
R E S C I E N C E C
Reproduction / Pattern Recognition

[Rp] Reproducing ”Typographical Features for Scene Text
Recognition”

Jerod Weinman1, ID
1Grinnell College, Grinnell, Iowa, USA

Edited by
Georgios Is. Detorakis ID

Reviewed by
Nicolas P. Rougier ID

Received
April 30, 2020

Published
October 15, 2020

DOI
10.5281/zenodo.4091742

AbstractThis article reports on the largely successful reproduction of the author’s decade-old conference paper. The
original 2010 paper demonstrated that character recognition performance could be improved on difficult problems
of scene text recognition by leveraging font-specific correlations between character identity and width. The work
relied on a sizeable array of languages, tools, and libraries. The computation proceeded in three major phases: data
synthesis, training statistical models on artificial image data and actual text data, and finally fine-tuning and running
a parserwith the trainedmodels applied to the test images. Using the learnedmodels stored from the original paper’s
experiments, the original parser code successfully reproduced the results exactly. The training code required minor
changes to run with current host environments and libraries. Although the updated experimental results are not
identical, they follow the same general trends, indicating a successfully repeated experiment.

A reproduction of J. J. Weinman. “Typographical Features for Scene Text Recognition.” In: Proc. IAPR Intl. Conf.
on Pattern Recognition. Istanbul, Turkey, Aug. 2010, pp. 3987–3990. DOI: 10.1109/ICPR.2010.970.

1 Introduction

As readers of this journal know, reproducibility of computational experiments presents
an important but surmountable challenge. This article reports on a peer-reviewed, ar-
chived conference paper by the author originally published in August 2010 [1]; it demon-
strated that character recognition performance could be improved on difficult prob-
lems of scene text recognitionby leveraging font-specific correlations between character
identity and width. That paper constituted the author s̓ first work to be fully conceived,
developed, submitted, and published as a full-time faculty member following doctoral
training and the transition to a new institution two years before. Although some of the
raw benchmark data used in the paper dates to several years prior (2003), most of the
experimental data for training the system dates to 2009, with the final reported experi-
ments dating to January 2010 for the submission that same month.

It is possible to reconstruct the arc of the work because of the author s̓ use of a home-
spun experimental data repository created in 2009 precisely so that the details of exper-
iments could not only be retraced, but ideally reproduced if necessary [2]. The motiva-
tion for that data repository was precisely because of the author s̓ own earlier inability
to accurately trace and ultimately reproduce some dissertation results [3] after transi-
tioning institutions and computational environments. It therefore seems quite fitting
that the decade-old paper tested here represents the “first fruits” of that system and the
first whose long-term reproducibility has been assessed.

After briefly reviewing the original work and its context, the remainder of the article
gives some additional details on the nature of the author s̓ local archival system for ex-

Copyright © 2020 J. Weinman, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Jerod Weinman (jerod@acm.org)
The authors have declared that no competing interests exist.
Code is available at http://hdl.handle.net/11084/23333 – DOI 11084/23333. – SWH swh:1:dir:0c20dd08d449661bbf90f9a209c822b3aeb1edb7.
Data is available at http://hdl.handle.net/11084/23336 – DOI 11084/23336.
Open peer review is available at https://github.com/ReScience/submissions/issues/35.

ReScience C 6.1 (#) – Weinman 2020 1

https://orcid.org/0000-0002-2247-8174
https://orcid.org/0000-0001-5891-1702
https://orcid.org/0000-0002-6972-589X
https://weinman.cs.grinnell.edu/pubs/weinman10typographical.pdf
https://weinman.cs.grinnell.edu/pubs/weinman10typographical.pdf
mailto:jerod@acm.org
http://hdl.handle.net/11084/23333
http://oadoi.org/11084/23333
https://archive.softwareheritage.org/swh:1:dir:0c20dd08d449661bbf90f9a209c822b3aeb1edb7/
http://hdl.handle.net/11084/23336
http://oadoi.org/11084/23336
https://github.com/ReScience/submissions/issues/35
https://rescience.github.io/


[Rp] Reproducing ”Typographical Features for Scene Text Recognition”

periments and data (Section 3), then describesmore about the experimental work under
examination including the details of the software and computations in Section 4. Sec-
tion 5 presents the work involved in bringing the experimental system back up to speed.
A variety of ablation tests in the experimental chain attempt to identify or eliminate pos-
sible sources of variation in the reproduced results; Section 6 concludes with updated
experimental results that match precisely in some cases, while the trend of relative per-
formance in other cases still align with the original results.

2 Background Context

In an application ofmachine-learning for pattern recognition, the original paper demon-
strated that character recognition performance could be improved on difficult prob-
lems of scene text recognitionby leveraging font-specific correlations between character
identity andwidth [1]. For example, although thewidth of the character “e” varieswidely
across fonts, knowing (or hypothesizing) that information for a specific font should
strongly inform beliefs about the width of other characters in the same font.

While a deep body of work on document analysis and recognition existed at the time,
the task of recognizing words from photographs of everyday scenes was still burgeon-
ing. The challenges include a small sample of text for recognition (i.e., a few characters
rather than a whole page), out of plane distortions, uneven lighting, unusual fonts, and
unconventional word or character spacings. Thus, most prior methods for text line de-
tection, word segmentation, text/non-text dichotomization, and character segmentation
generally did not apply to this task.

The computational model introduced in the 2010 paper reproduced here relaxed many
of the standing assumptions by integrating the word and character segmentation tasks
with recognition, opening recognition to words from outside a limited vocabulary while
retaining a bias for known lexiconwords, and eliminating the strict reliance on text/non-
text binarization by working with raw pixels. For all these benefits, the work required
significant amounts of data to train a large parametric model (over 11M parameters)
with GPU acceleration.

Operationally, the recognition model itself uses an energy minimization scheme that
can also be understood as a weighted finite state transducer. The discriminative semi-
Markov model resembles the familiar hidden Markov model (HMM), but with two im-
portant differences. First, it is trained discriminatively, meaning that the data is al-
ways assumed to be observed, so the conditional likelihood is maximized (rather than
the joint likelihood of both the latent state and the observed data, as with the HMM).
This change relaxes independence assumptions among the observed data, allowing for
more powerful features. Second, the semi-Markov nature of the model further relaxes
independence assumptions of the predicted/hidden states, so that characters of arbi-
trary width become the object of interest, rather than individual pixel columns. The
model is optimized (energy minimized) via a dynamic programming algorithm similar
to the Viterbi algorithm for HMMs, but approximated with a beam search to speed re-
sults when word segmentation is integrated with the recognition task [4].

The contribution of the original work was in demonstrating that in addition to the com-
mon technique of learning and leveraging character bigrams (i.e., “q” should be fol-
lowed by a “u”), width bigrams can be leveraged to improve recognition (i.e., a relatively
wide “n” should be followed by another wide character). Section 4 below outlines all the
code, data, and processes that went into crafting that work, but first Section 3 describes
the mechanisms for preserving most aspects of the data and computations.

ReScience C 6.1 (#) – Weinman 2020 2

https://rescience.github.io/


[Rp] Reproducing ”Typographical Features for Scene Text Recognition”

rA

eA

eC

eF

eJ

rB

rC

pSpVpB pFpC

rD

pD eE

eB

pE

pR

pG

eD

pI pJpK pL pMpNpO

pP

pQ eH

pT

pUpA

pH

eG

eI

Figure 1. Dependency graph of the cached computations involved in reproducing the original pa-
per [1]. Each node (arbitrarily lettered) represents a data collection (cf. Section 3), with red indi-
cating raw collection (“r”), yellow processed (“p”) and blue experiments (“e”). All results are generally
replicated, but dashed borders indicate a failure to reproduce identically. Detailed descriptions
of each collection appear in Table 3.

3 Data Repository for Reproducible Research

The author s̓ data repository for understanding reproducible research closely resembles
the distributed cached computations framework of Peng and Eckel [5]; additional de-
tails are in Weinman [2]. Computations are cached in immutable objects called col-
lections, and subsequent collections may utilize the results of other (previous) collec-
tions through a large dependency graph. Each collection is housed within a names-
pace hierarchy that helps identify and understand its role; the descriptive name of each
collection also features a timestamp. For example, collection eB in Figure 1 is named
experiments/text/ngrams/bigrams/tied_nums_intracase_L1_validation-20090708075734.

Versionnumbers of source controlled code are documentedwithin a collection for repro-
ducibility (and in current practice, the source code and appropriate revision are checked
out of the source repository as part of the collection build process). For simplicity, the
repository resides in the file system,managed by a few scripts and adherence to the prac-
tice; nothing “forces” a collection to be write-only. Use of the native file system makes
both the generating code and resulting data relatively transparent, highly accessible,
and easily portable, all key qualities for a framework deeply entangled with everyday
work.

The key properties of the data collections are (i) that they may only access experimental
software through well-defined source code repositories (system software, programming

ReScience C 6.1 (#) – Weinman 2020 3

https://rescience.github.io/


[Rp] Reproducing ”Typographical Features for Scene Text Recognition”

environments, or external libraries have not been precisely tracked), and (ii) they may
only access other experimental data through the data dependency graph. In particular,
scripts running in collections may not directly access other collectionsʼ source code nor
any part of the host file system except through the dependencies. The only source code
“native” to a collection is a small set of scripts that invoke the library code (a copy of
which is typically “checked out” or “cloned” into the collection) on the data of interest (a
dependency from another collection), together with any parameters needed. A simple
Makefile is required so that invoking an argument-free make command generates the
data after checking out (and compiling, if necessary) any additional source code. In this
way, the data collectionsmake it fairly easy to understand how a particular computation
or result was achieved. Other utilities make it easy to copy collections (sans data) for
alteration (e.g., parameter tweaking) in a way that traces the provenance (which assists
bug tracking/recovery) and access the dependencies (a simple text file) in a variety of
programming languages.

The collections are divided into three categories: raw, processed, and experiments. Raw
collections house curated or manually annotated data that is not programmatically gen-
erated. Associated codemight be storedwith these collections, such as download scripts
or interactive prompts for label acquisition. They may also have dependencies, as in
the case when the collection stores the annotation of another raw data set. The pro-
cessed collections are for relatively straightforward programmatic transformations of
data, such as denoising, format conversion, feature extraction, etc. Finally, the experi-
mental collections house the most interesting data.

Notably, none of the restrictions are programmatically enforced; the relatively lightweight
framework operates by convention. However, because it uses the file system, collec-
tions are easily transportable across host machines. For example, experimental compu-
tations have been deployed to remote high-performance computing clusters on which
the author has copied a subset of the data repository, so that the experimental depen-
dencies can be found.

4 Review of the Experiments

The paper s̓ result required a deep pipeline of data and awide array of tools and program-
ming environments. This section provides a somewhat archeological and forensic view
of everything that needed to be run and briefly indicates the dependencies on external
libraries.

4.1 Experimental Structure
Figure 1 illustrates the dependency graph of all data repository collections (cf. Section 3)
utilized in the paper. This section sketches the basic purpose and tool dependencies of
each collection, with further details in Table 3.

Raw Collections — Raw collections rB and rA represent the benchmark data used for eval-
uation; rB contains the cropped images of street and storefront signs recognized by the
system, while rA contains the ground truth character annotations (the dependency aris-
ing from the interactive script used to acquire the annotations). Although the entire data
repository itself was not created until 2009, the sign data collections are artificially times-
tamped to their original dates of creation in 2003 and 2005, respectively. Raw collection
rC contains synthetic images of individual characters rendered in over 1800 fonts, which
forms the basis of training data used for learning the appearance-based module of the
recognizer as well as the intra-font character width correlations. Finally, rD contains

ReScience C 6.1 (#) – Weinman 2020 4

https://rescience.github.io/


[Rp] Reproducing ”Typographical Features for Scene Text Recognition”

the raw ASCII text of 85 English-language books downloaded from Project Gutenberg,
used for training the bigram-based language module.

Processed Collections — The four isomorphic processing chains in the center of the graph
represent rendered and processed variations of charactersmade to appear as theywould
in photographed storefronts, rather than the clean glyphs of a font library (rC). The rec-
ognizer was trained to discriminate not only among characters and numbers (the de-
pendency chain rooted at pF), but also among inter-word spaces (pV ) and intra-word
gaps between characters (pB), so synthetic exemplars from each of these categories are
rendered, in addition to horizontally stretched and scaled versions of the original char-
acters (pC). These root collections render the text with occasional randomly-placed bor-
ders. Collection pD simply counts the bigram frequencies in the books of rD; chains pF
and pC utilize these bigram statistics to synthesize plausible neighboring characters that
appear alongside the target character in the image. Collection pS measures the width
of each character in each font for later use in the width bigram module that represents
the paper s̓ scientific and technical contribution.

The roots of these chains—pB, pV, pF, pC, and pS—all use MATLAB as the computational
engine with a small dependency on the author s̓ support library (stored in a version con-
trol system) of MATLAB tools. The bigrams of pD were counted using a simple standard
C program housed and compiled within the collection.

Deeper in the data processing chains, additional image transformations are applied be-
fore extracting image features used by the recognizer. Collections pA, pU, pE, and pQ
add random contrasts, brightness, and linear bias fields to the images, while pH, pT, pR,
and pP downsample the images by ¼. These collections also use MATLAB with minimal
assistance from a local support library. Collections pO, pK, pM, and pI binarize the re-
sulting images in the same way the test data will be; run within MATLAB, the Niblack
binarization routine from the author s̓ library uses a mex implementation for speed (the
mex interface allows programs written in C to be compiled and used from within MAT-
LAB). The sibling collections pG, pL, pJ, and pN apply a wavelet transform to the images
that produces the representation used by the recognition module. The implementation
of this transform—the steerable pyramid [6], which localizes image edges, orientations,
and scales—is a mex implementation by its original creator (Simoncelli) dating to 1996;
although updated versions now exist on GitHub, the version in the author s̓ local library
(used in these experiments) dates to 28 March 2001.

Experiment Collections — In practice, distinguishingprocessed fromexperiment collections
is not always as clear as the nomenclature might indicate. For instance, collection eE
is simply a ten-way partition of the books in rD, used for cross-validation experiments;
it should probably be considered processed. Likewise, collection eH captures the intra-
font character width bigrams statistics in a frequency table (and plots), making it analo-
gous in role to pD (character bigram counts). Experimental collection eI fits the parame-
ters of a regularized exponential probability model over these character width bigrams,
using cross-validation to determine the amount of statistical regularization (which lim-
its overfitting). Collection eG adds spaces as one of the categories for the width bigram
model. Collection eB does the same thing, but for actual character identity bigrams of
the usual sort used in language modeling (with ten-fold cross validation based on the
partition in eE).

These “learned model” collections (eE, eI, and eG) effectively train what is variously
called a maximum entropy (MaxEnt) classifier [7] or multinomial logistic regression [8]
(in this case with no feature inputs; only class bias weights are learned). The MATLAB
implementation of the classifier and the L-BFGS optimizer needed [9] to train it were
created by the author (housed in the local, version-controlled support library), and have
been publicly shared under the GPL since 2010.

ReScience C 6.1 (#) – Weinman 2020 5

https://rescience.github.io/


[Rp] Reproducing ”Typographical Features for Scene Text Recognition”

Table 1. Main code libraries used in the experiments of Figure 1. Statistics generated by cloc* and
count only actual code lines, omitting blank lines and comments.

Name Purpose Language Files Lines of Code

VIDI
Viterbi parsers Java 10 1,565
Data processing MATLAB 160 7,075

L-BFGS Optimization MATLAB 2 416

PyrTools [6] Image features
MATLAB 83 2,926
C/mex 15 2,143

MaxEnt Discriminative classifier MATLAB 35 1,907

CUDA MaxEnt GPU-accelerated training
MATLAB 11 834
C/CUDA 202 33,749

* cloc v1.85 , https://github.com/AlDanial/cloc

The hub experimental collection eD trains the character recognition model, a discrimi-
native MaxEnt classifier. The implementation is a combination of the MATLAB MaxEnt
class and L-BFGS code above, as well as a CUDA-backed mex kernel to rapidly accelerate
the computations needed for each stage of the batch gradient descent algorithm. CUDA
is the language framework supporting general purpose computation on a GPU (graph-
ics processing unit). The so-called cudamaxent software was published (GPLv3) and
described in a publication by Weinman, Lidaka, and Aggarwal in 2010 [10].

The first result published in the paper is finally computed in collection eJ, where the
test imagesʼ binarizations and steerable pyramid features are calculated the on the fly,
put through the MaxEnt model, and finally parsed by a Java-based Viterbi (dynamic pro-
gramming) algorithm. Intermediate collection eC fine tunes the relative weights of a
module that selectively penalizes certain overlaps or gaps among the parse segments as
scored within the Viterbi calculations. Collections eA and eF create the last two results
in the paper, eA adding the character identity bigram score within the Viterbi parser,
and eF adding the character width bigram score on top of that. With the addition of the
width-basedmodel, the semi-Markov model s̓ dynamic programming table is larger and
the experiment uses a different Java subclass within the same hierarchy.

4.2 Code and Data Footprint
In addition to highlighting the structure of inter-experimental data dependencies (cf.
Section 4.1 and Figure 1), it is useful to comprehend the magnitude of code dependen-
cies and the resulting data footprints.

Table 1 enumerates the primary external code dependencies used in the experiments.
These omit the obvious need for the built-in MATLAB tools and toolboxes, which in-
cluded the ImageProcessing, Statistics (nowStatistics andMachine Learning), Optimiza-
tion, and Parallel Computing Toolboxes. All of the other local software libraries listed
in the table were managed through an institutional Subversion source control system.
Revision numbers for each experiment were manually recorded by the author in the
text manifest for each collection. Bug fixes and improvements to the software have of
course been recorded since the original experiments were performed for the publica-
tion. Most of the author s̓ software—L-BFGS, MaxEnt, and CUDAMaxEnt libraries—was
publicly distributed with those improvements on the author s̓ home page at around the
time or shortly after the publication; all were published under the GPLv3 free software
license. Simoncelli s̓ PyrTools was obtained under the MIT license. The author s̓ VIDI
tool was not previously published.

Table 3 also quantifies the foot print of the collections themselves. On average, each
collection relies on approximately three scripts. For example, this might be the main,
argument-free “run” script, which invokes a parameter-driven sub-script, which may

ReScience C 6.1 (#) – Weinman 2020 6

https://rescience.github.io/


[Rp] Reproducing ”Typographical Features for Scene Text Recognition”

itself be aided by some instance-level helper. Although there is substantial variation
among individual collections, the total amount of stored data involved in producing the
work is 127 GiB, even though the “raw” data is only 320 MiB.

MATLAB was “chosen” as the primary environment for hosting the experiments because
the author had, in a sense, “grown up” working in MATLAB a decade earlier in under-
graduate image processing and computer vision courses. By the time these experiments
were crafted, the author had developed quite a library of operational tools through his
dissertation work [3]. Moreover, the model in the paper was an extension of that earlier
dissertationwork, so several bits of that codewould be leveraged (although, as observed
above, the version control throughout the dissertation work was not as strong or preva-
lent; RCS was used sparingly).

Java became involved because a robust and stateful class/object capabilitywas necessary
to support the parser efficiently with a broad standard library. At the time, the author
had used Java for over a decade (since its 1.0 days) and happened to be far more familiar
with it than alternatives such asC++. Moreover,MATLABhad just began to support native
Java class integration with its environment.

5 Reproducing the Work

How was the reproduction process initiated? The author includes (as a comment in the
LATEX source for each paper) a reference to the data collection supporting any experi-
mental result reported. Thus, any “leaves” of the dependency graph (as in Figure 1) are
immediately available, and the entire chain of the work can be examined by following
these dependencies. Of course, this strategy also requires one to preserve the source
of the paper as well. In this case, the source for the original paper included explicit
references to collections denoted eJ, eA, and eF (the results corresponding to using “Ap-
pearance”,“+ Char. Bigram”, and “+ Char. and Width Bigrams” in the original paper
and as shown in Table 2 below). These collections thus constituted the entry points for
reproducing the work.

The remainder of this section documents the reproduction experience on an updated
computing platform, including minor changes to the code that were necessary.

5.1 Compute Environments

Original Environment — The host computer system onwhich the original experiments were
run is still operational in the author s̓ research laboratory. However, like the legendary
Ship of Theseus, enough of its hardware and software have been upgraded in the last
decade to question whether it is truly the same.

Hardware TheCPUs are dual quad-core 64-bit Intel Xeons (E5520), withhyper-threading
that present to the OS as a total of 16 compute cores. The system has 48GiB of host (CPU)
memory. The GPU used for the original experiments was an NVIDIA Tesla C1060, fea-
turing 240 compute cores and 4GiB of memory.

Software At the time, the host operating systemwas Ubuntu 8.04 LTS, though precisely
which version is not known. This distribution and version was intentionally chosen for
the ease of installation, maintenance, stability, and most notably the duration of sup-
port. Operating system upgrades can be fraught with difficulty and the preference was
to avoid them for as long as possible. None of the distribution package details were
recorded and there was no regular practice of updating them. Hence, important details
such as the precise C compiler used cannot be known (though it would have been what-
ever the default of the distribution was). In order to use CUDA and the NVIDIA GPU,

ReScience C 6.1 (#) – Weinman 2020 7

https://rescience.github.io/


[Rp] Reproducing ”Typographical Features for Scene Text Recognition”

both the CUDA library and the NVIDIA driver were necessary. The versions installed by
the author on the platform and used in the original experiments are not known. How-
ever, considering the timing of the experiments it was most likely CUDA 2.2 or 2.3. A
Makefile path indicates MATLAB R2009a compiled the CUDAMaxEnt code; given that
the system administrator at the time updated software infrequently, it is almost certain
the same version was used for all the experiments in the original paper as well. A now
deprecated nvmex tool was used to bridge the CUDA/MATLAB divide; the Makefile
pointed to a user s̓ home directory where the file still exists. Although the version of
Java is not known precisely, the the Ant build.xml file for VIDI indicates Java version
1.5 was to be used.

Reproduction Environment — Restoring the original machine to its state at the time of the
original experiments is within the realm of possibility. The author retains all the origi-
nal hardware (the GPU included), and archived versions of the OS and library software
are available for download. However, rather than pursue that rather rewardless task, it
seemed preferable to embark upon a replication study to verify the stability of standard
tools (i.e., bash, C, Java, Matlab, and CUDA) .

Hardware An entirely different host was used. Its dual 14-core Intel Xeon (E5-2695)
CPUs present as having 56 cores, with 512 GiB of available host memory. The system
houses several GPUs, but experiments relied on only one Titan RTX GPU, with 23.6 GiB
of RAM and 4,608 cores.

Software The host operating system is Ubuntu 18.04.3 LTS. MATLAB is R2018a. CUDA
10.1 sits atop NVIDIA drivers with version 418.67. The default C compiler is gcc 7.4.0.
The Java is OpenJDK 1.8.0_222.

5.2 Software Preparation
The Subversion server hosted by the author s̓ institution was taken down about one year
before embarking upon reproducing this work. Although local copies of themost recent
code exist, specific versions of the code could not be checked outwithout the Subversion
server. Fortunately, the system administrator was able to quickly restore a server and
source repositories to their previous working order. This proved pivotal to the precise
reproduction of at least some experimental results.

MATLAB and a license for it have been maintained on the system, including all the req-
uisite toolboxes. However, a lack of ongoing licensing could have been an impediment;
it seems unlikely Octave would have produced similar, let alone identical results.

Compiling and running the C code required for calculating text bigrams was effortless,
as it was all standard C. Checking out and building the Java files for the author s̓ VIDI
library also worked perfectly (there were no external library dependencies). Whereas
the author had already adapted the Steerable Pyramid toolbox to the Ubuntu ecosystem,
copies were on hand that were compiled most recently in 2016 using MATLAB R2015a.
However, these were easily recompiled and verified to produce identical results (cf. Sec-
tion 6.3). In addition, the author s̓ C/mex code for an efficient 2D convolutional box filter
compiled without trouble for these experiments with MATLAB R2018a.

By far the most challenging part of the process was in resurrecting the CUDA MaxEnt
code and restoring it to a runnable state. One expects fairly significant differences to
emerge over the evolution from version 2.x to 10.1 of the CUDA library. Surprisingly,
to get the code compiled required only modest changes to the test harness and virtu-
ally none in the core computational code. The undergraduate students who primarily
authored the code wrote a plethora of unit tests, accompanied by Matlab scripts that

ReScience C 6.1 (#) – Weinman 2020 8

https://rescience.github.io/


[Rp] Reproducing ”Typographical Features for Scene Text Recognition”

generate the underlying data used for regression tests against native Matlab routines.
(This accounts for the very large number of files listed for the CUDA MaxEnt library in
Table 1.) Without the nvmex script to unite the CUDA compilation and Matlab-object
linking, some tinkering with the Makefile was required. The resulting strategy was
to invoke nvcc (the NVIDIA compiler for CUDA code) to create the appropriate object
files and then the MATLAB mex command could be used to link everything into a mex
file for invocation from within the MATLAB environment. Before the build could com-
plete, however, the latest version of CUnit, the requisite unit test framework, needed to
be installed (easily accomplished with the apt-get command, which installed version
2.1-3). This version was clearly newer than the version that the software relied on, be-
cause compile errors indicated the API had changed. A quick review of the updated API
indicated only a few additional (unused NULL) parameters needed to be inserted into
a test suite array. In addition, the return type for the cudaMalloc function from the
CUDA library may have evolved in way that now resulted in errors, so four of these calls
needed to be changed. Although several deprecation warnings were given for the use of
cudaThreadSynchronize(), the resulting code all compiled. (A newer replacement
exists, but the correctness of the code does not seem to be affected.)

In the revision of the code documented as the one used in the paper, the CUDAMaxEnt
testing breaks down into 7 test suites consisting of 185 tests having a grand total of 309
assertions. Using the Titan RTX, only one of these tests failed—a cudaMalloc call, but
the resulting kernel failed to produce any useful results in the experiments. Forging
ahead, the last version of the repository was used instead (dating to just one year later,
Feb 2011). It involved the same basic changes (enumerated above), passed the unit tests,
and produced plausible, though slightly different results when experiments were re-run
(cf. Figure 2 and Table 2). Without a more careful examination of the failure of the orig-
inal code to run effectively, it is impossible to attribute the differences in results more
specifically to the different CUDA library, the slightly different MaxEnt implementation,
or the different hardware.

Although somewhat tedious, recreating the 36 experimental collections (diagrammed
in Figure 1) was a straightforward matter of manually invoking the author s̓
make-collection and copy-collection utility scripts for each. Then, the depen-
dency files (DEPS) needed to be updated for each so that it would point to any newly
recreated parent collection.

Some detail workwas necessary to get a few collections that utilizeMATLAB scripts work-
ing with the current version of the software and the general data repository setup. Com-
mon to virtually every collection was the mechanism for initializing the MATLAB path
to point to the appropriate Subversion repositories (since the system-wide version gen-
erally utilized was too recent). Two other small changes were necessary in a few places.
The first updated the method for seeding the random number generator (though it is
doubtful this had any useful effect, then or now), and the second updated the call for
opening a thread pool to parallelize computations using the MATLAB Parallel Comput-
ing Toolbox. All in all, these were relatively small changes that required no intimate
knowledge of the scripts, only an awareness of how the MATLAB API had evolved.

It was discovered that one substantive element was not achieved (as it should have been)
through the collections̓ src/ folder, though it was properly archived in its data/ folder.
The learned character classifier had been hand-modified to exclude the narrowest and
widest “space” characters. Because the file was named
precog_no_extreme_spaces.mat, recreating the effect in the reproduced experi-
ments was fairly straight forward (i.e., load weight matrices, set two entries to -Inf,
store modified weight matrices and save the file), but the need to do so surely would not
have been obvious to anyone beside the original author.

Although recreating and rerunning the various configurations took a non-trivial amount

ReScience C 6.1 (#) – Weinman 2020 9

https://rescience.github.io/


[Rp] Reproducing ”Typographical Features for Scene Text Recognition”

Table 2. Reproduction of “Recognition results with increasing amounts of information.” [1, Table
1] Numbers are the recognition error rate (%) for theN = 1144 characters (measured by total edit
distance) over the 85-image data set. Extra columns indicate the collections that were re-run with
data from existing (2010) parent collection dependencies. The last column indicates the complete
reproduction.

Information
Colls. [Re]Run Original [1] Parser + Training + Data

eJ, eA, eF e* p*, e*
Appearance 22.20 22.20 22.38 23.51

+ Char. Bigram 17.40 17.40 18.71 17.31
+ Char. and Width Bigrams 16.87 16.87 17.13 17.05

of time (several days and nearly asmany hours of real compute time), it is still somewhat
remarkable that this rather complex web of inter-dependent experiments could be re-
created at all. Considering that precisely tracing computations and dependencies was
onemajor design goal of the author s̓ data repository, it seems to have succeeded in that
regard. The next question is whether it would enable a reproduction of the results.

6 Results

To isolate possible sources of variation, computations were re-run in phases, from the
bottom up.

6.1 Parsing
The earliest/easiest experiments are those lowest in the computational graph (Figure 1),
which were re-computed by preserving the dependencies on the original collections,
thus utilizing the original data. The parsing experiments were indeed re-produced ex-
actly. This is remarkable for a few reasons. First, there are several inner optimizations
usingMatlabs̓fminbndprocedure that is “based on golden section search andparabolic
interpolation” according to the documentation;1 the reproduced experiments produced
a bitwise equivalent double-precision floating point value in all cases. Second, only
the raw test images are provided to the collections; upon reproduction these images
had to be fed through the mex-based box filter for binarization and steerable pyramid
tools library for feature calculation. Because those results are not cached, it is unknown
whether they are identical, but they must be close enough so that the Viterbi parse pro-
duced the same path (if perhaps not precisely the same score).

One difference in runtime behavior on the reproduced experiment is worth noting. Be-
cause the Matlab Parallel Compute toolbox automatically spawns a thread pool accord-
ing to the local host configuration, four times as many threads (48) were used for ac-
celerating the runtime of the reproduced experiments as compared to the original (16).
Because the parses are entirely independent of one another (and the underlying Java
and C/mex libraries are thread-safe), the results proved to be the same regardless of the
parallel speedup.

6.2 Statistical Model Training
Next all of experimental results downstream of the pre-processed training data were
re-run, without regenerating the training data itself. Unsurprisingly, the raw character
bigram counts matched exactly. The weights of the learned character bigram model in
eB (which rely on a Matlab-only MaxEnt model and the L-BFGS optimizer) match very

1MathWorks. Find minimum of single-variable function on fixed interval. https://www.mathworks.com/help/
matlab/ref/fminbnd.html

ReScience C 6.1 (#) – Weinman 2020 10

https://www.mathworks.com/help/matlab/ref/fminbnd.html
https://www.mathworks.com/help/matlab/ref/fminbnd.html
https://rescience.github.io/


[Rp] Reproducing ”Typographical Features for Scene Text Recognition”

0 200 400 600 800 1000

Training Iteration

10 3

10 4

10 5

10 6

10 7
Training Comparison

Original (2010)

Repeated (2020): Original Data (2010)

Repeated (2020): New Data (2020)

10 -210 -110 010 110 2

L1 Regularization Parameter 

100

150

200

250

300

350

400

450

500

550

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

V
a

lid
a

ti
o

n
 D

a
ta

 C
h

a
ra

c
te

r 
A

c
c
u

ra
c
y

Validation Comparison

Original (2010)

Repeated (2020): Original Data (2010)

Repeated (2020): New Data (2020)

Figure 2. Training and testing results comparisons across the original run, a repetition of the train-
ing using the original data, and a second repetition using regenerated data. LEFT: Training objec-
tive function value; the color shifts with each successive relaxation of the L1 regularization param-
eter α. Right: Held-out validation data objective function (log-likelihood) and simple character
classification accuracy. The classifier with the lowest validation data objective (L1 smoothing
penalty α = 10

2/3) was used in all subsequent experiments.

closely. For weights with an absolute value mean/median/max of 0.9794/0.2233/7.3773,
the absolute differences between original and new are 2.4e–7/1.7e–7/1.1e–6. The char-
acter width bigram weights in eI and eG match as well, being 3–4 orders of magnitude
closer. (Results in eH and eE are identical, being mostly bookkeeping or simple pixel
measurements.)

The biggest difference arises from retraining the character classifier in eD, which relied
on the CUDA MaxEnt library. The experimental procedure for training the model in-
crementally relaxed a regularization penalty, designed to avoid over-fitting; a held-out
validation set was used to identify the best performing model. The left panel of Fig-
ure 2 shows the training objective reducing with each step of gradient descent. As the
minimization levels off and converges for each regularizing coefficient, the process then
continues with amore relaxed penalty (signaled by a color shift). The optimization trace
(not published in the paper, but extracted from a log file in the original 2010 collection)
progresses as would be expected with rapid decreases as the penalty is eased, followed
by gradual further improvements to themodel weights. When run on the same data, the
updated version of the code produces the same general curve, but generally achieves su-
perior minima with fewer iterations. However, the validation data show that while the
results are indeed different, they are not as different as the training curves might show.
Importantly, the same model regularization amount is chosen across all runs (whether
with the original result, a re-run on the original data, or a re-run with newly generated
data). Thus, the learned models—which each have 11,315,642 parameters—appear to
have fairly similar characteristics.

The end results of these intermediate experiments appear in Table 2 under column “+
Training”, as in “Parser + Training” because the parser experiments were re-run with
the new models as well. Although the results are not precisely the same, the relative
performance among the modules tested by the original question is the same—as one
would hope.

6.3 Synthetic Data Generation
The final test was to attempt reproducing all of the original synthetic training data, and
then re-run themodel training and final parse experiments. Although theMATLAB code
was unchanged but for the syntax of seeding the random number generator, it is not ev-

ReScience C 6.1 (#) – Weinman 2020 11

https://rescience.github.io/


[Rp] Reproducing ”Typographical Features for Scene Text Recognition”

ident this was done correctly in the first place. Thus, the randomly sampled factors
(neighboring characters, where synthetic sign borders appear—if at all, brightness/con-
trast, and noise) are all distinct. However, the code operates without fail and the general
visual effects are the same in the processing chains (i.e., pF–pE–pR). In sum, the data
appears repeatable, if not exactly reproducible.

As an intermediate test of reproducibility, the cached image features used for training
the character classifier were checked. The binarized images regenerated in pM from
the original pR were identical (a result of the Niblack binarization algorithm, which
uses thresholded local image statistics calculated with the recompiled mex box filter).
The wavelet-transformed images (using the recompiled C/mex PyrTools) in pJ from the
original pRwere bitwise identical inmost cases (median absolute difference of precisely
zero), and the maximum absolute differences are 2ϵ, where ϵ = 2−52, the granularity
of a double-precision floating point number. Thus, the feature calculations were fully
reproducible.

The complete reproduction results appear in Table 2 under column “+Data”, as in “Parser
+ Training + Data”, meaning all data (i.e., collections p*) and intermediate or final results
(i.e., collections e*) were recomputed from the previously stored raw primary data (col-
lections r*). As expected from the differences in model training described above, the
final results do differ from the original. However, the relative performance ranking is
the same. The absolute performances are comparable, though it might be noted that
with the relatively small (by today s̓ standards) test data set of N = 1144 characters, the
gap between the standard character bigrammodel and the character plus width bigram
model featured in the paper shrinks from six to three characters.

7 Conclusions

The original 2010 work has been successfully repeated ten years later, if not reproduced
exactly in all cases. Although many nodes in the experimental chain could be repro-
duced exactly, the most critical nodes involving the fitting of statistical models were
only approximately reproduced. All of the straightforward data-processing tasks (i.e.,
image features, bigram counts) were identical; notably even the output of the statistical
models (using previously learned parameters) applied to recalculated image features
and the resulting predictions matched precisely.

The entire compute chain from raw data to three numbers has been stored in an experi-
mental data repository spanning 36 collectionswhose 70 unique source code files having
3,500 lines of code generated 127GiB of data. This repository facilitated inspection and
ease of reproduction, ensuring collections could be re-run against the correct versions
of local (Subversion) source code repositories involving over 500 files and 50,000 lines of
code. Java and standard C code required nomodifications, and only twoMatlab calls re-
quired updating. Surprisingly, the intervening decade brought very few changes to the
CUDA library so that only minimal updates to the core machine learning code used in
the paper were required. However, these failed to produce satisfactory results, so that a
slightly newer (six months after the original publication) source version of the author s̓
library was used. This brought comparable, though not identical results (perhaps due
to differing hardware, newer libraries, or the updated client software, if not all three).

When a scientific work requires a long chain of data transformations that cannot be effi-
ciently recomputed on the fly, caching the results and the method of computation is es-
sential to bothunderstanding and reproducing thework. Althoughnot as easily portable
or universal as modern-day containers such as Docker or Peng and Eckel s̓ Cacher add-on
package for R [5], the transparency and simplicity of the author s̓ filesystem-based data
repository [2] has proven invaluable for a small research lab with minimal external col-
laborations. The repository and its function has also scaled; a more recent work by the

ReScience C 6.1 (#) – Weinman 2020 12

https://rescience.github.io/


[Rp] Reproducing ”Typographical Features for Scene Text Recognition”

author [11] incorporated 170 collections in its results chain whose 513 unique source
files (19,400 lines of code)—not including library dependencies—generated 857 GiB of
data and span nearly six years. Although the provenance of the calculations and the
intermediate data are easily traceable, the repository does not completely capture all
the host software versions and configurations, as a tool like Docker might. This short-
coming limited the degree of reproducibility reported in this report. Thus, only time
would tell whether these newer and ongoing computations will be truly reproducible.
This article indicates that using long-lived tools along with well-tracked dependencies
increases the chances of generating reproducible results.

References

1. J. J. Weinman. “Typographical Features for Scene Text Recognition.” In: Proc. IAPR Intl. Conf. on Pattern
Recognition. Istanbul, Turkey, Aug. 2010, pp. 3987–3990. DOI: 10.1109/ICPR.2010.970.

2. J. Weinman.Data Repository for Reproducible Research. Tech. rep. Grinnell, Iowa: Grinnell College, 2014. DOI:
11084/10001.

3. J. J. Weinman. “Unified Detection and Recognition for Reading Text in Scene Images.” PhD thesis. University
of Massachusetts Amherst, 2008. DOI: 10.7275/8dj8-8w94.

4. J. J. Weinman, E. Learned-Miller, and A. R. Hanson. “A Discriminative Semi-Markov Model for Robust
Scene Text Recognition.” In: Proc. IAPR Intl. Conf. on Pattern Recognition. Tampa, FL, Dec. 2008. DOI:
10.1109/ICPR.2008.4761818.

5. R. D. Peng and S. P. Eckel. “Distributed Reproducible Research Using Cached Computations.” In: Computing in
Science Engineering 11.1 (2009), pp. 28–34.

6. E. P. Simoncelli and W. T. Freeman. “The Steerable Pyramid: A Flexible Architecture for Multi-Scale Derivative
Computation.” In: Proc. IEEE Intl. Conf. on Image Processing. Vol. 3. 1995, pp. 444–447.

7. A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. “A Maximum Entropy Approach to Natural Language
Processing.” In: Computational Linguistics 22.1 (1996), pp. 39–71.

8. B. Krishnapuram, L. Carin, M. A. Figueiredo, and A. J. Hartemink. “Sparse Multinomial Logistic Regression:
Fast Algorithms and Generalization Bounds.” In: IEEE Trans. on Pattern Analysis and Machine Intelligence
27 (2005), pp. 957–968. DOI: 10.1109/TPAMI.2005.127.

9. R. H. Byrd, J. Nocedal, and R. B. Schnabel. “Representations of quasi-Newton matrices and their use in limited
memory methods.” In:Mathematical Programming 63 (1994), pp. 129–156.

10. J. J. Weinman, A. Lidaka, and S. Aggarwal. “Large Scale Machine Learning.” In: GPU Computing Gems. Ed. by
W.-m. W. Hwu. Morgan Kaufmann, 2010. Chap. 19, pp. 277–291. DOI: 10.1016/B978-0-12-384988-5.00019-X.

11. J. Weinman. “Geographic and Style Models for Historical Map Alignment and Toponym Recognition.” In:
Proc. IAPR Intl. Conf. on Document Analysis and Recognition. Kyoto, Japan, Nov. 2017, pp. 957–964. DOI:
10.1109/ICDAR.2017.160.

ReScience C 6.1 (#) – Weinman 2020 13

https://oadoi.org/10.1109/ICPR.2010.970
https://oadoi.org/11084/10001
https://oadoi.org/10.7275/8dj8-8w94
https://oadoi.org/10.1109/ICPR.2008.4761818
https://oadoi.org/10.1109/TPAMI.2005.127
https://oadoi.org/10.1016/B978-0-12-384988-5.00019-X
https://oadoi.org/10.1109/ICDAR.2017.160
https://rescience.github.io/


[Rp] Reproducing ”Typographical Features for Scene Text Recognition”

Table 3. Details of computational experiments, automatically extracted from INFO file, src/ sub-
directory (using cloc), and data/ subdirectory (using du) of each collection.

Name Date
Src Code Data

Description
Files Lines Size

eA 2010 01 01 3 172 30K Minimization of error for bigram compatibility term

eB 2009 07 08 3 235 18K Train a case-sensitive bigram maxent model with numbers tied

eC 2010 01 01 3 167 48K Minimization of error for overlap compatibility term

eD 2009 10 29 11 523 707M L1 regularized maxent classifier over all character and space widths plus a gap

eE 2009 07 08 2 21 4.0K Ten-fold split of the book corpus for cross-validation

eF 2010 01 01 3 178 30K Minimization of error for width bigram compatibility term

eG 2010 01 01 3 172 538K Train classifier for pairwise character identity and energy, including spaces

eH 2009 06 18 2 43 204M Scatter plots of different charactersʼ widths in the same font

eI 2009 06 25 10 570 15M Test of classification on pairwise character width

eJ 2010 01 01 3 162 4.0K Test of maxent classifier(s) on parsing scene text

pA 2009 07 27 3 164 45M Full-sized gaps in context with borders, random contrast/brightness and bias

pB 2009 07 27 3 182 23M Full-sized gaps in context with borders

pC 2009 10 13 3 271 2.8G Full-sized characters in context with borders and horizontal scaling

pD 2009 06 18 3 121 1.3M Character/digit bigram counts gathered from an English corpus

pE 2009 07 14 3 163 949M Full-sized characters in context with borders, random contrast/brightness, and bias

pF 2009 07 14 3 241 717M Full-sized characters in context with borders

pG 2009 07 27 3 160 1.1G Downsized steerable pyramid filtered gap images, rectified and normalized

pH 2009 07 27 3 156 55M Down-sized gaps in context with random contrast/brightness/bias and noise

pI 2009 10 15 3 162 1.6G Down-sized binarized characters in context

pJ 2009 07 14 3 163 22G Downsized steerable pyramid filtered character images, rectified and normalized

pK 2009 07 28 3 155 46M Down-sized binarized spaces in context

pL 2009 07 14 3 160 2.4G Downsized steerable pyramid filtered space images, rectified and normalized

pM 2009 07 28 3 155 417M Down-sized binarized characters in context

pN 2009 10 15 3 171 85G Downsized steerable pyramid filtered character images, rectified and normalized

pO 2009 07 28 3 155 21M Down-sized gaps binarized in context

pP 2009 10 14 3 166 4.5G Down-sized characters in context with random contrast/brightness/bias and noise

pQ 2009 10 13 3 171 3.7G Full-sized characters in context with borders, random contrast/brightness, and bias

pR 2009 07 14 3 158 1.2G Down-sized characters in context with random contrast/brightness/bias and noise

pS 2009 06 18 3 159 232M Character bounding-box widths measured in raw pixels

pT 2009 07 14 3 156 129M Down-sized spaces in context with random contrast/brightness/bias and noise

pU 2009 07 14 3 164 104M Full-sized spaces in context with borders, random contrast/brightness and bias

pV 2009 07 14 3 182 53M Full-sized spaces in context with borders

rA 2005 11 18 4 266 118K Meta-data about the 95 scene text sign images

rB 2003 09 12 N/A N/A 21M Size normalized, grayscale, fronto-parallel images of signs from outdoor scenes

rC 2005 08 05 2 144 232M Raw normal letter images (no symbols or all-caps fonts)

rD N/A N/A N/A 66M 85 Novels from Project Gutenberg

Total 70* 3489* 127G
* Total does not double-count duplicate files (defined as having the same MD5 digest sum) across collections

ReScience C 6.1 (#) – Weinman 2020 14

https://rescience.github.io/

	Introduction
	Background Context
	Data Repository for Reproducible Research
	Review of the Experiments
	Experimental Structure
	Raw Collections
	Processed Collections
	Experiment Collections

	Code and Data Footprint

	Reproducing the Work
	Compute Environments
	Original Environment
	Reproduction Environment

	Software Preparation 

	Results
	Parsing
	Statistical Model Training
	Synthetic Data Generation

	Conclusions

