding numbers being 7 out of 36 con-
dition pairs in the appropriateness study. Which conditions that
were found to be rated significantly above or below which other
conditions in the two studies is visualised in Fig. 3.

System Jerk Hell. dist. (left wrist) Hell. dist. (right)

N 151.52 ± 35.57 0 0
BA 65.59 ± 4.42 0.08436 0.09029
BT 45.84 ± 2.14 0.13048 0.09662
SA 132.37 ± 27.64 0.06475 0.05931
SB 189.39 ± 4.66 0.12557 0.11389
SC 84.44 ± 8.48 0.08261 0.08825
SD 72.06 ± 7.91 0.07277 0.06221
SE 97.85 ± 9.34 0.04892 0.04925

Table 3: Results from the objective evaluations.

Finally, we present two diagrams that put the results of the two
studies together. Fig. 4, in particular, visualises the relative (par-
tial) ordering between different conditions implied by the results
of the two studies in Fig. 3. Although there are similarities, the
two orderings are meaningfully different. This suggests that the
two studies managed to disentangle aspects of perceived motion
quality (human-likeness) from the perceived link between gesture
and speech (appropriateness). Second, Fig. 5, visualises confidence
regions for the median rating as boxes whose horizontal and ver-
tical extents are given by the corresponding confidence intervals
in Table 2. Once again, different systems are found to be good
at different things. The numerical gap between natural and syn-
thetic gesture motion is seen to be more pronounced in the case of
appropriateness than in the case of the human-likeness.

6.3 Results of objective evaluation
Results of objective evaluations are given in Table 3. The first
column contains the average jerk across all the joints. We report
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(b) Appropriateness study

Figure 3: Significance of pairwise differences between conditions. White means that the condition listed on the 𝑦-axis rated
significantly above the condition on the 𝑥-axis, black means the opposite (𝑦 rated below 𝑥), and grey means no statistically
significant difference at the 0.01 level after Holm-Bonferroni correction. Conditions are listed in the same order as in Fig. 2,
which is different for each of the two studies.
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Figure 4: Partial ordering between conditions in the two studies. Each condition is an ellipse; overlapping or (in one case)
coinciding ellipses signify that the corresponding conditions were not statistically significantly different in the evaluation.
Colours were adapted from [3]. There is no scale on the axis since the figure visualises ordinal information only.

mean and standard deviation for the 20 minutes of test motions.
The second and third columns contain Hellinger distance between
velocity histogram for left and right wrists. For more details on
the evaluation metrics we refer the reader to Section 5.5. We see
that different systems performed best (came closest to the natural
motion) on different objective measures.

We can see that that objective metrics are inconsistent with
the subjective results. While SA showed the most similar jerk to
natural motion (N), it was less preferred in the subjective evaluation.
Similarly, SE showed the most similar Hellinger distances to N, but
it was preferred moderately by the evaluation participants.

We stress that objective evaluation is a complementary measure
and subjective evaluation is much more important.

7 DISCUSSION
In this section we analyse the results obtained in our evaluations,
the limitations of the challenge, and what we the challenge brings
to the scientific community.

7.1 Challenge results
First of all we want to note that gesture generation is a difficult
problem which is hard from being solved, since no system could
come even close to the natural motion.

It has been shown before that naturalness can strongly influence
appropriateness of gestures during subjective evaluations [1, 16],
and in our experiments we managed to separate the two only par-
tially. From one side, we can observe at Figure 5 that different
systems were good at different things: some scored better in natural-
ness and others in appropriateness. From another side, mismatched
motion and system SC (which uses only audio) were preferred over
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Figure 5: Confidence regions for the true median rating
across both studies. The dotted black line is the identity,
𝑥 = 𝑦.While the human-likeness (𝑥-coordinate) ofMwas not
evaluated directly, it is expected to be very close to N since
it uses the same motion clips, and the horizontal extent of
the confidence region for M was therefore copied from N.

all the systems in terms of appropriateness. This indicates that our
evaluation probably did not capture semantic appropriateness well,
since the question was slightly vague.

The gap between natural motion and that synthesis by machine
learning models is greater in terms of appropriateness than in
naturalness. This could indicate that appropriateness is a harder
problem. It could be that available data may not allow to learn to
generate appropriate gesture because the dataset is too small or the
vocabulary used it too wide.

7.2 Limitations
We took the first step for benchmarking different gesture generation
systems on a common dataset and stimuli, but our crowdsourced
evaluation had a few limitations.

First, in measuring appropriateness of gestures (i.e., link between
gestures and speech), semantic and rhythmic appropriateness was
mixed together and there was no way to determine by which aspect
of appropriateness the participants rated. In addition, rating on the
appropriateness could be affected to some extent by motion quality
even if we asked participants to rate regardless of motion quality.

Second, the dataset used in the challenge was limited to a single
English speaker in a monologue scenario. The role of gesticulation
may be expected to differ between different persons and languages
as well as the speaking environment (e.g., conversation versus
monologue). Benchmarking gestures in more complex scenarios of
multiple speakers, multiple languages, and diverse environments
should be considered in the future.

Another limitation is that we considered only upper-body ges-
tures despite the fact that whole-body gestures including posture,
stepping motion and stance, facial expression, and hand motion are

important too in social interactions. Three teams stated that the
most needed extension is to include whole-body or facial gestures.
Some evaluation participants also found the absence of facial and
finger motion to be a limitation of the challenge.

7.3 Lessons learned from the challenge
We have learned several things from the Challenge:

• A MUSHRA-like evaluation paradigm can be successfully
used to benchmark multiple gesture generation models in
parallel.

• Being human-like does not mean being appropriate for ges-
tures of a virtual avatar, and synthetic systems can be strong
and weak in different aspects.

• There is a need for future challenges, since there a big gap
remains between natural and synthesised motion.

• Providing carefully pre-processed data and good code infra-
structure helps challenge participants to focus on developing
their system, instead of solving unrelated issues.

8 CONCLUSIONS
We have hosted a challenge to assess the state of the art in data-
driven co-speech gesture generation. The central design goal of
the challenge was to enable direct comparison between many dif-
ferent gesture-generation methods while controlling for factors
of variation external to the model, namely data, embodiment, and
evaluation methodology. Our results suggest that the field is ad-
vancing, since most submissions performed significantly better
than the baselines published last year. Different systems were also
found to be good at different things, on the two scales (quality
and appropriateness) that we assessed. However, a substantial gap
remains between synthetic and natural gesture motion, indicating
that gesture generation is far from a solved problem.

We believe that the standardised challenge training and test
sets of time-aligned audio, text and gestures, and the associated
library of rated motion clips from the challenge provided at zen-
odo.org/communities/genea2020, will be useful for benchmarking
future gesture-generation methods. Furthermore, we think chal-
lenges like the one described here are poised to play an important
role in identifying key factors for convincing gesture generation in
practice, and in driving and validating future progress toward the
goal of endowing embodied agents with natural gesture motion.

We encourage the reader to seek out the system-description
papers from the GENEA Workshop for additional lessons about
system building and important factors in performance, as told by
the team preparing the challenge entries.
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